① 贝叶斯分类算法和朴素贝叶斯算法的区别
为了测试评估贝叶斯分类器的性能,用不同数据集进行对比实验是必不可少的. 现有的贝叶斯网络实验软件包都是针对特定目的设计的,不能满足不同研究的需要. 介绍了用Matlab在BNT软件包基础上建构的贝叶斯分类器实验平台MBNC,阐述了MBNC的系统结构和主要功能,以及在MBNC上建立的朴素贝叶斯分类器NBC,基于互信息和条件互信息测度的树扩展的贝叶斯分类器TANC,基于K2算法和GS算法的贝叶斯网络分类器BNC. 用来自UCI的标准数据集对MBNC进行测试,实验结果表明基于MBNC所建构的贝叶斯分类器的性能优于国外同类工作的结果,编程量大大小于使用同类的实验软件包,所建立的MBNC实验平台工作正确、有效、稳定. 在MBNC上已经进行贝叶斯分类器的优化和改进实验,以及处理缺失数据等研究工作.
② 贝叶斯定理计算怎么做
贝叶斯定理
在引出贝叶斯定理之前,先学习几个定义:
边缘概率(又称先验概率):某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中那些不需要的事件通过合并成它们的全概率,而消去它们(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率),这称为边缘化(marginalization),比如A的边缘概率表示为P(A),B的边缘概率表示为P(B)。
联合概率表示两个事件共同发生的概率。A与B的联合概率表示为P(A∩B)或者P(A,B)。
条件概率(又称后验概率):事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”,。
接着,考虑一个问题:P(A|B)是在B发生的情况下A发生的可能性。
首先,事件B发生之前,我们对事件A的发生有一个基本的概率判断,称为A的先验概率,用P(A)表示;
其次,事件B发生之后,我们对事件A的发生概率重新评估,称为A的后验概率,用P(A|B)表示;
类似的,事件A发生之前,我们对事件B的发生有一个基本的概率判断,称为B的先验概率,用P(B)表示;
同样,事件A发生之后,我们对事件B的发生概率重新评估,称为B的后验概率,用P(B|A)表示。
贝叶斯定理便是基于下述贝叶斯公式:
如果我们已经知道B已经发生并且被称为可能性的概率是A。
P(A/B) A的概率假设我们已经知道B已经发生。
P(B)被称为先验概率,P(B/A)是后验概率。
③ 贝叶斯分类算法中的那个公式怎么解释
1. 收集大量的垃圾邮件和非垃圾邮件,建立垃圾邮件集和非垃圾邮件集。 2. 提取邮件主题和邮件体中的独立字符串,例如 ABC32,¥234等作为TOKEN串并统计提取出的TOKEN串出现的次数即字频。按照上述的方法分别处理垃圾邮件集和非垃圾邮件集中的所有邮件。 3. 每一个邮件集对应一个哈希表,hashtable_good对应非垃圾邮件集而hashtable_bad对应垃圾邮件集。表中存储TOKEN串到字频的映射关系。 4. 计算每个哈希表中TOKEN串出现的概率P=(某TOKEN串的字频)/(对应哈希表的长度)。 5. 综合考虑hashtable_good和hashtable_bad,推断出当新来的邮件中出现某个TOKEN串时,该新邮件为垃圾邮件的概率。数学表达式为: A 事件 ---- 邮件为垃圾邮件; t1,t2 …….tn 代表 TOKEN 串 则 P ( A|ti )表示在邮件中出现 TOKEN 串 ti 时,该邮件为垃圾邮件的概率。 设 P1 ( ti ) = ( ti 在 hashtable_good 中的值) P2 ( ti ) = ( ti 在 hashtable_ bad 中的值) 则 P ( A|ti ) =P2 ( ti ) /[ ( P1 ( ti ) +P2 ( ti ) ] ; 6. 建立新的哈希表hashtable_probability存储TOKEN串ti到P(A|ti)的映射 7. 至此,垃圾邮件集和非垃圾邮件集的学习过程结束。根据建立的哈希表 hashtable_probability可以估计一封新到的邮件为垃圾邮件的可能性。 当新到一封邮件时,按照步骤2,生成TOKEN串。查询hashtable_probability得到该TOKEN 串的键值。 假设由该邮件共得到N个TOKEN 串,t1,t2…….tn,hashtable_probability中对应的值为 P1 , P2 , ……PN , P(A|t1 ,t2, t3……tn) 表示在邮件中同时出现多个TOKEN串t1,t2……tn时,该邮件为垃圾邮件的概率。 由复合概率公式可得 P(A|t1 ,t2, t3……tn)=(P1*P2*……PN)/[P1*P2*……PN+(1-P1)*(1-P2)*……(1-PN)] 当 P(A|t1 ,t2, t3……tn) 超过预定阈值时,就可以判断邮件为垃圾邮件。
④ 贝叶斯公式运算
贝叶斯公式运算是在给定训练数据D时,确定假设空间H中的最佳假设。
最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。
1.贝叶斯法则机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设。
最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。
2.先验概率和后验概率用P(h)表示在没有训练数据前假设h拥有的初始概率。P(h)被称为h的先验概率。先验概率反映了关于h是一正确假设的机会的背景知识如果没有这一先验知识,可以简单地将每一候选假设赋予相同的先验概率。类似地,P(D)表示训练数据D的先验概率,P(D|h)表示假设h成立时D的概率。机器学习中,我们关心的是P(h|D),即给定D时h的成立的概率,称为h的后验概率。
3.贝叶斯公式贝叶斯公式提供了从先验概率P(h)、P(D)和P(D|h)计算后验概率P(h|D)的方法p(h|D)=P(D|H)*P(H)/P(D),P(h|D)随着P(h)和P(D|h)的增长而增长,随着P(D)的增长而减少,即如果D独立于h时被观察到的可能性越大,那么D对h的支持度越小。
⑤ 贝叶斯公式和全概率公式
贝叶斯定理公式:P(A|B)=P(B|A)*P(A)/P(B)
如上公式也可变形为:P(B|A)=P(A|B)*P(B)/P(A)
设实验E的样本空间为S,A为E的事件,B1,B2,...,Bn为S的一个划分,且P(Bi)>0(i=1,2,...,n),则
P(A)=P(A|B1)*P(B1) + P(A|B2)*P(B2) + ... + P(A|Bn)*P(Bn).
上式称为全概率公式。
⑥ 怎么简单理解贝叶斯公式
贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。其中P(A|B)是在B发生的情况下A发生的可能性。
贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1761)曾提出计算条件概率的公式用来解决如下一类问题:假设H,H…,H互斥且构成一个完全事件,已知它们的概率P(H),i=1,2,…,n,现观察到某事件A与H,H…,H相伴随机出现,且已知条件概率P(A|H),求P(H|A)。
按贝叶斯定理进行投资决策的基本步骤是:
1、列出在已知项目B条件下项目A的发生概率,即将P(A│B)转换为P(B│A);
2、绘制树型图;
3、求各状态结点的期望收益值,并将结果填入树型图;
4、根据对树型图的分析,进行投资项目决策。
⑦ 贝叶斯公式及经典例子有哪些
公式:P(A∩B)=P(A)*P(B|A)=P(B)*P(A|B),贝叶斯公式其实就是找事件发生的原因的概率。
贝叶斯定理用于投资决策分析是在已知相关项目B的资料,而缺乏论证项目A的直接资料时,通过对B项目的有关状态及发生概率分析推导A项目的状态及发生概率。
如果用数学语言描绘,即当已知事件Bi的概率P(Bi)和事件Bi已发生条件下事件A的概率P(A│Bi),则可运用贝叶斯定理计算出在事件A发生条件下事件Bi的概率P(Bi│A)。
贝叶斯法则
通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯法则就是这种关系的陈述。
作为一个规范的原理,贝叶斯法则对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中概率如何被赋值有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。
⑧ 如何理解贝叶斯公式
贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻导出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(B|A) = P(A|B)*P(B) / P(A)。
例如:一座别墅在过去的 20 年里一共发生过 2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次,在盗贼入侵时狗叫的概率被估计为 0.9,问题是:在狗叫的时候发生入侵的概率是多少?
我们假设 A 事件为狗在晚上叫,B 为盗贼入侵,则以天为单位统计,P(A) = 3/7,P(B) = 2/(20*365) = 2/7300,P(A|B) = 0.9,按照公式很容易得出结果:P(B|A) = 0.9*(2/7300) / (3/7) = 0.00058。
⑨ 如何理解贝叶斯公式
贝叶斯公式用于求原因概率;全概率公式用于求结果概率,两个公式对照着学会比较容易理解。 找到书上贝叶斯公式的例题,把题目中的某已知条件与所求互换一下,就变成从原因求结果概率,而用全概率公式。 找到书上全概率公式的例题,把题目中的某已知条件与所求互换一下,就变成从结果求原因概率,而用贝叶斯公式。
⑩ 贝叶斯公式
贝叶斯公式 贝叶斯公式
贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则:P(A∩B)=P(A)*P(B|A)=P(B)*P(A|B),可以立刻导出 贝叶斯定理公式:P(A|B)=P(B|A)*P(A)/P(B) 如上公式也可变形为:P(B|A)=P(A|B)*P(B)/P(A) 例如:一座别墅在过去的 20 年里一共发生过 2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次,在盗贼入侵时狗叫的概率被估计为 0.9,问题是:在狗叫的时候发生入侵的概率是多少? 我们假设 A 事件为狗在晚上叫,B 为盗贼入侵,则 P(A) = 3 / 7,P(B)=2/(20·365)=2/7300,P(A | B) = 0.9,按照公式很容易得出结果:P(B|A)=0.9*(2/7300)*(7/3)=0.00058 另一个例子,现分别有 A,B 两个容器,在容器 A 里分别有 7 个红球和 3 个白球,在容器 B 里有 1 个红球和 9 个白球,现已知从这两个容器里任意抽出了一个球,且是红球,问这个红球是来自容器 A 的概率是多少? 假设已经抽出红球为事件 B,从容器 A 里抽出球为事件 A,则有:P(B) = 8 / 20,P(A) = 1 / 2,P(B | A) = 7 / 10,按照公式,则有:P(A|B)=(7 / 10)*(1 / 2)*(20/8)=7/8 贝叶斯公式为利用搜集到的信息对原有判断进行修正提供了有效手段。在采样之前,经济主体对各种假设有一个判断(先验概率),关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验概率分布。