导航:首页 > 源码编译 > 关联规则算法

关联规则算法

发布时间:2022-01-31 15:40:21

❶ 关联规则算法怎么刻画相似度

关联规则原始的定义里面并没有相似度的概念
只有支持度和置信度,
支持度 (A->B )=P(AB) 就是AB出现的概率
支持度 (A->B )=P(B|A) 就是A发生条件下B发生的概率。
相似度公式cosine (A->B) = P(AB)/√P(A)P(B)
不知道是不是你要的

❷ 关联规则apriori算法用什么软件做

1.1 什么是关联规则
一言蔽之,关联规则是形如X→Y的蕴涵式,表示通过X可以推导“得到”Y,其中X和Y分别称为关联规则的先导(antecedent或left-hand-side, LHS)和后继(consequent或right-hand-side, RHS)
1.2 如何量化关联规则
关联规则挖掘的一个典型例子便是购物车分析。通过关联规则挖掘能够发现顾客放入购物车中的不同商品之间的关联,分析顾客的消费习惯。这种关联规则的方向能够帮助卖家了解哪些商品被顾客频繁购买,从而帮助他们开发更好的营销策略。比如:将经常同时购买的商品摆近一些,以便进一步刺激这些商品一起销售;或者,将两件经常同时购买的商品摆远一点,这样可能诱发买这两件商品的用户一路挑选其他商品。
在数据挖掘当中,通常用“支持度”(support)和“置性度”(confidence)两个概念来量化事物之间的关联规则。它们分别反映所发现规则的有用性和确定性。比如:
Computer => antivirus_software , 其中 support=2%, confidence=60%
表示的意思是所有的商品交易中有2%的顾客同时买了电脑和杀毒软件,并且购买电脑的顾客中有60%也购买了杀毒软件。在关联规则的挖掘过程中,通常会设定最小支持度阈值和最小置性度阈值,如果某条关联规则满足最小支持度阈值和最小置性度阈值,则认为该规则可以给用户带来感兴趣的信息。
1.3 关联规则挖掘过程
1)几个基本概念:
关联规则A->B的支持度support=P(AB),指的是事件A和事件B同时发生的概率。
置信度confidence=P(B|A)=P(AB)/P(A),指的是发生事件A的基础上发生事件B的概率。
同时满足最小支持度阈值和最小置信度阈值的规则称为强规则。
如果事件A中包含k个元素,那么称这个事件A为k项集,并且事件A满足最小支持度阈值的事件称为频繁k项集。
2)挖掘过程:
第一,找出所有的频繁项集;
第二,由频繁项集产生强规则。
2. 什么是Apriori
2.1 Apriori介绍
Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集。首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集。最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则。
其中,Apriori算法具有这样一条性质:任一频繁项集的所有非空子集也必须是频繁的。因为假如P(I)< 最小支持度阈值,当有元素A添加到I中时,结果项集(A∩I)不可能比I出现次数更多。因此A∩I也不是频繁的。
2.2 连接步和剪枝步
在上述的关联规则挖掘过程的两个步骤中,第一步往往是总体性能的瓶颈。Apriori算法采用连接步和剪枝步两种方式来找出所有的频繁项集。
1) 连接步
为找出Lk(所有的频繁k项集的集合),通过将Lk-1(所有的频繁k-1项集的集合)与自身连接产生候选k项集的集合。候选集合记作Ck。设l1和l2是Lk-1中的成员。记li[j]表示li中的第j项。假设Apriori算法对事务或项集中的项按字典次序排序,即对于(k-1)项集li,li[1]<li[2]<……….<li[k-1]。将Lk-1与自身连接,如果(l1[1]=l2[1])&&( l1[2]=l2[2])&&……..&& (l1[k-2]=l2[k-2])&&(l1[k-1]<l2[k-1]),那认为l1和l2是可连接。连接l1和l2 产生的结果是{l1[1],l1[2],……,l1[k-1],l2[k-1]}。
2) 剪枝步
CK是LK的超集,也就是说,CK的成员可能是也可能不是频繁的。通过扫描所有的事务(交易),确定CK中每个候选的计数,判断是否小于最小支持度计数,如果不是,则认为该候选是频繁的。为了压缩Ck,可以利用Apriori性质:任一频繁项集的所有非空子集也必须是频繁的,反之,如果某个候选的非空子集不是频繁的,那么该候选肯定不是频繁的,从而可以将其从CK中删除。
(Tip:为什么要压缩CK呢?因为实际情况下事务记录往往是保存在外存储上,比如数据库或者其他格式的文件上,在每次计算候选计数时都需要将候选与所有事务进行比对,众所周知,访问外存的效率往往都比较低,因此Apriori加入了所谓的剪枝步,事先对候选集进行过滤,以减少访问外存的次数。)

❸ 关联规则算法的关联规则的定义

所谓关联,反映的是一个事件和其他事件之间依赖或关联的知识。当我们查找英文文献的时候,可以发现有两个英文词都能形容关联的含义。第一个是相关性relevance,第二个是关联性association,两者都可以用来描述事件之间的关联程度。
设I={i1,i2…,im}为所有项目的集合,设A是一个由项目构成的集合,称为项集。事务T是一个项目子集,每一个事务具有唯一的事务标识Tid。事务T包含项集A,当且仅当AT。如果项集A中包含k个项目,则称其为k项集。D为事务数据库,项集A在事务数据库D中出现的次数占D中总事务的百分比叫做项集的支持度(support)。如果项集的支持度超过用户给定的最小支持度阈值,就称该项集是频繁项集(或大项集)。
关联规则就是形如XY的逻辑蕴含关系,其中XI,YI且XY=Φ,X称作规则的前件,Y是结果,对于关联规则XY,存在支持度和信任度。
支持度是指规则中所出现模式的频率,如果事务数据库有s%的事务包含XY,则称关联规则XY在D中的支持度为s%,实际上,可以表示为概率P(XY),即support(XY)= P(XY)。信任度是指蕴含的强度,即事务D中c%的包含X的交易同时包含XY。若X的支持度是support(x),规则的信任度为即为:support(XY)/support(X),这是一个条件概率P(Y|X),即confidence(XY)= P(Y|X)。

❹ 简述一种关联规则挖掘算法基本过程。《数据挖掘》作业题追分100

Apriori算法是一种发现频繁项集的基本算法。算法使用频繁项集性质的先验知识。Apriori算法使用一种称为逐层搜索的迭代方法,其中K项集用于探索(k+1)项集。首先,通过扫描数据库,累计每个项的计数,并收集满足最小支持度的项,找出频繁1项集的集合。该集合记为L1.然后,使用L1找出频繁2项集的集合L2,使用L2找到L3,如此下去,直到不能再找到频繁k项集。
Apriori算法的主要步骤如下:
(1)扫描事务数据库中的每个事务,产生候选1.项集的集合Cl;
(2)根据最小支持度min_sup,由候选l-项集的集合Cl产生频繁1一项集的集合Ll;
(3)对k=l;
(4)由Lk执行连接和剪枝操作,产生候选(k+1).项集的集合Ck+l-
(5)根据最小支持度min_sup,由候选(k+1)一项集的集合Ck+l产生频繁(k+1)-项
集的集合Lk+1.
(6)若L⋯≠①,则k.k+1,跳往步骤(4);否则,跳往步骤(7);
(7)根据最小置信度min_conf,由频繁项集产生强关联规则,结束。

❺ 关联规则是什么

关联规则是形如X→Y的蕴涵式,其中, X和Y分别称为关联规则的先导(antecedent或left-hand-side, LHS)和后继(consequent或right-hand-side, RHS) 。其中,关联规则XY,存在支持度和信任度。

关联规则最初提出的动机是针对购物篮分析(Market Basket Analysis)问题提出的。假设分店经理想更多的了解顾客的购物习惯。特别是,想知道哪些商品顾客可能会在一次购物时同时购买;

为回答该问题,可以对商店的顾客事物零售数量进行购物篮分析。该过程通过发现顾客放入“购物篮”中的不同商品之间的关联,分析顾客的购物习惯。这种关联的发现可以帮助零售商了解哪些商品频繁的被顾客同时购买,从而帮助他们开发更好的营销策略。

关联规则研究

由于许多应用问题往往比超市购买问题更复杂,大量研究从不同的角度对关联规则做了扩展,将更多的因素集成到关联规则挖掘方法之中,以此丰富关联规则的应用领域,拓宽支持管理决策的范围。

如考虑属性之间的类别层次关系,时态关系,多表挖掘等。围绕关联规则的研究主要集中于两个方面,即扩展经典关联规则能够解决问题的范围,改善经典关联规则挖掘算法效率和规则兴趣性。

❻ 怎样生成数据挖掘的数据集,使用数据集进行关联规则Apriori算法,只想要纯数据集,我想用VF编程实现挖掘。

当你把整个文件打开的时候说明文件已经被load到内存里了。所以请检查你的内存是否够大,或者虚拟内存太小。 按理来说T10I4D100K.dat是很小的一个文件,虽然有10W行,但宽度很小啊。 建议你把虚拟内存调大一点,关闭其他占用大量内存的程序,例如IE,等等。 再么就是看看你的程序是否设计合理。这点儿数据根本不能算做大数据集。 over!

❼ 数据挖掘中的Hotspot关联规则

3. HotSpot关联规则树的节点定义说明:
由于这里增加了连续型属性数据,所以针对单个节点需增加一个布尔型变量lessThan,用于指明是要大于或者小于该节点数据,同时stateIndex应该是一个数值了(当前节点的值),而不是离散型数据状态的下标了。

阅读全文

与关联规则算法相关的资料

热点内容
linuxvi下一个 浏览:973
安卓手机的应用锁怎么解 浏览:733
linux增加路径 浏览:845
sql身份证号最后四位加密 浏览:533
xp系统表格加密 浏览:854
光遇安卓军大衣什么时候上线 浏览:838
android应用商店图标 浏览:341
java计算圆的面积 浏览:643
应用编译优化recovery 浏览:577
域控命令n 浏览:258
php导出文件 浏览:13
谷歌地图网页版无法连接服务器地址 浏览:298
菜鸟工具在线编译python 浏览:858
栅格化命令有何作用 浏览:823
为什么压缩文件不能解压 浏览:311
足球app哪个软件好 浏览:96
产品经理逼疯程序员的一天 浏览:17
修改svn服务器ip地址 浏览:584
下列关于编译说法正确的是 浏览:246
java马克思 浏览:118