导航:首页 > 源码编译 > 多目标遗传算法

多目标遗传算法

发布时间:2022-02-05 03:48:49

A. matlab程序Pareto 遗传多目标算法

您好,GA不论是在应用、算法设计上,还是在基础理论上,均取得了长足的发展,应用也非常广泛.本文通过对基本遗传算法的研究,以及对其在多目标优化问题上的实现,在遗传算法领域进行探讨,并通过程序来验证.在多目标优化问题的研究中,所采用的一些方法在一些算例中获得了比较好的Pareto解集.
遗传算法作为求解全局优化问题的有力工具之一,应用十分广泛,目前主要应用在以下几个领域:
(1)基于遗传算法的机器学习(GeneticBaseMachineLearning).这一新的学习机制给解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。
(2)遗传算法与其他计算智能方法的相互渗透和结合.
(3)并行处理的遗传算法的研究十分活跃.这一研究不仅是对遗传算法本身的发展,而且对新一代智能计算机体系结构的研究都是十分重要的.(4)遗传算法在数据挖掘(DataMining)领域中的应用。

B. 谁能通俗的讲解一下NSGA-II多目标遗传算法

NSGA-II特别的地方就在它的选择过程上,其他的和其他算法也没什么区别。

选择过程分两个部分:
1. 把种群分成一组Pareto非支配集。一个非支配集里的个体不被当前或之后非支配集里的任何个体支配。方法就是每次选出所有不被任何其他个体支配的非支配个体,从种群里删除当一个非支配集,然后剩下的再不停重复这个过程,直到取完。
2. 按crowd distance排序。就是在各个维度左右相邻个体的距离之和。

选择的时候,先从前往后一个个取非支配集。取到手里的个体数量大于等于需要的数量了,最后一个非支配集里再怎么选?选crowd distance大的。

C. 什么是多目标遗传算法

http://www.easyworm.com/chinese/document/Chapter4.htm

比较复杂,解释起来不知是否可行,你先去这看看吧。
大学图书馆里这些书一找一大堆,可以去翻翻

D. 多目标优化遗传算法求解混合整数规划问题

可以参考多目标寻优遗传方法的进化思路,把遗传算法修改为针对整数规划的方法就可以

E. matlab 非线性多目标的遗传算法问题

用matlab的ga()遗传算法函数求非线性多目标的最小值(或最大值),其解决帮助如下:

1、首先建立自定义目标函数,y=FitFun(x)

2、其二建立自定义约束函数,[c,ceq]=NonCon(x)

3、最后,根据已知条件,用ga()函数求解。

为了说明问题,没有用你随意给的问题。下面,给你一个例子作参考。

FitFun.m

function f = FitFun(x,a1)

f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + a1);

end

NonCon.m

function [c,ceq] = NonCon(x,a2)

c = [1.5 + x(1)*x(2) - x(1) - x(2);-x(1)*x(2) - a2];

ceq = [];

end

ga_main.m

a1 = 1; a2 = 10;

options = gaoptimset('MutationFcn',@mutationadaptfeasible);

x = ga(@(x)FitFun(x,a1),2,[],[],[],[],[],[],@(x)NonCon(x,a2),options)

运行结果

F. 怎么评价MATLAB中gamultiobj函数(多目标遗传算法)的计算结果比如下面的函数和其部分结果

您好,多目标遗传算法可以得到Pareto Front图,即您展示的结果。至于评价方法应由您自己确定,比如最简单的线性加权函数评价方法,评价值Evalue=w1*minf1(x1,x2)+w2*minf2(x1,x2),其中w1+w2=1。
总的来说,就是依据自己的需要进行评价,matlab中不含有评价方法(因为评价方法很灵活)。

G. 为什么在多目标优化时选择遗传算法,而不用其他算法

会说不可以用其他算法了,遗传算法最精华就在于fitness,要是多目标优化也是把多个目标融合在一起 变成一个目标 然后再结合实际目标意义(越大越优,越小越优)进行计算fitness。至于优点,在大多数智能搜索算法里面,遗传算法的全局最优概率最大!

H. 急求一份多目标遗传算法matlab代码!

我给你一个标准遗传算法程序供你参考:
该程序是遗传算法优化BP神经网络函数极值寻优:
%% 该代码为基于神经网络遗传算法的系统极值寻优
%% 清空环境变量
clc
clear

%% 初始化遗传算法参数
%初始化参数
maxgen=100; %进化代数,即迭代次数
sizepop=20; %种群规模
pcross=[0.4]; %交叉概率选择,0和1之间
pmutation=[0.2]; %变异概率选择,0和1之间

lenchrom=[1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5]; %数据范围

indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体
avgfitness=[]; %每一代种群的平均适应度
bestfitness=[]; %每一代种群的最佳适应度
bestchrom=[]; %适应度最好的染色体

%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop
%随机产生一个种群
indivials.chrom(i,:)=Code(lenchrom,bound);
x=indivials.chrom(i,:);
%计算适应度
indivials.fitness(i)=fun(x); %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness];

%% 迭代寻优
% 进化开始
for i=1:maxgen
i
% 选择
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);

% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:); %解码
indivials.fitness(j)=fun(x);
end

%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

avgfitness=sum(indivials.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束

%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
axis([0,100,0,1])
disp('适应度 变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);
提问者评价
谢谢!

I. 跪求一份多目标多约束遗传算法的代码,matlab ,c ,c++都可以!不胜感激

阅读全文

与多目标遗传算法相关的资料

热点内容
解压不了是什么意思 浏览:359
新西兰编程师年薪 浏览:321
程序员为什么大多生闺女 浏览:51
c编程用英文还是中文 浏览:723
一点都不解压的游戏 浏览:203
解压为什么不能用中文文件夹 浏览:615
服务器如何解除备份 浏览:144
安卓手机为什么用一年就变卡 浏览:11
如何用风变编程自动回复 浏览:512
安卓阅读币怎么样 浏览:437
京东app怎么切号 浏览:583
进入传奇服务器后如何修改 浏览:42
m0单片机的cycle怎么知道 浏览:806
linux命令太长 浏览:782
压缩机nb1111y是多少w 浏览:45
打赏视频用什么服务器好 浏览:154
方舟好友服务器怎么加mod 浏览:982
javaresponse设置编码 浏览:842
opc数据采集源码 浏览:563
命令女孩子 浏览:691