1. 谁能给我详细讲一下拉普拉斯降维的算法步骤啊
在数学以及物理中, 拉普拉斯算子或是拉普拉斯算符(英语:Laplace operator, Laplacian)是一个微分算子,通常写成 Δ 或 ∇²;这是为了纪念皮埃尔-西蒙·拉普拉斯而命名的。拉普拉斯算子有许多用途,此外也是椭圆型算子中的一个重要例子。在物理中,常用于波方程的数学模型、热传导方程以及亥姆霍兹方程。在静电学中,拉普拉斯方程和泊松方程的应用随处可见。在量子力学中,其代表薛定谔方程式中的动能项。在数学中,经拉普拉斯算子运算为零的函数称为调和函数;拉普拉斯算子是霍奇理论的核心,并且是德拉姆上同调的结果。
2. 机器学习中的降维算法和梯度下降法
机器学习中有很多算法都是十分经典的,比如说降维算法以及梯度下降法,这些方法都能够帮助大家解决很多问题,因此学习机器学习一定要掌握这些算法,而且这些算法都是比较受大家欢迎的。在这篇文章中我们就给大家重点介绍一下降维算法和梯度下降法。
降维算法
首先,来说一说降维算法,降维算法是一种无监督学习算法,其主要特征是将数据从高维降低到低维层次。在这里,维度其实表示的是数据的特征量的大小,当特征量大的话,那么就给计算机带来了很大的压力,所以我们可以通过降维计算,把维度高的特征量降到维度低的特征量,比如说从4维的数据压缩到2维。类似这样将数据从高维降低到低维有两个好处,第一就是利于表示,第二就是在计算上也能带来加速。
当然,有很多降维过程中减少的维度属于肉眼可视的层次,同时压缩也不会带来信息的损失。但是如果肉眼不可视,或者没有冗余的特征,这怎么办呢?其实这样的方式降维算法也能工作,不过这样会带来一些信息的损失。不过,降维算法可以从数学上证明,从高维压缩到的低维中最大程度地保留了数据的信息。所以说,降维算法还是有很多好处的。
那么降维算法的主要作用是什么呢?具体就是压缩数据与提升机器学习其他算法的效率。通过降维算法,可以将具有几千个特征的数据压缩至若干个特征。另外,降维算法的另一个好处是数据的可视化。这个优点一直别广泛应用。
梯度下降法
下面我们给大家介绍一下梯度下降法,所谓梯度下降法就是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。好比将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快;当然解决问题的方法有很多,梯度下降只是其中一个,还有很多种方法。
在这篇文章中我们给大家介绍了关于机器算法中的降维算法以及梯度下降法,这两种方法是机器学习中十分常用的算法,降维算法和梯度下降法都是十分实用的,大家在进行学习机器学习的时候一定要好好学习这两种算法,希望这篇文章能够帮助大家理解这两种算法。
3. matlab中的降维函数是什么
drttoolbox : Matlab Toolbox for Dimensionality Rection是Laurens van der Maaten数据降维的工具箱。
里面囊括了几乎所有的数据降维算法:
- Principal Component Analysis ('PCA')
- Linear Discriminant Analysis ('LDA')
- Independent Component Analysis ('ICA')
- Multidimensional scaling ('MDS')
- Isomap ('Isomap')
- Landmark Isomap ('LandmarkIsomap')
- Locally Linear Embedding ('LLE')
- Locally Linear Coordination ('LLC')
- Laplacian Eigenmaps ('Laplacian')
- Hessian LLE ('HessianLLE')
- Local Tangent Space Alignment ('LTSA')
- Diffusion maps ('DiffusionMaps')
- Kernel PCA ('KernelPCA')
- Generalized Discriminant Analysis ('KernelLDA')
- Stochastic Neighbor Embedding ('SNE')
- Neighborhood Preserving Embedding ('NPE')
- Linearity Preserving Projection ('LPP')
- Stochastic Proximity Embedding ('SPE')
- Linear Local Tangent Space Alignment ('LLTSA')
- Simple PCA ('SPCA')
4. 统计方法中,有哪些降维方法
七种降维方法:
1、缺失值比率 (Missing Values Ratio)
2、 低方差滤波 (Low Variance Filter)
3、 高相关滤波 (High Correlation Filter)
4、 随机森林/组合树 (Random Forests)
5、 主成分分析 (PCA)
6、 反向特征消除 (Backward Feature Eliminati
7、 前向特征构造 (Forward Feature Construction)
5. 降维算法里面的“维”是指一维数组还是矩阵,到底是什么意思求朋友指导
都可以啊亲,,,看你的数据咯~你的原始数据是向量,降维自然就是低维向量,你的数据是矩阵,降维就可以降成低阶矩阵,,,流形之类的结构降维本质上等价于其上的切空间降维,降维手段不仅可以通过邻域展开,也可以通过切空间内的数学量降维,对于向量空间来说,可用的实在太多了,加油~~
6. 数据降维是什么意思
数据降维是将数据进行降维处理的意思。
降维,通过单幅图像数据的高维化,将单幅图像转化为高维空间中的数据集合,对其进行非线性降维。寻求其高维数据流形本征结构的一维表示向量,将其作为图像数据的特征表达向量。降维处理是将高维数据化为低维度数据的操作。一般来说,化学过程大都是一个多变量的变化过程,一般的化学数据也都是多变量数据。
(6)降维算法扩展阅读:
数据降维运用:
通过单幅图像数据的高维化,将单幅图像转化为高维空间中的数据集合,对其进行非线性降维,寻求其高维数据流形本征结构的一维表示向量,将其作为图像数据的特征表达向量。从而将高维图像识别问题转化为特征表达向量的识别问题,大大降低了计算的复杂程度,减少了冗余信息所造成的识别误差,提高了识别的精度。
通过指纹图像的实例说明,将非线性降维方法(如Laplacian Eigenmap方法)应用于图像数据识别问题,在实际中是可行的,在计算上是简单的,可大大改善常用方法(如K-近邻方法)的效能,获得更好的识别效果。此外,该方法对于图像数据是否配准是不敏感的,可对不同大小的图像进行识别,这大大简化了识别的过程。
7. le如何做
le如何做:LE是一种降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系。
常见的流形降维算法除了ISOMAP(等距特征映射)和 LLE(局部线性映射)之外,使用拉普拉斯矩阵进行特征映射的LE算法也是很常见而且实用的一种流行算法。
其思想十分简洁,同时也拥有不错的降维效果。
LE算法是一种保留数据局部特征的流形降维算法。其主要思想是在低维空间内尽可能保留数据局部样本点之间的结构不变。
具体来讲,拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能地靠近,从而在降维后仍能保持原有的数据结构。
8. 层次聚类算法是降维还是升维
层次聚类算法是降维。
层次聚类算法通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。 在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点。 创建聚类树有自下而上合并和自上而下分裂两种方法,本篇文章介绍合并方法。
层次聚类算法原理:
层次聚类的合并算法通过计算两类数据点间的相似性,对所有数据点中最为相似的两个数据点进行组合,并反复迭代这一过程。简单的说层次聚类的合并算法是通过计算每一个类别的数据点与所有数据点之间的距离来确定它们之间的相似性,距离越小,相似度越高。
9. 求大神简述一下LLE算法(或降维算法)在模式识别和数据挖掘中是怎样被应用的呢,谢谢
关于LLE算法具体的理论部分你可参考http://www.pami.sjtu.e.cn/people/xzj/introcelle.htm
Locally linear embedding (LLE),使用这种算法可以进行非线性降维,关键是其能够使降维后的数据保持原有拓扑结构
先给出一张下面算法得到的图 ,图中第一幅
LLE算法可以归结为三步:
(1)寻找每个样本点的k个近邻点;
(2)由每个样本点的近邻点计算出该样本点的局部重建权值矩阵;
(3)由该样本点的局部重建权值矩阵和其近邻点计算出该样本点的输出值。
为原始数据,第三个为降维后的数据,可以看出处理后的低维数据保持了原有的拓扑结构。
另,本人对LLE算法不是很熟悉,在此介绍一下其他降维算法的使用,以SVD算法为例。
电影推荐。
(1)假设现在有一个用户和电影评分的二维矩阵,矩阵内容是用户对电影的评分,现有得知某个用户对部分电影的评分,由此为该用户推荐他可能喜欢的电影。
(2)假设用户有100W,电影有100W部,那么对于任意一种推荐算法来说,这个数据量都很大,该问题无法在单机上进行运算解决;
(3)这100W维特征中必然存在一些几乎不重要的特征,这时,我们就需要用降维算法进行降维,降维的目的就是去掉大量的不重要的特征,以简化运算;
(4)在此例中,可以使用SVD(或SVD++)算法对矩阵进行降维
图片相似度
(1)通常,进行图片相似度判断首先会将图片通过傅里叶变换转换成数值代表的矩阵,矩阵代表着该图片,一般来说矩阵维数越高越精确
(2)同样,维数过高的情况下,相似度计算成本很高,因此同样需要降维,在图片相似度识别中常用的降维算法是PCA算法;
总之,降维的目的就是减少特征的维数,减少运算的成本。
以上皆为我的拙见,如有疑义请指正。
10. 请问当今比较流行的数据降维算法有哪些
这个要看你的需求和数据的data distribution,找到最合适的算法解决你的问题。
如果数据分布比较简单,线性映射降维就够了,比如PCA、ICA。
如果数据分布比较复杂,可能需要用到manifold learning,具体算法比如SOM、MDS、ISOMAP、LLE,另外deep learning也可以用来做降维。