导航:首页 > 源码编译 > 森林算法

森林算法

发布时间:2022-01-13 00:47:10

① 数据结构与算法,森林是树的集合,那这个即集合里可不可以有只有一个结点的树

可以的,这是特殊情况。只有一个结点的二叉树没有子树,
故它的结点的度及树的度都为零。

② 随机森林算法怎么提高预测数据的准确率

不了解什么是随机森林。感觉应该是一种算法。如果做计算机视觉建议你用OpenCV,R语言主要用在统计分析、机器学习领域。你找几篇这方面的文献看看别人跟你做类似课题时是用C++还是R。

③ 树和森林生成二叉树算法(请给出数据结构)

这个实现起来蛮简单的,就是一个根节点的第一个孩子就是他的左孩子,第二个孩子就是他第一个孩子的有孩子,第三个孩子就是他第二个孩子的右孩子。每个节点的第一个孩子是自己的左孩子。等有时间再帮你编这个程序。

④ c语言数据结构求森林的深度的递归算法

d1代表,如果不是这个第一个左孩子不是空树,它就会一直找下去,直到找到最后,记下左孩子的深度
d2代表,如果不是这个第一个右孩子不是空树,它就会一直找下去,直到找到最后,记下右孩子的深度
当然每次都会返回的左右深度的最大值,因为你要找的是森林的深度。
如果你不明白的话,你可以看一个比较简单的,就是求树的深度,再简单的就是求二叉树的深度,当这些深度你都会求了,森林的自然而然就会了。呵呵呵
不知道对你有没有帮助啊

⑤ 随机森林算法特征的阈值怎么确定

这个并不一定。随机森林是用来对特征的重要程度来排序选择。选择完成后,你可以根据自己的需要选择分类算法

⑥ 我想知道随机聚类森林算法和随机森林算法有什么不同,希望大家可以帮助我,谢谢。

通常随机森林聚类算法指代的是语义纹元森林,而随机森林算法是通常理解的基于决策树的组合分类器算法

⑦ 孤独森林算法和四分位极差法是什么关系

孤独森林算法和四为四分位及差法,他俩之间是有联系的,也就是孤独森林算法是在四分位极差算法的基础上发展而来的。

⑧ 求问随机森林算法的简单实现过程

随机森林(Random forest)指的是利用多棵树对样本进行训练并预测的一种分类器。 并且其输出的类别是由个别树输出的类别的众数而定。在机器学习中有一个地位很重要的包scikit-learn可实现随机森林算法。


原理:(随机森林的分类预测和回归预测sklearn.ensemble.RandomForestRegressor方法)
(1)给定训练集S,测试集T,特征维数F。确定参数:使用到的CART的数量t,每棵树的深度d,每个节点使用到的特征数量f,终止条件:节点上最少样本数s,节点上最少的信息增益m,对于第1-t棵树,i=1-t:
(2)从S中有放回的抽取大小和S一样的训练集S(i),作为根节点的样本,从根节点开始训练
(3)如果当前节点上达到终止条件,则设置当前节点为叶子节点,如果是分类问题,该叶子节点的预测输出为当前节点样本集合中数量最多的那一类c(j),概率p为c(j)占当前样本集的比例;如果是回归问题,预测输出为当前节点样本集各个样本值的平均值。然后继续训练其他节点。如果当前节点没有达到终止条件,则从F维特征中无放回的随机选取f维特征。利用这f维特征,寻找分类效果最好的一维特征k及其阈值th,当前节点上样本第k维特征小于th的样本被划分到左节点,其余的被划分到右节点。继续训练其他节点。
(4)重复(2)(3)直到所有节点都训练过了或者被标记为叶子节点。
(5)重复(2),(3),(4)直到所有CART都被训练过。
随机森林的简单实现过程如下:
一、 开发环境、编译环境:
PyCharm Community Edition 2016.2.3
python2.7.10
二、 所用库及安装方法:
pandas[python自带]
sklearn:命令行pip install sklearn;如果没有安装pip,先使用easy_install pip安装pip;如果在MAC上没有权限,使用sudo pip install sklearn;
三、 代码介绍
1. 使用pandas读取本地excel的训练集和测试集,将属性集赋给X_train和Y_train;将要预测的集合赋给X_test和Y_test;
2. 使用DictVectorizer对数据进行规范化、标准化
3. 生成RandomForestRegressor对象,并将训练集传入fit方法中进行训练
4. 调用predict函数进行预测,并将结果存入y_predict变量中;
5. 使用mean_squared_error、score方法输出MSE、NMSE值对拟合度、稳定度进行分析;输出feature_importance,对影响最终结果的属性进行分析;
6. 详细代码见附录
四、 附录
# coding:utf-8
import pandas as pd
data_train = pd.read_excel('/Users/xiaoliu/Desktop/data_train.xlsx')
X_train = data_train[['CPI', 'GDP', 'PPI', 'AJR', 'BJFJ', 'FBDR', 'PCFD', 'PCFDED', 'BDR']]
y_train = data_train['FJ']

data_test = pd.read_excel('/Users/xiaoliu/Desktop/data_test.xlsx')
X_test = data_test[['CPI', 'GDP', 'PPI', 'AJR', 'BJFJ', 'FBDR', 'PCFD', 'PCFDED', 'BDR']]
y_test = data_test['FJ']

from sklearn.feature_extraction import DictVectorizer

vec = DictVectorizer(sparse=False)
X_train = vec.fit_transform(X_train.to_dict(orient='records'))
X_test = vec.transform(X_test.to_dict(orient='records'))

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()
rf.fit(X_train,y_train)
y_predict = rf.predict(X_test)
print 'predict value:',y_predict

from sklearn.metrics import mean_squared_error
print 'MSE:', mean_squared_error(y_test, y_predict)
print 'NMES:',rf.score(X_test, y_test)
print rf.feature_importances_

⑨ 随机森林算法是什么

随机森林是一种比较新的机器学习模型。

经典的机器学习模型是神经网络,有半个多世纪的历史了。神经网络预测精确,但是计算量很大。上世纪八十年代Breiman等人发明分类树的算法(Breiman et al. 1984),通过反复二分数据进行分类或回归,计算量大大降低。

2001年Breiman把分类树组合成随机森林(Breiman 2001a),即在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,再汇总分类树的结果。随机森林在运算量没有显着提高的前提下提高了预测精度。

随机森林对多元共线性不敏感,结果对缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量的作用(Breiman 2001b),被誉为当前最好的算法之一(Iverson et al. 2008)。

随机森林优点:

随机森林是一个最近比较火的算法,它有很多的优点:

a、在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合。

b、在当前的很多数据集上,相对其他算法有着很大的优势,两个随机性的引入,使得随机森林具有很好的抗噪声能力。

c、它能够处理很高维度(feature很多)的数据,并且不用做特征选择,对数据集的适应能力强:既能处理离散型数据,也能处理连续型数据,数据集无需规范化。

⑩ [ 实验目的] 验证树和森林的遍历算法。(c++)

树和森林的遍历

@(数据结构)

不要带着二叉树的遍历来限制了对树的遍历的理解。
树的遍历的定义:以某种方式访问树中的每一个结点,且仅访问一次。
树的遍历主要有先根遍历和后根遍历。

阅读全文

与森林算法相关的资料

热点内容
安卓手机的应用锁怎么解 浏览:733
linux增加路径 浏览:845
sql身份证号最后四位加密 浏览:533
xp系统表格加密 浏览:854
光遇安卓军大衣什么时候上线 浏览:838
android应用商店图标 浏览:341
java计算圆的面积 浏览:643
应用编译优化recovery 浏览:577
域控命令n 浏览:258
php导出文件 浏览:13
谷歌地图网页版无法连接服务器地址 浏览:298
菜鸟工具在线编译python 浏览:858
栅格化命令有何作用 浏览:823
为什么压缩文件不能解压 浏览:311
足球app哪个软件好 浏览:96
产品经理逼疯程序员的一天 浏览:17
修改svn服务器ip地址 浏览:584
下列关于编译说法正确的是 浏览:246
java马克思 浏览:118
在设置的应用加密为啥没有微信 浏览:307