导航:首页 > 源码编译 > 卷积神经网络算法

卷积神经网络算法

发布时间:2022-02-02 13:54:53

Ⅰ 卷积神经网络和深度神经网络的区别是什么

主要区别是在多层感知机中,对层定义和深度处理方法不同。深度神经网络模仿人脑思考方式,首先逐层构建单层神经元,这样每次都是训练一个单层网络。当所有层训练完后,使用wake-sleep算法进行调优。卷积神经网络通过“卷积核”作为中介。同一个卷积核在所有图像内是共享的,图像通过卷积操作后仍然保留原先的位置关系。

Ⅱ CNNs卷积神经网络算法最后输出的是什么,一维向量和原始输入图像有什么关系呢

看你的目的是什么了,一般传统分类的输出是图片的种类,也就是你说的一维向量,前提是你输入图像是也是一维的label。 如果你输入的是一个矩阵的label,也可以通过调整网络的kernel达到输出一个矩阵的labels。

Ⅲ 如何计算卷积神经网络中接受野尺寸

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[1] 它包括卷积层(alternating convolutional layer)和池层(pooling layer)。
卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。

Ⅳ 前馈神经网络、BP神经网络、卷积神经网络的区别与联系

一、计算方法不同

1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。

2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。

3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。

二、用途不同

1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。

2、BP神经网络:

(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;

(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;

(3)分类:把输入向量所定义的合适方式进行分类;

(4)数据压缩:减少输出向量维数以便于传输或存储。

3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。

联系:

BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。

三、作用不同

1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。

2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。

3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。

(4)卷积神经网络算法扩展阅读

1、BP神经网络优劣势

BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。

①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。

②容易陷入局部极小值。

③网络层数、神经元个数的选择没有相应的理论指导。

④网络推广能力有限。

2、人工神经网络的特点和优越性,主要表现在以下三个方面

①具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。

②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。

③具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

Ⅳ 影响深度卷积神经网络算法的关键参数是().

卷积核个数filters 卷积核尺寸kernel_size 步长striders 填充方式padding 卷积核激活方式activation 卷积核权重参数初始分布 卷积核偏置参数初始分布
池化尺寸 池化步长 池化方式
优化算法 目标函数 batch大小
正则化 数据预处理

能影响的参数太多

Ⅵ 深度学习算法有哪些卷积神经网络

这个太多了,卷积是一种结构,凡是包含这种结构的深度网络都是卷积神经网络。比较知名的有:VGG、GoogleNet、Resnet等

Ⅶ 卷积神经网络工作原理直观的解释

其实道理很简单,因为卷积运算,从频域角度看,是频谱相乘所以图像跟卷积核做卷积时,两者频谱不重叠的部分相乘,自然是0,那图像这部分频率的信息就被卷积核过滤了。而图像,本质上就是二维离散的信号,像素点值的大小代表该位置的振幅,所以图像包含了一系列频率的特征。比如图像边缘部分,像素值差别大,属于高频信号,背景部分,像素值差别小,是低频信号。所以如果卷积核具有‘高通’性质,就能起到提取图像边缘的作用,低通则有模糊的效果。所以,卷积神经网络的牛逼之处在于通过卷积层的不同卷积核,提取图像不同频段的特征;以及通过池化层,提取不同粒度的特征。

阅读全文

与卷积神经网络算法相关的资料

热点内容
u盘根目录文件夹是哪个 浏览:689
新预算法预算编制 浏览:620
perl怎样遍历文件夹 浏览:636
安卓手机如何更好的保护隐私 浏览:316
程序员书籍知乎 浏览:154
王者安卓v区怎么转移到苹果 浏览:449
加密区卸载 浏览:122
女程序员压力大想辞职 浏览:681
算法体现在哪里 浏览:219
阿里云个人服务器推荐 浏览:363
汽车识别视频文件夹 浏览:110
档案服务器不可用是什么意思 浏览:525
有什么app能看到老婆在哪 浏览:562
androidpdf源码 浏览:435
方舟怎么把单机人物上传到服务器 浏览:964
偏置命令下大小形状保持不变 浏览:988
单片机各功能接口芯片 浏览:795
跳转收费系统源码 浏览:604
python3什么时候 浏览:708
惠州房车app哪个好 浏览:971