‘壹’ matlab的算法有哪些急用!谢谢啊!
MATLAB 产品族可以用来进行以下各种工作:
● 数值分析
● 数值和符号计算
● 工程与科学绘图
● 控制系统的设计与仿真
● 数字图像处理 技术
● 数字信号处理 技术
● 通讯系统设计与仿真
● 财务与金融工程
MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用 MATLAB 函数集)扩展了 MATLAB 环境,以解决这些应用领域内特定类型的问题。
matlab特点
●此高级语言可用于技术计算
●此开发环境可对代码、文件和数据进行管理
●交互式工具可以按迭代的方式探查、设计及求解问题
●数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数值积分等
●二维和三维图形函数可用于可视化数据
●各种工具可用于构建自定义的图形用户界面
●各种函数可将基于MATLAB的算法与外部应用程序和语言(如 C、C++、Fortran、java、COM 以及 Microsoft Excel)集成
MATLAB的优势
(1)友好的工作平台和编程环境
MATLAB由一系列工具组成。这些工具方便用户使用MATLAB的函数和文件,其中许多工具采用的是图形用户界面。包括MATLAB桌面和命令窗口、历史命令窗口、编辑器和调试器、路径搜索和用于用户浏览帮助、工作空间、文件的浏览器。随着MATLAB的商业化以及软件本身的不断升级,MATLAB的用户界面也越来越精致,更加接近Windows的标准界面,人机交互性更强,操作更简单。而且新版本的MATLAB提供了完整的联机查询、帮助系统,极大的方便了用户的使用。简单的编程环境提供了比较完备的调试系统,程序不必经过编译就可以直接运行,而且能够及时地报告出现的错误及进行出错原因分析。
(2)简单易用的程序语言
Matlab一个高级的矩阵/阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M文件)后再一起运行。新版本的MATLAB语言是基于最为流行的C++语言基础上的,因此语法特征与C++语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强,这也是MATLAB能够深入到科学研究及工程计算各个领域的重要原因。
(3)强大的科学计算机数据处理能力
MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C和C++ 。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。
(4)出色的图形处理功能
图形处理功能 MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。可用于科学计算和工程绘图。新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。另外新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。
(5)应用广泛的模块集合工具箱
MATLAB对许多专门的领域都开发了功能强大的模块集和工具箱。一般来说,它们都是由特定领域的专家开发的,用户可以直接使用工具箱学习、应用和评估不同的方法而不需要自己编写代码。目前,MATLAB已经把工具箱延伸到了科学研究和工程应用的诸多领域,诸如数据采集、数据库接口、概率统计、样条拟合、优化算法、偏微分方程求解、神经网络、小波分析、信号处理、图像处理、系统辨识、控制系统设计、LMI控制、鲁棒控制、模型预测、模糊逻辑、金融分析、地图工具、非线性控制设计、实时快速原型及半物理仿真、嵌入式系统开发、定点仿真、DSP与通讯、电力系统仿真等,都在工具箱(Toolbox)家族中有了自己的一席之地。
(6)实用的程序接口和发布平台
新版本的MATLAB可以利用MATLAB编译器和C/C++数学库和图形库,将自己的MATLAB程序自动转换为独立于MATLAB运行的C和C++代码。允许用户编写可以和MATLAB进行交互的C或C++语言程序。另外,MATLAB网页服务程序还容许在Web应用中使用自己的MATLAB数学和图形程序。MATLAB的一个重要特色就是具有一套程序扩展系统和一组称之为工具箱的特殊应用子程序。工具箱是MATLAB函数的子程序库,每一个工具箱都是为某一类学科专业和应用而定制的,主要包括信号处理、控制系统、神经网络、模糊逻辑、小波分析和系统仿真等方面的应用。
(7)应用软件开发(包括用户界面)
在开发环境中,使用户更方便地控制多个文件和图形窗口;在编程方面支持了函数嵌套,有条件中断等;在图形化方面,有了更强大的图形标注和处理功能,包括对性对起连接注释等;在输入输出方面,可以直接向Excel和HDF5进行连接。
‘贰’ 49算法有最准确的版本吗
我知道两个49的公式算法: 49 母亲的月份(阳历)-当母亲生育一个孩子的年龄(第一年) 19 = ?你得到的答案减去12345的数字,直到你得到一个单位数字。如果是奇数,那就是个男孩。就算扯平了,也是个女孩。(0是一个小女孩)。另一个: 49 最后一次月经期的阴历月份-出生时的名义年龄 19如果单数是男孩,偶数是女孩。还有一个表轻工的地址: 种算法我是个男孩,我会在月底出生,出生后会被核实,姐妹们耐心等待![38: ]
‘叁’ 欧几里德算法的算法版本
functiongcd(a,b){vart;if(a<b)t=b,b=a,a=t;while(b!=0)t=b,b=a%b,a=t;returna;}
模P乘法逆元
对于整数a、p,如果存在整数b,满足ab mod p =1,则说,b是a的模p乘法逆元。
定理:a存在模p的乘法逆元的充要条件是gcd(a,p) = 1
证明:
首先证明充分性
如果gcd(a,p) = 1,根据欧拉定理,aφ(p) ≡ 1 mod p,因此
显然aφ(p)-1 mod p是a的模p乘法逆元。
再证明必要性
假设存在a模p的乘法逆元为b
ab ≡ 1 mod p
则ab = kp +1 ,所以1 = ab - kp
因为gcd(a,p) = d
所以d | 1
所以d只能为1 欧几里德算法是计算两个数最大公约数的传统算法,他无论从理论还是从效率上都是很好的。但是他有一个致命的缺陷,这个缺陷只有在大素数时才会显现出来。
硬件平台,一般整数最多也就是64位,对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过 64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算 128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。
Stein算法由J. Stein于1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法不同的是,Stein算法只有整数的移位和加减法,这对于程序设计者是一个福音。
为了说明Stein算法的正确性,首先必须注意到以下结论:
gcd(a,a) = a,也就是一个数和他自身的公约数是其自身
gcd(ka,kb) = k gcd(a,b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数必然能被2整除
C++/java 实现
// c++/java stein 算法
int gcd(int a,int b)
{if(a<b) //arrange so that a>b
{int temp = a;a = b;b=temp;}
if(0==b) //the base case
return a;
if(a%2==0 && b%2 ==0) //a and b are even
return 2*gcd(a/2,b/2);
if (a%2 == 0) // only a is even
return gcd(a/2,b);
if (b%2==0)// only b is even
return gcd(a,b/2);
return gcd((a-b)/2,b);// a and b are odd
} 扩展欧几里德算法不但能计算(a,b)的最大公约数,而且能计算a模b及b模a的乘法逆元,用C语言描述如下:
int gcd(int a, int b , int&;; ar,int &;; br)
{int x1,x2,x3;
int y1,y2,y3;
int t1,t2,t3;
if(0 == a)
{//有一个数为0,就不存在乘法逆元
ar = 0;
br = 0 ;
return b;
}
if(0 == b)
{
ar = 0;
br = 0 ;
return a;
}
x1 = 1;
x2 = 0;
x3 = a;
y1 = 0;
y2 = 1;
y3 = b;
int k;
for(t3 = x3 % y3 ; t3 != 0 ; t3 = x3 % y3)
{
k = x3 / y3;
t2 = x2 - k * y2;
t1 = x1 - k * y1;
x1 = y1;
x1 = y2;
x3 = y3;
y1 = t1;
y2 = t2;
y3 = t3;
}
if(y3 == 1)
{
//有乘法逆元
ar = y2;
br = x1;
return 1;
}
else
{
//公约数不为1,无乘法逆元
ar = 0;
br = 0;
return y3;
}
}
扩展欧几里德算法对于最大公约数的计算和普通欧几里德算法是一致的。计算乘法逆元则显得很难明白。我想了半个小时才想出证明他的方法。
首先重复拙作整除中的一个论断:
如果gcd(a,b)=d,则存在m,n,使得d = ma + nb,称呼这种关系为a、b组合整数d,m,n称为组合系数。当d=1时,有 ma + nb = 1 ,此时可以看出m是a模b的乘法逆元,n是b模a的乘法逆元。
为了证明上面的结论,我们把上述计算中xi、yi看成ti的迭代初始值,考察一组数(t1,t2,t3),用归纳法证明:当通过扩展欧几里德算法计算后,每一行都满足a×t1 + b×t2 = t3
第一行:1 × a + 0 × b = a成立
第二行:0 × a + 1 × b = b成立
假设前k行都成立,考察第k+1行
对于k-1行和k行有
t1(k-1) t2(k-1) t3(k-1)
t1(k) t2(k) t3(k)
分别满足:
t1(k-1) × a + t2(k-1) × b = t3(k-1)
t1(k) × a + t2(k) × b = t3(k)
根据扩展欧几里德算法,假设t3(k-1) = j t3(k) + r
则:
t3(k+1) = r
t2(k+1) = t2(k-1) - j × t2(k)
t1(k+1) = t1(k-1) - j × t1(k)
则
t1(k+1) × a + t2(k+1) × b
=t1(k-1) × a - j × t1(k) × a +
t2(k-1) × b - j × t2(k) × b
= t3(k-1) - j t3(k) = r
= t3(k+1)
得证
因此,当最终t3迭代计算到1时,有t1× a + t2 × b = 1,显然,t1是a模b的乘法逆元,t2是b模a的乘法逆元。
‘肆’ 大数据常用的各种算法
我们经常谈到的所谓的 数据挖掘 是通过大量的数据集进行排序,自动化识别趋势和模式并且建立相关性的过程。那现在市面的数据公司都是通过各种各样的途径来收集海量的信息,这些信息来自于网站、公司应用、社交媒体、移动设备和不断增长的物联网。
比如我们现在每天都在使用的搜索引擎。在自然语言处理领域,有一种非常流行的算法模型,叫做词袋模型,即把一段文字看成一袋水果,这个模型就是要算出这袋水果里,有几个苹果、几个香蕉和几个梨。搜索引擎会把这些数字记下来,如果你想要苹果,它就会把有苹果的这些袋子给你。
当我们在网上买东西或是看电影时,网站会推荐一些可能符合我们偏好的商品或是电影,这个推荐有时候还挺准。事实上,这背后的算法,是在数你喜欢的电影和其他人喜欢的电影有多少个是一样的,如果你们同时喜欢的电影超过一定个数,就把其他人喜欢、但你还没看过的电影推荐给你。 搜索引擎和推荐系统 在实际生产环境中还要做很多额外的工作,但是从本质上来说,它们都是在数数。
当数据量比较小的时候,可以通过人工查阅数据。而到了大数据时代,几百TB甚至上PB的数据在分析师或者老板的报告中,就只是几个数字结论而已。 在数数的过程中,数据中存在的信息也随之被丢弃,留下的那几个数字所能代表的信息价值,不抵其真实价值之万一。 过去十年,许多公司花了大价钱,用上了物联网和云计算,收集了大量的数据,但是到头来却发现得到的收益并没有想象中那么多。
所以说我们现在正处于“ 数字化一切 ”的时代。人们的所有行为,都将以某种数字化手段转换成数据并保存下来。每到新年,各大网站、App就会给用户推送上一年的回顾报告,比如支付宝会告诉用户在过去一年里花了多少钱、在淘宝上买了多少东西、去什么地方吃过饭、花费金额超过了百分之多少的小伙伴;航旅纵横会告诉用户去年做了多少次飞机、总飞行里程是多少、去的最多的城市是哪里;同样的,最后让用户知道他的行程超过了多少小伙伴。 这些报告看起来非常酷炫,又冠以“大数据”之名,让用户以为是多么了不起的技术。
实际上,企业对于数据的使用和分析,并不比我们每年收到的年度报告更复杂。已经有30多年历史的商业智能,看起来非常酷炫,其本质依然是数数,并把数出来的结果画成图给管理者看。只是在不同的行业、场景下,同样的数字和图表会有不同的名字。即使是最近几年炙手可热的大数据处理技术,也不过是可以数更多的数,并且数的更快一些而已。
在大数据处理过程中会用到那些算法呢?
1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的较佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是较佳优先搜索的范例。
2、集束搜索(又名定向搜索,Beam Search)——较佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。
3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。
4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。
5、Buchberger算法——一种数学算法,可将其视为针对单变量较大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。
6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。
7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。
8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。
9、离散微分算法(Discrete differentiation)。
10、动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法
11、欧几里得算法(Euclidean algorithm)——计算两个整数的较大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。
12、期望-较大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-较大算法在概率模型中寻找可能性较大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其较大可能估计值;第二步是较大化,较大化在第一步上求得的较大可能值来计算参数的值。
13、快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。
14、梯度下降(Gradient descent)——一种数学上的最优化算法。
15、哈希算法(Hashing)。
16、堆排序(Heaps)。
17、Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。
18、LLL算法(Lenstra-Lenstra-Lovasz lattice rection)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。
19、较大流量算法(Maximum flow)——该算法试图从一个流量网络中找到较大的流。它优势被定义为找到这样一个流的值。较大流问题可以看作更复杂的网络流问题的特定情况。较大流与网络中的界面有关,这就是较大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一个流网络中的较大流。
20、合并排序(Merge Sort)。
21、牛顿法(Newton's method)——求非线性方程(组)零点的一种重要的迭代法。
22、Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。
23、两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。
24、RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。
25、RSA——公钥加密算法。较早的适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。
26、Schönhage-Strassen算法——在数学中,Schönhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。
27、单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待较大化(或最小化)的固定线性函数。
28、奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。
29、求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。
30、Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。
31、合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:
查找:判断某特定元素属于哪个组。
合并:联合或合并两个组为一个组。
32、维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。
‘伍’ 数学的各种算法
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。
一个算法应该具有以下五个重要的特征:
有穷性
(Finiteness)
算法的有穷性是指算法必须能在执行有限个步骤之后终止;
确切性
(Definiteness)
算法的每一步骤必须有确切的定义;
输入项
(Input)
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
输出项
(Output)
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
可行性
(Effectiveness)
算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。
一、数据对象的运算和操作:计算机可以执行的基本操作是以指令的形式描述的。一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类:[1]
1.算术运算:加减乘除等运算
2.逻辑运算:或、且、非等运算
3.关系运算:大于、小于、等于、不等于等运算
4.数据传输:输入、输出、赋值等运算[1]
二、算法的控制结构:一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
算法可以宏泛地分为三类:
一、有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
二、有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
三、无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。
希望我能帮助你解疑释惑。
‘陆’ 常用的加密算法有哪些
对称密钥加密
对称密钥加密 Symmetric Key Algorithm 又称为对称加密、私钥加密、共享密钥加密:这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单的相互推算的密钥,对称加密的速度一般都很快。
分组密码
分组密码 Block Cipher 又称为“分块加密”或“块加密”,将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。这也就意味着分组密码的一个优点在于可以实现同步加密,因为各分组间可以相对独立。
与此相对应的是流密码:利用密钥由密钥流发生器产生密钥流,对明文串进行加密。与分组密码的不同之处在于加密输出的结果不仅与单独明文相关,而是与一组明文相关。
DES、3DES
数据加密标准 DES Data Encryption Standard 是由IBM在美国国家安全局NSA授权下研制的一种使用56位密钥的分组密码算法,并于1977年被美国国家标准局NBS公布成为美国商用加密标准。但是因为DES固定的密钥长度,渐渐不再符合在开放式网络中的安全要求,已经于1998年被移出商用加密标准,被更安全的AES标准替代。
DES使用的Feistel Network网络属于对称的密码结构,对信息的加密和解密的过程极为相似或趋同,使得相应的编码量和线路传输的要求也减半。
DES是块加密算法,将消息分成64位,即16个十六进制数为一组进行加密,加密后返回相同大小的密码块,这样,从数学上来说,64位0或1组合,就有2^64种可能排列。DES密钥的长度同样为64位,但在加密算法中,每逢第8位,相应位会被用于奇偶校验而被算法丢弃,所以DES的密钥强度实为56位。
3DES Triple DES,使用不同Key重复三次DES加密,加密强度更高,当然速度也就相应的降低。
AES
高级加密标准 AES Advanced Encryption Standard 为新一代数据加密标准,速度快,安全级别高。由美国国家标准技术研究所NIST选取Rijndael于2000年成为新一代的数据加密标准。
AES的区块长度固定为128位,密钥长度可以是128位、192位或256位。AES算法基于Substitution Permutation Network代换置列网络,将明文块和密钥块作为输入,并通过交错的若干轮代换"Substitution"和置换"Permutation"操作产生密文块。
AES加密过程是在一个4*4的字节矩阵(或称为体State)上运作,初始值为一个明文区块,其中一个元素大小就是明文区块中的一个Byte,加密时,基本上各轮加密循环均包含这四个步骤:
ECC
ECC即 Elliptic Curve Cryptography 椭圆曲线密码学,是基于椭圆曲线数学建立公开密钥加密的算法。ECC的主要优势是在提供相当的安全等级情况下,密钥长度更小。
ECC的原理是根据有限域上的椭圆曲线上的点群中的离散对数问题ECDLP,而ECDLP是比因式分解问题更难的问题,是指数级的难度。而ECDLP定义为:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。
数字签名
数字签名 Digital Signature 又称公钥数字签名是一种用来确保数字消息或文档真实性的数学方案。一个有效的数字签名需要给接收者充足的理由来信任消息的可靠来源,而发送者也无法否认这个签名,并且这个消息在传输过程中确保没有发生变动。
数字签名的原理在于利用公钥加密技术,签名者将消息用私钥加密,然后公布公钥,验证者就使用这个公钥将加密信息解密并对比消息。一般而言,会使用消息的散列值来作为签名对象。
‘柒’ python中有哪些简单的算法
你好:
跟你详细说一下python的常用8大算法:
1、插入排序
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
2、希尔排序
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
3、冒泡排序
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
4、快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
5、直接选择排序
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
6、堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
7、归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
8、基数排序
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部分资讯,将要排序的元素分配至某些“桶”中,借以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
‘捌’ 各种RL算法
在现代RL空间中绘制精确的,无所不包的算法分类法真的很难,因为算法的模块性没有用树结构很好地表示。此外,为了使某些东西适合页面并且在介绍文章中可以合理地消化,我们必须省略相当多的更高级的材料(探索,转移学习,元学习等)。也就是说,我们的目标是:
1. 强调深度RL算法中最基本的设计选择,包括学习内容和学习方法,
2. 揭示这些选择中的权衡,
3. 并针对这些选择将一些突出的现代算法放入上下文中。
RL算法中最重要的分支点之一是 agent是否可以获得(或学习)环境模型的问题 。我们提到的环境模型,我们指的是一种预测状态转换和奖励的函数。
拥有模型的主要好处是, 它允许agent 通过提前思考,查看一系列可能的选择会发生什么,以及明确决定其选项 来进行规划 。然后, agent 可以将结果从提前计划中提取到学习策略中。这种方法的一个特别着名的例子是 AlphaZero 。当这种方法有效时,与没有模型的方法相比,它可以显着提高样本效率。
主要缺点是 agent通常无法获得环境的真实模型。 如果 agent 想要在这种情况下使用模型,它必须纯粹从经验中学习模型,这会产生一些挑战。最大的挑战是模型中的偏差可以被 agent 利用,从而导致 agent 在学习模型方面表现良好,但在真实环境中表现得次优(或非常可怕)。模型学习从根本上来说很难,所以即使是非常努力——愿意花费大量时间并对其进行计算——也无法获得回报。
使用模型的算法称为 基于模型 的方法,而不使用模型的算法称为 无模型 。虽然无模型方法放弃了使用模型的样本效率带来的潜在增益,但它们往往更容易实现和调整。截至撰写本简介(2018年9月)时,无模型方法比基于模型的方法更受欢迎,并且得到了更广泛的开发和测试。
RL算法中的另一个关键分支点是 要学习什么 的问题 。 通常可能的名单包括
1. 策略,无论是随机的还是确定的,
2. 动作值函数(Q函数),
3. 值函数,
4. 和/或环境模型。
使用无模型RL表示和训练agent有两种主要方法:
Policy Optimization - 策略优化. 此系列中的方法将策略明确表示为 。它们直接通过性能指标 上的梯度上升来优化参数 ,或者通过最大化 的局部近似来间接地优化参数 。此优化几乎总是以 on-policy 的方式运行,这意味着每个更新仅使用根据最新版本的策略执行时收集的数据。
策略优化通常还涉及学习on-policy值函数 的近似值 ,用于确定如何更新策略。策略优化方法的几个例子是:
1. A2C / A3C ,执行梯度上升以直接最大化性能,
2. 和 PPO ,其更新间接地最大化性能,通过最大化替代 目标函数 ,该函数给出保守估计 将由于更新而改变多少。
Q-Learning. 该系列中的方法学习最优动作值函数 的近似值 。通常,它们使用基于Bellman方程的目标函数。此优化几乎总是以 off-policy 的方式运行,这意味着每次更新都可以使用在训练期间的任何时间点收集的数据,无论agent在获取数据时如何选择探索环境。通过 和 之间的连接获得相应的策略:Q-learning agent所采取的动作由下式给出:
Q-learning方法的例子包括
1. DQN ,一个大规模推出DRL领域的经典之作,
2. 和 C51 ,一种学习回报分布的变体,其期望值为 。
Trade-offs Between Policy Optimization and Q-Learning.
策略优化方法的主要优势在于它们是原则性的,在这种意义上,你可以直接针对你想要的东西进行优化。这往往使它们稳定可靠。
相比之下,Q-learning方法仅通过训练 来满足自洽方程,间接优化agent性能。这种学习有很多失败模式,因此往往不太稳定 [1] 。但是,Q-learning方法的优势在于它们在工作时具有更高的样本效率,因为它们可以比策略优化技术更有效地重用数据。
Interpolating Between Policy Optimization and Q-Learning.
政策优化和Q学习并不矛盾(在某些情况下,事实证明,他们是 等价的 ),并且存在一系列存在于两个极端之间的算法。处在这一范围内的算法能够在任何一方的优势和劣势之间进行谨慎的权衡。 例子包括
1. DDPG 一种同时学习确定性策略和Q函数的算法,通过使用它们当中每一个来改进另一个,
2. 和 SAC ,一种使用随机策略,熵正则化和一些其他技巧来稳定学习并在标准基准上得分高于DDPG的变体。
[1] For more information about how and why Q-learning methods can fail, see 1) this classic paper by Tsitsiklis and van Roy , 2) the (much more recent) review by Szepesvari (in section 4.3.2), and 3) chapter 11 of Sutton and Barto , especially section 11.3 (on “the deadly triad” of function approximation, bootstrapping, and off-policy data, together causing instability in value-learning algorithms).
与无模型RL不同,基于模型的RL不存在少量易于定义的方法集群:使用模型有许多正交方法。我们举几个例子,但这个清单远非详尽无遗。 在每种情况下,可以给出或学习模型。
背景:纯粹的规划. 最基本的方法从未明确地表示策略,而是使用纯 模型 技术(如 模型预测控制 (MPC))来选择操作。在MPC中,每次agent观察环境时,它都会计算一个相对于模型最优的 规划 ,其中 规划 描述了在当前之后的某个固定时间窗口内采取的所有动作。 ( 规划 算法可以通过使用学习值函数来考虑超出视野的未来奖励。)然后,代理执行 规划 的第一个动作,并立即丢弃其余部分。它每次准备与环境交互时计算新 规划 ,以避免使用 规划 范围短于预期的 规划 中的动作。
MBMF 的工作探讨了MPC与深度RL的一些标准基准任务的学习环境模型。
专家迭代. 纯粹 规划 的直接后续涉及使用和学习策略 的明确表示。agent在模型中使用规划算法(如蒙特卡罗树搜索),通过从当前策略中抽样为该规划生成候选动作。规划算法产生的动作优于单独的策略产生的动作,因此它是相对于策略的“专家”。之后更新策略以生成更类似于规划算法输出的动作。
该 ExIt 算法使用这种方法来训练深层神经网络玩Hex。
AlphaZero 是这种方法的另一个例子。
无模型方法的数据增强. 使用无模型RL算法来训练策略或Q函数,但是要么1)在更新agent时增加虚构的实际经验,要么2) 仅 使用虚拟经验来更新agent。
请参阅 MBVE ,了解增加虚构实际体验的示例。
请参阅 世界模型 ,了解使用纯粹的虚拟经验训练agent的例子,他们称之为“在梦中训练”。
将规划循环嵌入到策略中。 另一种方法是将规划程序直接嵌入到作为子程序的策略中——以便完整规划成为策略的辅助信息 ——同时使用任何标准的无模型算法训练策略的输出。关键概念是,在此框架中,策略可以学习如何以及何时使用规划。这使得模型偏差不再成为问题,因为如果模型在某些状态下不适合规划,则策略可以简单地学会忽略它。
有关具有这种想象力的agent的例子,请参阅 I2A 。
[2]. A2C / A3C (Asynchronous Advantage Actor-Critic): Mnih et al, 2016
[3]. PPO (Proximal Policy Optimization): Schulman et al, 2017
[4]. TRPO (Trust Region Policy Optimization): Schulman et al, 2015
[5]. DDPG (Deep Deterministic Policy Gradient): Lillicrap et al, 2015
[6]. TD3 (Twin Delayed DDPG): Fujimoto et al, 2018
[7]. SAC (Soft Actor-Critic): Haarnoja et al, 2018
[8]. DQN (Deep Q-Networks): Mnih et al, 2013
[9]. C51 (Categorical 51-Atom DQN): Bellemare et al, 2017
[10]. QR-DQN (Quantile Regression DQN): Dabney et al, 2017
[11]. HER (Hindsight Experience Replay): Andrychowicz et al, 2017
[12]. World Models : Ha and Schmidhuber, 2018
[13]. I2A (Imagination-Augmented Agents): Weber et al, 2017
[14]. MBMF (Model-Based RL with Model-Free Fine-Tuning): Nagabandi et al, 2017
[15]. MBVE (Model-Based Value Expansion): Feinberg et al, 2018
[16]. AlphaZero : Silver et al, 2017
‘玖’ 各个版本office文档的加密算法是什么从03到13给叙述一下。
这个我不清楚。
给文档加密,我推荐您可以下载超级加密3000软件试试。
超级加密 3000采用先进的加密算法,使你的文件和文件夹加密后,真正的达到超高的加密强度,让你的加密数据无懈可击。
‘拾’ 机器学习有哪些算法
1. 线性回归
在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。
2. Logistic 回归
Logistic 回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。
3. 线性判别分析
Logistic 回归是一种传统的分类算法,它的使用场景仅限于二分类问题。如果你有两个以上的类,那么线性判别分析算法(LDA)是首选的线性分类技术。
4.分类和回归树
决策树是一类重要的机器学习预测建模算法。
5. 朴素贝叶斯
朴素贝叶斯是一种简单而强大的预测建模算法。
6. K 最近邻算法
K 最近邻(KNN)算法是非常简单而有效的。KNN 的模型表示就是整个训练数据集。
7. 学习向量量化
KNN 算法的一个缺点是,你需要处理整个训练数据集。
8. 支持向量机
支持向量机(SVM)可能是目前最流行、被讨论地最多的机器学习算法之一。
9. 袋装法和随机森林
随机森林是最流行也最强大的机器学习算法之一,它是一种集成机器学习算法。
想要学习了解更多机器学习的知识,推荐CDA数据分析师课程。CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。点击预约免费试听课。