1. 普里姆算法的相关概念
1)生成树一个连通图的生成树是它的极小连通子图,在n个顶点的情形下,有n-1条边。生成树是对连通图而言的,是连通图的极小连通子图,包含图中的所有顶点,有且仅有n-1条边。非连通图的生成树则组成一个生成森林;若图中有n个顶点,m个连通分量,则生成森林中有n-m条边。
2)和树的遍历相似,若从图中某顶点出发访遍图中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历,(Traversing Graph)。图的遍历算法是求解图的连通性问题、拓扑排序和求关键路径等算法的基础。图的遍历顺序有两种:深度优先搜索(DFS)和广度优先搜索(BFS)。对每种搜索顺序,访问各顶点的顺序也不是唯一的。
3)在一个无向连通图G中,其所有顶点和遍历该图经过的所有边所构成的子图G′称做图G的生成树。一个图可以有多个生成树,从不同的顶点出发,采用不同的遍历顺序,遍历时所经过的边也就不同。
在图论中,常常将树定义为一个无回路连通图。对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树称为图的最小生成树。求图的最小生成树有很多实际应用。例如,通讯线路铺设造价最优问题就是一个最小生成树问题。常见的求最小生成树的方法有两种:克鲁斯卡尔(Kruskal)算法和普里姆(Prim)算法。
2. 什么事普里姆算法
是图的最小生成树的一种构造算法。 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。 补充:closedge的类型: struct { VertexData Adjvex; int Lowcost; }closedge[MAX_VERTEX_NUM]; //求最小生成树的辅助数组 void MiniSpanTree_P( MGraph G, VertexType u ) { //用普里姆算法从顶点u出发构造网G的最小生成树 k = LocateVex ( G, u ); closedge[k].Lowcost = 0; // 初始,U={u} for ( j=0; j<G.vexnum; ++j ) // 辅助数组初始化 if (j!=k) closedge[j] = { u, G.arcs[k][j] }; for ( i=0; i<G.vexnum; ++i ) { 继续向生成树上添加顶点; } k = minimum(closedge); // 求出加入生成树的下一个顶点(k) printf(closedge[k].Adjvex, G.vexs[k]); // 输出生成树上一条边 closedge[k].Lowcost = 0; // 第k顶点并入U集 for (j=0; j<G.vexnum; ++j) //修改其它顶点的最小边 if ( G.arcs[k][j] < closedge[j].Lowcost ) closedge[j] = { G.vexs[k], G.arcs[k][j] }; }
3. 什么是普里姆算法
构造最小生成树用的,使用贪心策 略。prime算法的基本思想 1.清空生成树,任取一个顶点加入 生成树 2.在那些一个端点在生成树里,另 一个端点不在生成树里的边中,选 取一条权最小的边,将它和另一个 端点加进生成树 3.重复步骤2,直到所有的顶点都 进入了生成树为止,此时的生成树 就是最小生成树
4. 普里姆算法的普里姆算法的实现
为了便于在两个顶点集U和V-U之间选择权最小的边,建立了两个辅助数组closest和lowcost,它们记录从U到V-U具有最小权值的边,对于某个j∈V-U,closest[j]存储该边依附的在U中的顶点编号,lowcost[j]存储该边的权值。
为了方便,假设图G采用邻接矩阵g存储,对应的Prim(g,v)算法如下:
void Prim(MatGraph g,int v) //输出求得的最小生树的所有边
{ int lowcost[MAXVEX]; //建立数组lowcost
int closest[MAXVEX]; //建立数组closest
int min,i,j,k;
for (i=0;i<g.n;i++) //给lowcost[]和closest[]置初值
{ lowcost[i]=g.edges[v][i];
closest[i]=v;
}
for (i=1;i<g.n;i++) //构造n-1条边
{ min=INF; k=-1;
for (j=0;j<g.n;j++) //在(V-U)中找出离U最近的顶点k
if (lowcost[j]!=0 && lowcost[j]<min)
{ min=lowcost[j];
k=j; //k为最近顶点的编号
}
printf( 边(%d,%d),权值为%d
,closest[k],k,min);
lowcost[k]=0; //标记k已经加入U
for (j=0;j<g.n;j++) //修正数组lowcost和closest
if (g.edges[k][j]!=0 && g.edges[k][j]<lowcost[j])
{ lowcost[j]=g.edges[k][j];
closest[j]=k;
}
}
}
普里姆算法中有两重for循环,所以时间复杂度为O(n2),其中n为图的顶点个数。由于与e无关,所以普里姆算法特别适合于稠密图求最小生成树。
5. 普里姆算法
可以这么理解:因为最小生成树是包含所有顶点的所以开始lowcost先储存到第一个点的所有值,然后执行下面算法,找到最小值并记录是第几个点,比如说这个点是3,这样有了一条1-3得道路已经确定,现在从3出发找从3出发到其他顶点的路径,如果这个从3出发到达的路径长度比从1出发的短,则更新lowcost,这样使得lowcost保存一直到达该顶点的最短路径。比如1-4是5,3-4是4,则lowcost从原来的5被改为4。
6. 什么是普利姆算法
Prim算法:是图的最小生成树的一种构造算法。
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。
如果看不懂还可以找一本数据结构的书看,这个算法挺简单的。
btw:其实你有空问,应该有空网络啊~网络就有了。懒得写,我还是直接从网络过来的~
7. 最小生成树 普里姆算法和克鲁斯卡尔算法
kruskal算法的时间复杂度主要由排序方法决定,其排序算法只与带权边的个数有关,与图中顶点的个数无关,当使用时间复杂度为O(eloge)的排序算法时,克鲁斯卡算法的时间复杂度即为O(eloge),因此当带权图的顶点个数较多而边的条数较少时,使用克鲁斯卡尔算法构造最小生成树效果最好!
克鲁斯卡尔算法
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。
普里姆算法
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。
--以上传自http://hi..com/valyanprogramming/blog/item/1bc960e6095f9726b93820d9.html
1.Kruskal
//题目地址:http://acm.pku.e.cn/JudgeOnline/problem?id=1258
#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
struct node
{
int v1;
int v2;
int len;
}e[10000];//定义边集
int cmp(const void *a,const void *b)//快排比较函数
{
return ((node*)a)->len-((node*)b)->len;
}
int v[100],a[100][100];//v为点集
void makeset(int n)
{
for(int i=0;i<n;i++)
v[i]=i;
}
int find(int x)
{
int h=x;
while(h!=v[h])
h=v[h];
return h;
}
int main()
{
int n,i,j,r1,r2,p,total;
while(scanf("%d",&n)!=EOF)
{
p=0;
total=0;
makeset(n);
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&a[i][j]);
e[p].v1=i;
e[p].v2=j;
e[p].len=a[i][j];
p++;
}
}
qsort(e,p,sizeof(e[0]),cmp);
for(i=0;i<p;i++)
{
r1=find(e[i].v1);
r2=find(e[i].v2);
if(r1!=r2)
{
total+=e[i].len;
v[r1]=r2;
}
}
printf("%d\n",total);
}
system("pause");
return 0;
}
2.Prim
//题目地址同上
#include <iostream>
using namespace std;
#define M 101
#define maxnum 100001
int dis[M][M];
int prim(int n)
{
bool used[M]={};
int d[M],i,j,k;
for(i=1; i<=n; i++)
d[i] = dis[1][i];
used[1] = true;
int sum=0;
for(i=1; i<n; i++){
int temp=maxnum;
for(j=1; j<=n; j++){
if( !used[j] && d[j]<temp ){
temp = d[j];
k = j;
}
}
used[k] = true;
sum += d[k];
for(j=1; j<=n; j++){
if( !used[j] && dis[k][j]<d[j] )
d[j] = dis[k][j]; // 与Dijksta算法的差别之处
}
}
return sum;
}
int main()
{
int n,i,j;
while( cin>>n ){
for(i=1; i<=n; i++){
for(j=1; j<=n; j++){
scanf("%d",&dis[i][j]);
if( !dis[i][j] )
dis[i][j] = maxnum;
}
}
cout<<prim(n)<<endl;
}
return 0;
}
代码来自网络
8. 普里姆算法生成最小代价生成树有没有可能超过一种就比如贪心选择时最小权值有两个或以上的时候如图,
是的,最小生成树的权值和是唯一的,但是最小生成树本身不唯一。不管它是用哪种算法计算的。
9. pascal普里姆算法
Prim算法用于求无向图的最小生成树
设图G =(V,E),其生成树的顶点集合为U。
①、把v0放入U。
②、在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。
③、把②找到的边的v加入U集合。如果U集合已有n个元素,则结束,否则继续执行②。
其算法的时间复杂度为O(n^2)
Prim算法实现:
(1)集合:设置一个数组set(i=0,1,..,n-1),初始值为 0,代表对应顶点不在集合中(注意:顶点号与下标号差1)
(2)图用邻接阵表示,路径不通用无穷大表示,在计算机中可用一个大整数代替。
采用堆可以将复杂度降为O(m log n),如果采用Fibonaci堆可以将复杂度降为O(n log n + m)
10. 利用普里姆算法求解最小生成树,写出步骤或画图表示过程。
<1,6>边长度未知,这里看成无穷大。
历次循环中,选择两端点分别在U,V中的边中长度最小者,
具体如下:
1. 将1加入U中,其余点加入V中。
2. 选择边<1,7>,将7加入U中,从V中除去该点。
3. 选择边<7,6>,将6加入U中,从V中除去该点。
4. 选择边<1,2>,将2加入U中,从V中除去该点。
5. 选择边<2,3>,将3加入U中,从V中除去该点。
6. 选择边<2,4>,将4加入U中,从V中除去该点。
7. 选择边<2,5>,将5加入U中,从V中除去该点。
结束。由上述六条边组成的树为求得的最小生成树。