导航:首页 > 源码编译 > 新reno算法的拥塞避免

新reno算法的拥塞避免

发布时间:2022-10-25 05:15:12

Ⅰ 安卓cpu优化tcp拥塞算法cubic和reno怎么选择

  1. 上述具体的论文可以参考:CUBIC: A New TCP-Friendly High-Speed TCP Variant

  2. 1. tcp cubic数学模型

  3. CUBIC在设计上简化了BIC-TCP的窗口调整算法,在BIC-TCP的窗口调整中会出现一个凹和凸(这里的凹和凸指的是数学意义上的凹和凸,凹函数/凸函数)的增长曲线,CUBIC使用了一个三次函数(即一个立方函数),在三次函数曲线中同样存在一个凹和凸的部分,该曲线形状和BIC-TCP的曲线图十分相似,于是该部分取代BIC-TCP的增长曲线。另外,CUBIC中最关键的点在于它的窗口增长函数仅仅取决于连续的两次拥塞事件的时间间隔值,从而窗口增长完全独立于网络的时延RTT,之前讲述过的HSTCP存在严重的RTT不公平性,而CUBIC的RTT独立性质使得CUBIC能够在多条共享瓶颈链路的TCP连接之间保持良好的RRTT公平性。

  4. 来看下具体细节:当某次拥塞事件发生时,Wmax设置为此时发生拥塞时的窗口值,然后把窗口进行乘法减小,乘法减小因子设为β,当从快速恢复阶段退出然后进入到拥塞避免阶段,此时CUBIC的窗口增长开始按照“凹”式增长曲线进行增长,该过程一直持续直到窗口再次增长到Wmax,紧接着,该函数转入“凸”式增长阶段。该方式的增长可以使得窗口一直维持在Wmax附近,从而可以达到网络带宽的高利用率和协议本身的稳定性。

  5. 窗口的增长函数如下:

  6. W(t)=C*(t-K)3+Wmax,其中C和β为常量。

  7. t为当前时间距上一次窗口减小的时间差,而K就代表该函数从W增长到Wmax的时间周期,。

  8. 当收到ACK后,CUBIC计算利用该算法计算下一个RTT内的窗口增长速度,即计算W(t+RTT),该值将作为cwnd的目标值,根据cwnd的大小,CUBIC将进入三种不同模式,如果cwnd会小于在标准TCP下经过上次拥塞之后的时刻t窗口将会达到的值(该值是通过标准TCP的窗口增长函数计算出来的),那么CUBIC就处于标准TCP模式,如果小于Wmax,那么位于凹阶段的,如果大于Wmax,那么处于凸阶段。

  9. tcp cubic 内核源代码调用逻辑

  10. CUBIC整体架构调用的逻辑如下:

  11. 1. 连接每收到一个ack,则调用tcp_ack

  12. 2. tcp_ack会调用bictcp_acked,用来更新cnt和delayed_ack(用来消除delay包的影响)

  13. 3. tcp_ack会调用bictcp_cong_avoid,这是分两种情况:

  14. (1)snd_cwnd小于慢启动阈值,处于慢启动阶段,则调用tcp_slow_start

  15. (2)snd_cwnd大于慢启动阈值,处于拥塞避免阶段,则调用bictcp_update来更新bictcp,再调用tcp_cong_avoid_ai

  16. 4. tcp_ack中如果检测到丢包,进入拥塞处理阶段,则调用bictcp_recalc_ssthresh来更新慢启动阈值

  17. 5. tcp_ack中完成丢包重传后,退出拥塞处理阶段,则调用bictcp_undo_cwnd来更新

  18. 快速重传:tcp_ack中的丢包检测,即检测到连续3个重复ACK。

  19. 快速恢复:bictcp_undo_cwnd,直接把snd_cwnd更新为max(snd_cwnd,last_max_cwnd),和掉包前相差不大。

Ⅱ TCP协议总结

Transmission Control Protocol,传输控制协议,是一种面向连接的、可靠的、基于字节流的传输层通信协议

TCP协议的目的是: 在不可靠传输的IP层之上建立一套可靠传输的机制。 TCP的可靠只是对于它自身来说的, 甚至是对于socket接口层, 两个系统就不是可靠的了, 因为发送出去的数据, 没有确保对方真正的读到(所以要在业务层做重传和确认机制)。

可靠传输的第一要素是 确认 , 第二要素是 重传 , 第三要素是 顺序 。 任何一个可靠传输的系统, 都必须包含这三个要素。 数据校验 也是必要的。

传输是一个广义的概念, 不局限于狭义的网络传输, 应该理解为通信和交互. 任何涉及到通信和交互的东西, 都可以借鉴TCP的思想。无论是在UDP上实现可靠传输或者创建自己的通信系统,无论这个系统是以API方式还是服务方式,只要是一个通信系统,就要考虑这三个要素。

SeqNum的增加是和传输的字节数相关的。 上图中,三次握手后,来了两个Len:1440的包,而第二个包的SeqNum就成了1441。然后第一个ACK回的是1441(下一个待接收的字节号),表示第一个1440收到了。

网络上的传输是没有连接的,包括TCP也是一样的 。而TCP所谓的“连接”,其实只不过是在通讯的双方维护一个“连接状态”,让它看上去好像有连接一样。所以,TCP的状态变换是非常重要的。

查看各种状态的数量
ss -ant | awk '{++s[$1]} END {for(k in s) print k,s[k]}'

通过三次握手完成连接的建立

三次握手的目的是交换通信双方的初始化序号,以保证应用层接收到的数据不会乱序,所以叫SYN(Synchronize Sequence Numbers)。

ISN是不能hard code的,不然会出问题的。比如:如果连接建好后始终用1来做ISN,如果client发了30个segment过去,但是网络断了,于是client重连,又用了1做ISN,但是之前连接的那些包到了,于是就被当成了新连接的包,此时,client的Sequence Number可能是3,而Server端认为client端的这个号是30了。全乱了。RFC793中说,ISN会和一个假的时钟绑在一起,这个时钟会在每4微秒对ISN做加一操作,直到超过232,又从0开始。这样,一个ISN的周期大约是4.55个小时。因为,我们假设我们的TCP Segment在网络上的存活时间不会超过Maximum Segment Lifetime(MSL),所以,只要MSL的值小于4.55小时,那么,我们就不会重用到ISN。

如果Server端接到了Clien发的SYN后回了SYN-ACK,之后Client掉线了,Server端没有收到Client返回的ACK,那么,这个连接就处于一个中间状态,即没成功,也没失败。于是,Server端如果在一定时间内没有收到的ACK会重发SYN-ACK。在Linux下,默认重试次数为5次,重试的间隔时间从1s开始每次都翻番,5次的重试时间间隔为1s, 2s, 4s, 8s, 16s,总共31s,第5次发出后还要等32s都知道第5次也超时了,所以,总共需要 1s + 2s + 4s+ 8s+ 16s + 32s = 26 -1 = 63s,TCP才会断开这个连接。

客户端给服务器发了一个SYN后,就下线了,于是服务器需要默认等63s才会断开连接,这样,攻击者就可以把服务器的SYN连接的队列耗尽,让正常的连接请求不能处理。
于是,Linux下给了一个叫tcp_syncookies的参数来应对这个事:当SYN队列满了后,TCP会通过源地址端口、目标地址端口和时间戳打造出一个特别的Sequence Number发回去(又叫cookie),此时服务器并没有保留客户端的SYN包。如果是攻击者则不会有响应,如果是正常连接,则会把这个SYN Cookie发回来,然后服务端可以通过cookie建连接(即使你不在SYN队列中)。
千万别用tcp_syncookies来处理正常的大负载的连接的情况。因为sync cookies是妥协版的TCP协议,并不严谨。应该调整三个TCP参数:tcp_synack_retries减少重试次数,tcp_max_syn_backlog增大SYN连接数,tcp_abort_on_overflow处理不过来干脆就直接拒绝连接

因为TCP是全双工的,因此断开连接需要4次挥手,发送方和接收方都需要发送Fin和Ack。如果两边同时断连接,那就会就进入到CLOSING状态,然后到达TIME_WAIT状态。

指的是报文段的最大生存时间,如果报文段在网络中活动了MSL时间,还没有被接收,那么会被丢弃。关于MSL的大小,RFC 793协议中给出的建议是两分钟,不过实际上不同的操作系统可能有不同的设置,以Linux为例,通常是半分钟,两倍的MSL就是一分钟,也就是60秒

主动关闭的一方会进入TIME_WAIT状态,并且在此状态停留两倍的MSL时长。由于TIME_WAIT的存在,大量短连接会占有大量的端口,造成无法新建连接。

主动关闭的一方发出 FIN包,被动关闭的一方响应ACK包,此时,被动关闭的一方就进入了CLOSE_WAIT状态。如果一切正常,稍后被动关闭的一方也会发出FIN包,然后迁移到LAST_ACK状态。

CLOSE_WAIT状态在服务器停留时间很短,如果你发现大量的 CLOSE_WAIT状态,那么就意味着被动关闭的一方没有及时发出FIN包。

TCP要保证所有的数据包都可以到达,所以,必需要有重传机制。

接收端给发送端的Ack确认只会确认最后一个连续的包 ,比如,发送端发了1,2,3,4,5一共五份数据,接收端收到了1,2,于是回ack 3,然后收到了4(注意此时3没收到),此时的TCP会怎么办?我们要知道,因为正如前面所说的,SeqNum和Ack是以字节数为单位,所以ack的时候,不能跳着确认,只能确认最大的连续收到的包,不然,发送端就以为之前的都收到了

但总体来说都不好。因为都在等timeout,timeout可能会很长

不以时间驱动,而以数据驱动重传
如果包没有连续到达,就ack最后那个可能被丢了的包,如果发送方连续收到3次相同的ack,就重传

Selective Acknowledgment, 需要在TCP头里加一个SACK的东西,ACK还是Fast Retransmit的ACK,SACK则是汇报收到的数据碎版,在发送端就可以根据回传的SACK来知道哪些数据到了,哪些没有收到

重复收到数据的问题,使用了SACK来告诉发送方有哪些数据被重复接收了

经典算法:Karn/Partridge算法,Jacobson/Karels算法

TCP必需要知道网络实际的数据处理带宽或是数据处理速度,这样才不会引起网络拥塞,导致丢包

Advertised-Window :接收端告诉发送端自己还有多少缓冲区可以接收数据。于是发送端就可以根据这个接收端的处理能力来发送数据,而不会导致接收端处理不过来

接收端LastByteRead指向了TCP缓冲区中读到的位置,NextByteExpected指向的地方是收到的连续包的最后一个位置,LastByteRcved指向的是收到的包的最后一个位置,我们可以看到中间有些数据还没有到达,所以有数据空白区。

发送端的LastByteAcked指向了被接收端Ack过的位置(表示成功发送确认),LastByteSent表示发出去了,但还没有收到成功确认的Ack,LastByteWritten指向的是上层应用正在写的地方。

接收端在给发送端回ACK中会汇报自己的AdvertisedWindow = MaxRcvBuffer – LastByteRcvd – 1;

收到36的ack,并发出了46-51的字节

如果Window变成0了,发送端就不发数据了

如果发送端不发数据了,接收方一会儿Window size 可用了,怎么通知发送端呢:TCP使用了Zero Window Probe技术,缩写为ZWP,也就是说,发送端在窗口变成0后,会发ZWP的包给接收方,让接收方来ack他的Window尺寸,一般这个值会设置成3次,每次大约30-60秒。如果3次过后还是0的话,有的TCP实现就会发RST把链接断了。

如果你的网络包可以塞满MTU,那么你可以用满整个带宽,如果不能,那么你就会浪费带宽。避免对小的window size做出响应,直到有足够大的window size再响应。

如果这个问题是由Receiver端引起的,那么就会使用David D Clark’s 方案。在receiver端,如果收到的数据导致window size小于某个值,可以直接ack(0)回sender,这样就把window给关闭了,也阻止了sender再发数据过来,等到receiver端处理了一些数据后windows size大于等于了MSS,或者receiver buffer有一半为空,就可以把window打开让send 发送数据过来。

如果这个问题是由Sender端引起的,那么就会使用着名的 Nagle’s algorithm。这个算法的思路也是延时处理,他有两个主要的条件:1)要等到 Window Size >= MSS 或是 Data Size >= MSS,2)等待时间或是超时200ms,这两个条件有一个满足,他才会发数据,否则就是在攒数据。

TCP_CORK是禁止小包发送,而Nagle算法没有禁止小包发送,只是禁止了大量的小包发送

TCP不是一个自私的协议,当拥塞发生的时候,要做自我牺牲

拥塞控制的论文请参看 《Congestion Avoidance and Control》

主要算法有:慢启动,拥塞避免,拥塞发生,快速恢复,TCP New Reno,FACK算法,TCP Vegas拥塞控制算法

TCP网络协议及其思想的应用
TCP 的那些事儿(上)
TCP 的那些事儿(下)
tcp为什么是三次握手,为什么不是两次或四次?
记一次TIME_WAIT网络故障
再叙TIME_WAIT
tcp_tw_recycle和tcp_timestamps导致connect失败问题
tcp短连接TIME_WAIT问题解决方法大全(1)- 高屋建瓴
tcp短连接TIME_WAIT问题解决方法大全(2)- SO_LINGER
tcp短连接TIME_WAIT问题解决方法大全(3)- tcp_tw_recycle
tcp短连接TIME_WAIT问题解决方法大全(4)- tcp_tw_reuse
tcp短连接TIME_WAIT问题解决方法大全(5)- tcp_max_tw_buckets
TCP的TIME_WAIT快速回收与重用
浅谈CLOSE_WAIT
又见CLOSE_WAIT
PHP升级导致系统负载过高问题分析
Coping with the TCP TIME-WAIT state on busy Linux servers

Ⅲ TCP那些事儿

目录:

以前我也认为TCP是相当底层的东西,我永远不需要去了解它。虽然差不多是这样,但是实际生活中,你依然可能遇见和TCP算法相关的bug,这时候懂一些TCP的知识就至关重要了。( 本文也可以引申为,系统调用,操作系统这些都很重要,这个道理适用于很多东西
这里推荐一篇小短文, 人人都应该懂点TCP

使用TCP协议通信的双方必须先建立TCP连接,并在内核中为该连接维持一些必要的数据结构,比如连接的状态、读写缓冲区、定时器等。当通信结束时,双方必须关闭连接以释放这些内核数据。TCP服务基于流,源源不断从一端流向另一端,发送端可以逐字节写入,接收端可以逐字节读出,无需分段。

需要注意的几点:

TCP状态(11种):
eg.

以上为TCP三次握手的状态变迁

以下为TCP四次挥手的状态变迁

服务器通过 listen 系统调用进入 LISTEN 状态,被动等待客户端连接,也就是所谓的被动打开。一旦监听到SYN(同步报文段)请求,就将该连接放入内核的等待队列,并向客户端发送带SYN的ACK(确认报文段),此时该连接处于 SYN_RECVD 状态。如果服务器收到客户端返回的ACK,则转到 ESTABLISHED 状态。这个状态就是连接双方能进行全双工数据传输的状态。
而当客户端主动关闭连接时,服务器收到FIN报文,通过返回ACK使连接进入 CLOSE_WAIT 状态。此状态表示——等待服务器应用程序关闭连接。通常,服务器检测到客户端关闭连接之后,也会立即给客户端发送一个FIN来关闭连接,使连接转移到 LAST_ACK 状态,等待客户端对最后一个FIN结束报文段的最后一次确认,一旦确认完成,连接就彻底关闭了。

客户端通过 connect 系统调用主动与服务器建立连接。此系统调用会首先给服务器发一个SYN,使连接进入 SYN_SENT 状态。
connect 调用可能因为两种原因失败:1. 目标端口不存在(未被任何进程监听)护着该端口被 TIME_WAIT 状态的连接占用( 详见后文 )。2. 连接超时,在超时时间内未收到服务器的ACK。
如果 connect 调用失败,则连接返回初始的 CLOSED 状态,如果调用成功,则转到 ESTABLISHED 状态。
客户端执行主动关闭时,它会向服务器发送一个FIN,连接进入 TIME_WAIT_1 状态,如果收到服务器的ACK,进入 TIME_WAIT_2 状态。此时服务器处于 CLOSE_WAIT 状态,这一对状态是可能发生办关闭的状态(详见后文)。此时如果服务器发送FIN关闭连接,则客户端会发送ACK进行确认并进入 TIME_WAIT 状态。

流量控制是为了控制发送方发送速率,保证接收方来得及接收。

接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。

如果网络出现拥塞,分组将会丢失,此时发送方会继续重传,从而导致网络拥塞程度更高。因此当出现拥塞时,应当控制发送方的速率。这一点和流量控制很像,但是出发点不同。 流量控制是为了让接收方能来得及接收,而拥塞控制是为了降低整个网络的拥塞程度。

TCP 主要通过四种算法来进行拥塞控制: 慢开始、拥塞避免、快重传、快恢复。

在Linux下有多种实现,比如reno算法,vegas算法和cubic算法等。
发送方需要维护一个叫做拥塞窗口(cwnd)的状态变量,注意拥塞窗口与发送方窗口的区别:拥塞窗口只是一个状态变量,实际决定发送方能发送多少数据的是发送方窗口。
为了便于讨论,做如下假设:

发送的最初执行慢开始,令 cwnd=1,发送方只能发送 1 个报文段;当收到确认后,将 cwnd 加倍,因此之后发送方能够发送的报文段数量为:2、4、8 ...

注意到慢开始每个轮次都将 cwnd 加倍,这样会让 cwnd 增长速度非常快,从而使得发送方发送的速度增长速度过快,网络拥塞的可能也就更高。设置一个慢开始门限 ssthresh,当 cwnd >= ssthresh 时,进入拥塞避免,每个轮次只将 cwnd 加 1。

如果出现了超时,则令 ssthresh = cwnd/2,然后重新执行慢开始。

在接收方,要求每次接收到报文段都应该对最后一个已收到的有序报文段进行确认。例如已经接收到 M1 和 M2,此时收到 M4,应当发送对 M2 的确认。

在发送方,如果收到三个重复确认,那么可以知道下一个报文段丢失,此时执行快重传,立即重传下一个报文段。例如收到三个 M2,则 M3 丢失,立即重传 M3。

在这种情况下,只是丢失个别报文段,而不是网络拥塞。因此执行快恢复,令 ssthresh = cwnd/2 ,cwnd = ssthresh,注意到此时直接进入拥塞避免。

慢开始和快恢复的快慢指的是 cwnd 的设定值,而不是 cwnd 的增长速率。慢开始 cwnd 设定为 1,而快恢复 cwnd 设定为 ssthresh。

  发送端的每个TCP报文都必须得到接收方的应答,才算传输成功。

  TCP为每个TCP报文段都维护一个重传定时器。
  发送端在发出一个TCP报文段之后就启动定时器,如果在定时时间类未收到应答,它就将重发该报文段并重置定时器。

  因为TCP报文段最终在网络层是以IP数据报的形式发送,而IP数据报到达接收端可能是乱序或者重复的。TCP协议会对收到的TCP报文进行重排、整理,确保顺序正确。

TCP报文段所携带的应用程序数据按照长度分为两种: 交互数据 成块数据

对于什么是粘包、拆包问题,我想先举两个简单的应用场景:

对于第一种情况,服务端的处理流程可以是这样的:当客户端与服务端的连接建立成功之后,服务端不断读取客户端发送过来的数据,当客户端与服务端连接断开之后,服务端知道已经读完了一条消息,然后进行解码和后续处理...。对于第二种情况,如果按照上面相同的处理逻辑来处理,那就有问题了,我们来看看 第二种情况 下客户端发送的两条消息递交到服务端有可能出现的情况:

第一种情况:

服务端一共读到两个数据包,第一个包包含客户端发出的第一条消息的完整信息,第二个包包含客户端发出的第二条消息,那这种情况比较好处理,服务器只需要简单的从网络缓冲区去读就好了,第一次读到第一条消息的完整信息,消费完再从网络缓冲区将第二条完整消息读出来消费。

第二种情况:

服务端一共就读到一个数据包,这个数据包包含客户端发出的两条消息的完整信息,这个时候基于之前逻辑实现的服务端就蒙了,因为服务端不知道第一条消息从哪儿结束和第二条消息从哪儿开始,这种情况其实是发生了TCP粘包。

第三种情况:

服务端一共收到了两个数据包,第一个数据包只包含了第一条消息的一部分,第一条消息的后半部分和第二条消息都在第二个数据包中,或者是第一个数据包包含了第一条消息的完整信息和第二条消息的一部分信息,第二个数据包包含了第二条消息的剩下部分,这种情况其实是发送了TCP拆,因为发生了一条消息被拆分在两个包里面发送了,同样上面的服务器逻辑对于这种情况是不好处理的。

我们知道tcp是以流动的方式传输数据,传输的最小单位为一个报文段(segment)。tcp Header中有个Options标识位,常见的标识为mss(Maximum Segment Size)指的是,连接层每次传输的数据有个最大限制MTU(Maximum Transmission Unit),一般是1500比特,超过这个量要分成多个报文段,mss则是这个最大限制减去TCP的header,光是要传输的数据的大小,一般为1460比特。换算成字节,也就是180多字节。

tcp为提高性能,发送端会将需要发送的数据发送到缓冲区,等待缓冲区满了之后,再将缓冲中的数据发送到接收方。同理,接收方也有缓冲区这样的机制,来接收数据。

发生TCP粘包、拆包主要是由于下面一些原因:

既然知道了tcp是无界的数据流,且协议本身无法避免粘包,拆包的发生,那我们只能在应用层数据协议上,加以控制。通常在制定传输数据时,可以使用如下方法:

写了一个简单的 golang 版的tcp服务器实例,仅供参考:
例子

参考和推荐阅读书目:

注释:

eg.

Ⅳ TCP协议采取了哪些机制来进行拥塞控制

最初的TCP协议只有基于窗口的流控制(flow control)机制而没有拥塞控制机制,流控制是一种局部控制机制,其参与者仅仅是发送方和接收方,它只考虑了接收端的接收能力,而没有考虑到网络的传输能力;而拥塞控制则注重于整体,其考虑的是整个网络的传输能力,是一种全局控制机制。 拥塞控制机制使得TCP连接在网络发生拥塞时回退(back off),也就是说TCP源端会对网络发出的拥塞指示(congestion notification)(例如丢包、重复的ACK等)作出响应。 针对TCP在控制网络拥塞方面的不足,后来又提出了“慢启动”(Slow Start)和“拥塞避免”(Congestion Avoidance)算法。 TCP Reno版本增加了“快速重传 ”(Fast Retransmit)、“快速恢复”(Fast Recovery)算法,避免了网络拥塞不严重时采用“慢启动”算法而造成过大地减小发送窗口尺寸的现象,这样TCP的拥塞控制就由这4个核心部分组成。 近几年又出现TCP的改进版本如NewReno和选择性应答(selective acknowledgement,SACK)等。

Ⅳ TCP拥塞控制

我们看到TCP连接的双方都包含一个接收缓冲区,一个发送缓冲区和几个变量(LastByteRead,rwnd等)。 TCP拥塞控制机制运行在发送者对拥塞窗口的跟踪上。 拥塞窗口(表示为cwnd)对TCP发送方可以发送到网络的速率施加约束。具体而言,发送者的未确认数据量不得超过cwnd和rwnd之间的较小值:

ssthresh 慢启动阈值(show start threshold)

别被“慢启动”这个名字所迷惑了,实际上这是cwnd增长最快的阶段。

在慢启动状态下,cwnd的值从1 MSS开始,并且当每个被传输的报文段第一次ACK时,cwnd都会+1MSS

在进入拥塞避免状态时,cwnd的值大约是上次遇到拥塞时的值的一半

在慢启动阶段每个RTT都会将cwnd值加倍,而在拥塞避免阶段TCP采用更保守的方法,并且每个RTT只增加cwnd一个MSS的值[RFC 5681]。 这可以通过几种方式实现。 一种常见的方法是TCP发送器在新的确认到达时通过MSS字节(MSS / cwnd)增加cwnd。 例如,如果MSS是1,460字节而cwnd是14,600字节,则在RTT内发送10个段。 每个到达的ACK(假设每个段一个ACK)将拥塞窗口大小增加1/10MSS,因此,当10个段都ACK后,cwnd才累计增加了一个MSS。

在快速恢复中,对于导致TCP进入快速恢复状态的丢失段的每个重复ACK,cwnd的值增加1 MSS。 最终,当丢失的段的ACK到达时,TCP在 放空cwnd 后进入拥塞避免状态。 如果发生超时事件,则执行与慢启动和拥塞避免相同的操作后,快速恢复将转换为慢启动状态:cwnd的值设置为1 MSS,ssthresh的值设置为值的一半。

快速恢复是TCP [RFC 5681]的推荐但不是必需的组件。 有趣的是,早期版本的TCP(称为TCP Tahoe)无条件地将其拥塞窗口切换为1 MSS,并在超时指示或三重复ACK指示丢失事件后进入慢启动阶段。 较新版本的TCP,TCP Reno,整合了快速恢复。

TCP tahoe 无快速恢复
TCP reno 有快速恢复

忽略连接开始时的初始慢启动时段并假设丢失由三次重复ACK而不是超时触发的,TCP的拥塞控制包括每个RTT 1个MSS的cwnd线性(附加)增加然后减半 (三次重复ACK事件)的cwnd的(乘法减少)。 出于这个原因,TCP拥塞控制通常被称为加法增加,乘法减少(AIMD)形式的拥塞控制。AIMD拥塞控制引起了“锯齿”行为,如图3.54所示,这也很好地说明了我们早期对TCP“探测”带宽的直觉 - TCP线性增加了它的拥塞窗口大小(以及它的传输速率),直到 发生三重复ACK事件。 然后它将拥塞窗口大小减少两倍,然后再次开始线性增加,探测是否有额外的可用带宽。

如前所述,许多TCP实现使用Reno算法[Padhye 2001]。已经提出了Reno算法的许多变体[RFC 3782; RFC 2018]。 TCP Vegas算法[Brakmo 1995; Ahn 1995]试图在保持良好吞吐量的同时避免拥挤。 Vegas的基本思想是(1)在发生丢包之前检测源和目的地之间的路由器中的拥塞,以及(2)当检测到即将发生的丢包时,线性地降低速率。通过观察RTT预测即将发生的分组丢失。数据包的RTT越长,路由器的拥塞就越大。 Linux支持许多拥塞控制算法(包括TCP Reno和TCP Vegas),并允许系统管理员配置将使用哪个版本的TCP。 Linux版本2.6.18中的TCP的默认版本设置为CUBIC [Ha 2008],这是为高带宽应用程序开发的TCP版本。有关TCP的许多风格的最新调查,请参阅[Afanasyev 2010]。 TCP的AIMD算法是基于大量的工程洞察力和运营网络中的拥塞控制实验而开发的。

Ⅵ 常见的tcp拥塞控制有哪几种算法

慢启动:最初的TCP在连接建立成功后会向网络中发送大量的数据包,这样很容易导致网络中路由器缓存空间耗尽,从而发生拥塞。因此新建立的连接不能够一开始就大量发送数据包,而只能根据网络情况逐步增加每次发送的数据量,以避免上述现象的发生。具体来说,当新建连接时,cwnd初始化为1个最大报文段(MSS)大小,发送端开始按照拥塞窗口大小发送数据,每当有一个报文段被确认,cwnd就增加1个MSS大小。这样cwnd的值就随着网络往返时间(Round Trip Time,RTT)呈指数级增长,事实上,慢启动的速度一点也不慢,只是它的起点比较低一点而已。我们可以简单计算下:
开始 ---> cwnd = 1
经过1个RTT后 ---> cwnd = 2*1 = 2
经过2个RTT后 ---> cwnd = 2*2= 4
经过3个RTT后 ---> cwnd = 4*2 = 8
如果带宽为W,那么经过RTT*log2W时间就可以占满带宽。
拥塞避免:从慢启动可以看到,cwnd可以很快的增长上来,从而最大程度利用网络带宽资源,但是cwnd不能一直这样无限增长下去,一定需要某个限制。TCP使用了一个叫慢启动门限(ssthresh)的变量,当cwnd超过该值后,慢启动过程结束,进入拥塞避免阶段。对于大多数TCP实现来说,ssthresh的值是65536(同样以字节计算)。拥塞避免的主要思想是加法增大,也就是cwnd的值不再指数级往上升,开始加法增加。此时当窗口中所有的报文段都被确认时,cwnd的大小加1,cwnd的值就随着RTT开始线性增加,这样就可以避免增长过快导致网络拥塞,慢慢的增加调整到网络的最佳值。
上面讨论的两个机制都是没有检测到拥塞的情况下的行为,那么当发现拥塞了cwnd又该怎样去调整呢?
首先来看TCP是如何确定网络进入了拥塞状态的,TCP认为网络拥塞的主要依据是它重传了一个报文段。上面提到过,TCP对每一个报文段都有一个定时器,称为重传定时器(RTO),当RTO超时且还没有得到数据确认,那么TCP就会对该报文段进行重传,当发生超时时,那么出现拥塞的可能性就很大,某个报文段可能在网络中某处丢失,并且后续的报文段也没有了消息,在这种情况下,TCP反应比较“强烈”:
1.把ssthresh降低为cwnd值的一半
2.把cwnd重新设置为1
3.重新进入慢启动过程。
从整体上来讲,TCP拥塞控制窗口变化的原则是AIMD原则,即加法增大、乘法减小。可以看出TCP的该原则可以较好地保证流之间的公平性,因为一旦出现丢包,那么立即减半退避,可以给其他新建的流留有足够的空间,从而保证整个的公平性。
其实TCP还有一种情况会进行重传:那就是收到3个相同的ACK。TCP在收到乱序到达包时就会立即发送ACK,TCP利用3个相同的ACK来判定数据包的丢失,此时进行快速重传,快速重传做的事情有:
1.把ssthresh设置为cwnd的一半
2.把cwnd再设置为ssthresh的值(具体实现有些为ssthresh+3)
3.重新进入拥塞避免阶段。
后来的“快速恢复”算法是在上述的“快速重传”算法后添加的,当收到3个重复ACK时,TCP最后进入的不是拥塞避免阶段,而是快速恢复阶段。快速重传和快速恢复算法一般同时使用。快速恢复的思想是“数据包守恒”原则,即同一个时刻在网络中的数据包数量是恒定的,只有当“老”数据包离开了网络后,才能向网络中发送一个“新”的数据包,如果发送方收到一个重复的ACK,那么根据TCP的ACK机制就表明有一个数据包离开了网络,于是cwnd加1。如果能够严格按照该原则那么网络中很少会发生拥塞,事实上拥塞控制的目的也就在修正违反该原则的地方。
具体来说快速恢复的主要步骤是:
1.当收到3个重复ACK时,把ssthresh设置为cwnd的一半,把cwnd设置为ssthresh的值加3,然后重传丢失的报文段,加3的原因是因为收到3个重复的ACK,表明有3个“老”的数据包离开了网络。
2.再收到重复的ACK时,拥塞窗口增加1。
3.当收到新的数据包的ACK时,把cwnd设置为第一步中的ssthresh的值。原因是因为该ACK确认了新的数据,说明从重复ACK时的数据都已收到,该恢复过程已经结束,可以回到恢复之前的状态了,也即再次进入拥塞避免状态。
快速重传算法首次出现在4.3BSD的Tahoe版本,快速恢复首次出现在4.3BSD的Reno版本,也称之为Reno版的TCP拥塞控制算法。
可以看出Reno的快速重传算法是针对一个包的重传情况的,然而在实际中,一个重传超时可能导致许多的数据包的重传,因此当多个数据包从一个数据窗口中丢失时并且触发快速重传和快速恢复算法时,问题就产生了。因此NewReno出现了,它在Reno快速恢复的基础上稍加了修改,可以恢复一个窗口内多个包丢失的情况。具体来讲就是:Reno在收到一个新的数据的ACK时就退出了快速恢复状态了,而NewReno需要收到该窗口内所有数据包的确认后才会退出快速恢复状态,从而更一步提高吞吐量。
SACK就是改变TCP的确认机制,最初的TCP只确认当前已连续收到的数据,SACK则把乱序等信息会全部告诉对方,从而减少数据发送方重传的盲目性。比如说序号1,2,3,5,7的数据收到了,那么普通的ACK只会确认序列号4,而SACK会把当前的5,7已经收到的信息在SACK选项里面告知对端,从而提高性能,当使用SACK的时候,NewReno算法可以不使用,因为SACK本身携带的信息就可以使得发送方有足够的信息来知道需要重传哪些包,而不需要重传哪些包。

Ⅶ TCP拥塞控制及BBR原理分析

导语:TCP拥塞控制不仅仅是网络层的概念,可以将其归属于控制论的范畴。在TCP的演进过程中,出现了很多优秀的思想和算法,以实现网络传输过程中,在公平竞争性的前提下,尽可能地利用带宽资源。本文介绍TCP发展过程中出现的几种拥塞控制算法,并着重介绍BBR的原理。

TCP拥塞控制不仅仅是网络层的概念,可以将其归属于控制论的范畴。在TCP的演进过程中,出现了很多优秀的思想和算法,以实现网络传输过程中,在公平竞争性的前提下,尽可能地利用带宽资源。

公平性是在发生拥塞时各源端(或同一源端建立的不同TCP连接或UDP数据报)能公平地共享同一网络资源(如带宽、缓存等)。处于相同级别的源端应该得到相同数量的网络资源。产生公平性的根本原因在于拥塞发生必然导致数据包丢失,而数据包丢失会导致各数据流之间为争抢有限的网络资源发生竞争,争抢能力弱的数据流将受到更多损害。因此,没有拥塞,也就没有公平性问题。

TCP层上的公平性问题表现在两方面:

(1)面向连接的TCP和无连接的UDP在拥塞发生时对拥塞指示的不同反应和处理,导致对网络资源的不公平使用问题。在拥塞发生时,有拥塞控制机制的TCP会按拥塞控制步骤进入拥塞避免阶段,从而主动减小发送到网络的数据量。但对无连接的数据报UDP,由于没有端到端的拥塞控制机制,即使网络出现了拥塞,也不会减少向网络发送的数据量。结果遵守拥塞控制的TCP数据流得到的网络资源越来越少,没有拥塞控制的UDP则会得到越来越多的网络资源。

(2)TCP连接之间也存在公平性问题。产生问题的原因在于使用了不同的拥塞控制算法,一些TCP在拥塞前使用了大窗口尺寸,或者它们的RTT较小,或者数据包比其他TCP大,这样它们也会多占带宽。

拥塞控制主要包括四个过程:1)慢启动;2)拥塞避免;3)拥塞发生;4)快速恢复。

RTT :数据包从发出去到收到对它的ack的来回时间,采用平滑方式计算RTT

RTO :重传超时。简单的如RTO=n*RTT, n=3(或其他RTO计算方法)

SACK :TCP Option携带多组ACK信息

FR :Fast Retransmission,收到3个p ack后,即可认为发生了丢包。不需要等待RTO超时即可重传丢失的包。

ER :Early Retransmission,无法产生足够的pack和没有新的数据包可以发送进入网络的情况下,减少触发FR的p ack数量,以达到触发FR的目的。

TLP :如果发生了尾丢包,由于尾包后面没有更多的数据包,也就没有办法触发任何的pack。实际上,Google统计超过70%的RTO是尾丢包导致没有任何p

ack 。TLP算法是通过发送一个loss probe包,来产生足够的SACK/FACK的信息以触发RF。

Pacing :控制发送速率,防止bursting

流控 :Flow control站在单条TCP连接的维度,目的是让发送方发包的速度,不超过接收方收包的能力。所以流控解决的问题是,如何在接收方可承受的范围内,让单条 TCP 连接的速度最大化。通过滑动窗口机制实现。

拥塞控制 :Congestion control站在整个互联网的维度,让网络里所有TCP连接最大化共享网络通道的同时,尽可能的少出现网络拥塞现象,让网络世界里的每一个参与者既公平又高效。

cwnd :发送窗口,拥塞窗口;在拥塞控制过程中窗口大小值变化。

rwnd :接收窗口,通知发送者能够发送的数据大小。

sliding window :滑动窗口,只是一种抽象机制概念;在发送请求及收到ack的过程中滑动。

历史上出现的各种TCP拥塞控制算法,其本质是针对拥塞控制的四个过程做策略调整。按照算法依据的因素,可以简单的分为以下类型:

因为Reno等算法是后续算法的基础,这里详细的描述下Reno算法的过程。

(1)慢热启动算法 – Slow Start

(2)拥塞避免算法 – Congestion Avoidance
当cwnd >= ssthresh时,就会进入“拥塞避免算法”。算法如下:

(3)拥塞状态算法 – Fast Retransmit
Tahoe是等RTO超时,FR是在收到3个plicate ACK时就开启重传,而不用等到RTO超时。拥塞发生时:

(4)快速恢复 – Fast Recovery

Reno算法以其简单、有效和鲁棒性,应用最广泛。该算法所包含的慢启动、拥塞避免和快速重传、快速恢复机制,是现有的众多算法的基础。从Reno运行机制中很容易看出,为了维持一个动态平衡,必须周期性地产生一定量的丢失,再加上AIMD机制--减少快,增长慢,尤其是在大窗口环境下,由于一个数据报的丢失所带来的窗口缩小要花费很长的时间来恢复,这样,带宽利用率不可能很高且随着网络的链路带宽不断提升,这种弊端将越来越明显。另外,丢包并不一定是网络拥塞,可能是网络常态,但是基于丢包的拥塞控制并不能区分。

vegas通过对RTT的非常重的监控来计算一个基准RTT。然后通过这个基准RTT来估计当前的网络实际带宽,如果实际带宽比我们的期望的带宽要小或是要多的活,那么就开始线性地减少或增加cwnd的大小。

中间路由器缓存数据导致RTT变大,认为发生拥塞;RTT不公平性,当不同的数据流对网络瓶颈带宽进行竞争时,具有较小RTT的TCP数据流的拥塞窗口增加速率将会快于具有大RTT的TCP数据流,从而将会占有更多的网络带宽资源。

在发送端做带宽估计,当探测到丢包时,根据带宽值来设置拥塞窗口、慢启动阈值。 那么,这个算法是怎么测量带宽的?每个RTT时间,会测量一次带宽,测量带宽的公式很简单,就是这段RTT内成功被ACK了多少字节。Westwood会根据RTT变化来判断丢包是否是网络拥塞造成的,还是网络常态的丢包。如果时延变化不明显,就认为是非网络拥塞,此时cwnd减少的比较小。

BIC-TCP是Linux 2.6.18默认拥塞控制算法,依赖丢包条件触发。BIC-TCP认为TCP拥塞窗口调整的本质就是找到最适合当前网络的一个发送窗口,为了找到这个窗口值,TCP采取的方式是(拥塞避免阶段)每RTT加1,缓慢上升,丢包时下降一半,接着再来慢慢上升。BIC-TCP的提出者们看穿了事情的本质,其实这就是一个搜索的过程,而TCP的搜索方式类似于逐个遍历搜索方法,可以认为这个值是在1和一个比较大的数(large_window)之间,既然在这个区间内需要搜索一个最佳值,那么显然最好的方式就是二分搜索思想。

BIC-TCP就是基于这样一个二分思想的:当出现丢包的时候,说明最佳窗口值应该比这个值小,那么BIC就把此时的cwnd设置为max_win,把乘法减小后的值设置为min_win,然后BIC就开始在这两者之间执行二分思想--每次跳到max_win和min_win的中点。

BIC也具备RTT的不公平性。RTT小的连接,窗口调整发生的速度越快,因此可能更快的抢占带宽。

CUBIC在设计上简化了BIC-TCP的窗口调整算法,在BIC-TCP的窗口调整中会出现一个凹和凸(这里的凹和凸指的是数学意义上的凹和凸,凹函数/凸函数)的增长曲线,CUBIC使用了一个三次函数(即一个立方函数),在三次函数曲线中同样存在一个凹和凸的部分,该曲线形状和BIC-TCP的曲线图十分相似,于是该部分取代BIC-TCP的增长曲线。另外,CUBIC中最关键的点在于它的窗口增长函数仅仅取决于连续的两次拥塞事件的时间间隔值,从而窗口增长完全独立于网络的时延RTT,使得连接之间保持良好的RRTT公平性。

来看下具体细节:当某次拥塞事件发生时,Wmax设置为此时发生拥塞时的窗口值,然后把窗口进行乘法减小,乘法减小因子设为β,当从快速恢复阶段退出然后进入到拥塞避免阶段,此时CUBIC的窗口增长开始按照“凹”式增长曲线进行增长,该过程一直持续直到窗口再次增长到Wmax,紧接着,该函数转入“凸”式增长阶段。该方式的增长可以使得窗口一直维持在Wmax附近,从而可以达到网络带宽的高利用率和协议本身的稳定性。

CUBIC窗口的增长函数:W(t) = C * (t-K)3 + Wmax, 其中C和β为常量。

t为当前时间距上一次窗口减小的时间差,而K就代表该函数从W增长到Wmax的时间周期。

通俗一点讲,假如我们知道了Wmax,那么CUBIC的核心思想就是需要在连续两次拥塞期间执行完上面的三次函数增长曲线

BBR通过实时计算带宽和最小RTT来决定发送速率pacing rate和窗口大小cwnd。完全摒弃丢包作为拥塞控制的直接反馈因素。

传统的拥塞控制算法是计算cwnd值来规定当前可以发送多少数据,但是并不关注以什么样的速度发送数据。如果简单而粗暴地将窗口大小(send.cwnd、recv.cwnd的最小值)数据全部突发出去,这往往会造成路由器的排队,在深队列的情况下,会测量出rtt剧烈地抖动。bbr在计算cwnd的同时,还计算了一个与之适配的pacing rate,该pacing rate规定cwnd指示的一窗数据的数据包之间,以多大的时间间隔发送出去。

我们知道,网络工作的最优点是在物理链路延迟状态下,以最大速率传输数据。传统的拥塞控制算法思想是根据数据传输及ACK来确定RTT,但是这个RTT并不是物理链路延时,可能包含了路由器缓存耗时,也可能是拥塞状态下的耗时。传统的带宽计算也是在不断的试探逼近最优发送窗口,并在RTT或者统计周期内计算带宽。这种情况下,RTT并不是真正的物理链路延迟,带宽也有可能是在有路由缓存或丢包状况下计算得到,那么必然得到的不是精准的值。

BBR摒弃了丢包和实时RTT作为拥塞控制因素。引入BDP管道容量来衡量链路传输水平。BBR追求的是在链路最小RTT(物理链路延迟)的状态下,找到最大带宽。

首先我们认为网络最优点是可以达到的。下面描述RTT及收包速率与数据包投递速率的关系。

图中上半部分的过程可以描述为:随着数据包投递速率增加,如果没有超过最优带宽,则RTT不会变化,此时的RTT是物理链路延迟。随着投递速率继续增加,这时中间路由节点可能出现需要缓存数据包的情况,这会导致RTT变大。如果投递速率继续增加,超过路由缓存能力,则可能出现丢包。

图中下半部分的过程可以描述为:随着数据包投递速率增加,如果没有超过最优带宽,则发送方确认接收端收到的数据速率增加。随着投递速率继续增加,因为数据包缓存在中间路由,这些包并不能及时得到ACK,因此发送方得到的ACK速率,即发送发确认接收方收到数据的速率会维持不变。如果投递速率继续增加,超过路由缓存能力,则可能出现丢包。

1)应答了多少数据,记为delivered;
2)应答1)中的delivered这么多数据所用的时间,记为interval_us。
将上述二者相除,就能得到带宽:bw = delivered/interval_us;该计算方法不关注数据包ack及顺序,是纯粹的标量。

我们可以根据图示很容易算出从Delivered为7时的数据包被确认到X被确认为止,一共有12-7=5个数据包被确认,即这段时间网络上清空了5个数据包。我们便很容易算出带宽值了。

当10s内没有发现最小RTTProp时,就要进入ProbeRTT状态。在ProbeRTT状态,仅发4MSS/RTT(接近停止发送),从而排空链路上的数据包,测量真实的RTTProp。这里带来的一个问题是,在一个RTT时间内以4MSS速率发送可能会造成抖动,特别是长RTT场景。具体的参考willko文章《GBN手札-BBR实时大数据传输之痛》。

Ⅷ 浅谈TCP(2):流量控制与拥塞控制

上文 浅谈TCP(1):状态机与重传机制 介绍了TCP的状态机与重传机制。本文介绍 流量控制 (Flow Control,简称流控)与 拥塞控制 (Congestion Control)。TCP依此保障网络的 QOS (Quality of Service)。

根据前文对TCP超时重传机制的介绍,我们知道Timeout的设置对于重传非常重要:

而且,这个超时时间在不同的网络环境下不同,必须动态设置。为此,TCP引入了 RTT (Round Trip Time,环回时间):一个数据包从发出去到回来的时间。这样,发送端就大约知道正常传输需要多少时间,据此计算 RTO (Retransmission TimeOut,超时重传时间)。 听起来似乎很简单:在发送方发包时记下t0,收到接收方的Ack时记一个t1,于是RTT = t1 – t0。然而,这只是一个采样,不能代表网络环境的普遍情况。

RFC793 中定义了一个 经典算法 :

经典算法描述了RTO计算的基本思路,但还有一个重要问题:RTT的采样取“ 第一次 发Seq+收Ack的时间”,还是“ 重传 Seq+收Ack的时间”?

如图:

问题的本质是: 发送方无法区分收到的Ack对应第一次发的Seq还是重传的Seq (进入网络就都一样了)。针对该问题, Karn / Partridge 算法选择回避重传的问题: 忽略重传的样本,RTT的采样只取未产生重传的样本 。

简单的忽略重传样本也有问题:假设当前的RTO很小,突然发生网络抖动,延时剧增导致要重传所有的包;由于忽略重传样本,RTO不会被更新,于是继续重传使网络更加拥堵;拥堵导致更多的重传,恶性循环直至网络瘫痪。Karn / Partridge算法用了一个取巧的办法: 只要一发生重传,就将现有的RTO值翻倍(指数回退策略),待网络恢复后再仿照经典算法逐渐平滑以降低RTO 。

该算法已经做到可用,然而网络抖动对性能的影响比较大。

前面两种算法均使用加权移动平均算法做平滑,这种方法的最大问题是:很难发现RTT值上的较大波动,因为被平滑掉了(1 - a比较小,即最新RTT的权重小)。针对该问题, Jacobson / Karels 算法引入了最新采样的RTT值和平滑过的SRTT值的差距做因子,即 DevRTT (Deviation RTT,RTT的偏离度),同时考虑SRTT带来的惯性和DevRTT带来的波动:

Linux 2.6采用该算法计算RTO,默认取α = 0.125, β = 0.25, μ = 1, ∂ = 4(玄学调参,你懂的)。

TCP使用 滑动窗口 (Sliding Window)做流量控制与 乱序重排 。乱序重排在TCP的重传机制中已经介绍,下面介绍流量控制。

TCP头里有一个字段叫Window(或Advertised Window), 用于接收方通知发送方自己还有多少缓冲区可以接收数据 。 发送方根据接收方的处理能力来发送数据,不会导致接收方处理不过来,是谓流量控制 。暂且把Advertised Window当做滑动窗口,更容易理解滑动窗口如何完成流量控制,后面介绍拥塞控制时再说明二者的区别。

观察TCP协议的发送缓冲区和接收缓冲区:

假设位置序号从左向右增长(常见的读、写缓冲区设计),解释一下:

据此在接收方计算 AdvertisedWindow ,在发送方计算 EffectiveWindow :

AdvertisedWindow衡量接收方还能接收的数据量,发送方要根据AdvertisedWindow决定接下来发送的数据量上限,即EffectiveWindow(可能为0)。

由于乱序问题的存在,LastByteRcvd可能指向Seq(LastByteSent),而Seq(LastByteAcked + 1)至Seq(LastByteSent - 1)都还在路上 ,即将到达接收方,最好的情况是不丢包(丢包后会重传), 则LastByteRcvd之后、接收缓冲区边界之前的空间就是发送方下一次发送数据的长度上限 (重传不属于下一次发送),因此, AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd - LastByteRead) 。

LastByteRcvd还可能指向Seq(LastByteAcked)(一个新包都没有收到) ,显然AdvertisedWindow的公式不变, 而Seq(LastByteAcked + 1)至Seq(LastByteSent)都还在路上 ,未来将到达接收方,进入接收缓冲区,则“还在路上的Seq(LastByteAcked + 1)至Seq(LastByteSent)”不应超过接收缓冲区的剩余空间AdvertisedWindow(目前等于MaxRcvBuffer),这要求的是上一次发送满足LastByteSent - LastByteAcked ≤ AdvertisedWindow, 那么LastByteSent之后、接收缓冲区剩余空间边界之前的空间就是发送方窗口内剩余可发送数据的长度上限 ,因此, EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked) 。

以下是一个发送缓冲区的滑动窗口:

上图分为4个部分:

其中, #2 + #3 组成了滑动窗口,总大小不超过AdvertisedWindow,二者比例受到接收方的处理速度与网络情况的影响(如果丢包严重或处理速度慢于发送速度,则 #2:#3 会越来越大)。

以下是一个AdvertisedWindow的调整过程,EffectiveWindow随之变化:

上图,我们可以看到一个处理缓慢的Server(接收端)是怎么把Client(发送端)的发送窗口size给降成0的。对于接收方来说,此时接收缓冲区确实已经满了,因此令发送方的发送窗口size降为0以暂时禁止发送是合理的。那么,等接收方的接收缓冲区再空出来,怎么通知发送方新的window size呢?

针对这个问题,为TCP设计了ZWP技术(Zero Window Probe,零窗通告):发送方在窗口变成0后,会发ZWP的包给接收方,让接收方来Ack他的Window尺寸;ZWP的重传也遵循指数回退策略,默认重试3次;如果3次后window size还是0,则认为接收方出现异常,发RST重置连接(<font color="red"> 部分文章写的是重试到window size正常??? </font>)。

注意:只要有等待的地方都可能出现DDoS攻击,Zero Window也不例外。一些攻击者会在和服务端建好连接发完GET请求后,就把Window设置为0,于是服务端就只能等待进行ZWP;然后攻击者再大量并发发送ZWP,把服务器端的资源耗尽。(<font color="red"> 客户端等待怎么耗服务端??? </font>)

为什么要进行拥塞控制?假设网络已经出现拥塞,如果不处理拥塞,那么延时增加,出现更多丢包,触发发送方重传数据,加剧拥塞情况,继续恶性循环直至网络瘫痪。可知,拥塞控制与流量控制的适应场景和目的均不同。

拥塞发生前,可避免流量过快增长拖垮网络;拥塞发生时,唯一的选择就是降低流量 。主要使用4种算法完成拥塞控制:

算法1、2适用于拥塞发生前,算法3适用于拥塞发生时,算法4适用于拥塞解决后(相当于拥塞发生前)。

在正式介绍上述算法之前,先补充下 rwnd (Receiver Window,接收者窗口)与 cwnd (Congestion Window,拥塞窗口)的概念:

介绍流量控制时,我们没有考虑cwnd,认为发送方的滑动窗口最大即为rwnd。实际上, 需要同时考虑流量控制与拥塞处理,则发送方窗口的大小不超过 min{rwnd, cwnd} 。下述4种拥塞控制算法只涉及对cwnd的调整,同介绍流量控制时一样,暂且不考虑rwnd,假定滑动窗口最大为cwnd;但读者应明确rwnd、cwnd与发送方窗口大小的关系。

慢启动算法 (Slow Start)作用在拥塞产生之前: 对于刚刚加入网络的连接,要一点一点的提速,不要妄图一步到位 。如下:

因此,如果网速很快的话,Ack返回快,RTT短,那么,这个慢启动就一点也不慢。下图说明了这个过程:

前面说过,当cwnd >= ssthresh(通常ssthresh = 65535)时,就会进入 拥塞避免算法 (Congestion Avoidance): 缓慢增长,小心翼翼的找到最优值 。如下:

慢启动算法主要呈指数增长,粗犷型,速度快(“慢”是相对于一步到位而言的);而拥塞避免算法主要呈线性增长,精细型,速度慢,但更容易在不导致拥塞的情况下,找到网络环境的cwnd最优值。

慢启动与拥塞避免算法作用在拥塞发生前,采取不同的策略增大cwnd;如果已经发生拥塞,则需要采取策略减小cwnd。那么,TCP如何判断当前网络拥塞了呢?很简单, 如果发送方发现有Seq发送失败(表现为“丢包”),就认为网络拥塞了

丢包后,有两种重传方式,对应不同的网络情况,也就对应着两种拥塞发生时的控制算法:

可以看到,不管是哪种重传方式,ssthresh都会变成cwnd的一半,仍然是 指数回退,待拥塞消失后再逐渐增长回到新的最优值 ,总体上在最优值(动态)附近震荡。

回退后,根据不同的网络情况,可以选择不同的恢复算法。慢启动已经介绍过了,下面介绍快速恢复算法。

如果触发了快速重传,即发送方收到至少3次相同的Ack,那么TCP认为网络情况不那么糟,也就没必要提心吊胆的,可以适当大胆的恢复。为此设计 快速恢复算法 (Fast Recovery),下面介绍TCP Reno中的实现。

回顾一下,进入快速恢复之前,cwnd和sshthresh已被更新:

然后,进入快速恢复算法:

下面看一个简单的图示,感受拥塞控制过程中的cwnd变化:

Ⅸ TCP(IV) 拥塞控制

网络中的路由器因无法处理高速到达的流量而被迫丢弃数据信息的现象称为拥塞。这里可能是因为路由器缓存较小或者处理不及时,虽然和流量控制时接收方的情况相似,但是这里有本质区别。因为后者是一对一的,几乎只影响一条连接;后者则影响多个连接。

当网络中大量的发送方和接收方被要求承担超负荷的通信任务时,可以采用 降低发送方发送速率 或者 丢弃部分数据 (也可二者结合)来降低拥塞。

通常来说,接收方没有一个精确的方法去知道中间路由器的状态。目前基本的方法有:

之前的文章提到,发送方为了适应接收方接受速度,设置了一个发送窗口来控制流量。同样的,当拥堵发生时,也需要控制发送速率,于是引入了一个窗口变量,来反映网络传输能力,称为 拥塞窗口 (Congestion window),记作 cwnd。很直观的,我们可以知道,发送端实际可用窗口 W 表示如下,其中 awnd 表示接收方窗口大小:

W = min(cwnd, awnd)

也就是说,还没有收到 ACK 的数据量(也称在外数据量)不能多于 W 。通常 W 以字节或包为单位。很明显, W 的值是在随时变化的,并且我们希望 W 接近一个最佳窗口大小——带宽延时积(Bandwidth-Delay Proct, BDP),BDP 表示某一时刻的在外数据量,但是确定一个连接的 BDP 也是一个难点。

当连接建立之初,还无法获知可用的连接资源,也无法确定 cwnd 初始值(有例外,就是之前文章里提到的目的度量)。这时候不应该直接大量快速的向网络中发送数据,因为会造成更严重的网络拥堵。获得 cwnd 最佳值的唯一方法就是以越来越快的速度发包,直到有数据包丢失(或网络拥堵)。可以考虑 慢启动 发送。在讨论具体算法之前,需要先了解 数据包守恒 的概念。

TCP 发送端的拥塞控制行为是由 ACK 的接收来驱动或“控制”的。并且链路的传输能力是固定的,当发送方接收到一个 ACK 时,就表示链路上多了一个“空位”,于是发送方可以再发送一个数据包。数据包守恒就是指链路中最大包的数量守恒。

当一个连接刚启动时,或者检测到重传超时导致的丢包时,需要执行慢启动 ; TCP 长时间处于空闲状态也可能触发慢启动。其目的是探寻到 cwnd 值已经帮助 TCP 建立 ACK 时钟。

TCP 发送一定数目的报文开始慢启动,该数目称为初始窗口(IInitial Window,IW)。为了简便,我们讨论 IW 为一个 SMSS (sender's MSS)的情况。意味着初始 cwnd 大小为 1 SMSS。

假设没有丢包且每一个数据都有相应的 ACK。那么第一个 ACK 到达,说明可以再发送一个新的报文段(数据包守恒),每收到一个“好的” ACK, cwnd = cwnd + min(N, SMSS) ,这里的 N 是指那个“好的” ACK 所确认的字节数。所谓“好的”是指 ACK 号使窗口更新了。

因为通常来说 N 的值等于 SMSS,使得 cwnd 在收到一个 ACK 后增大一倍。所以慢启动实际上是以指数增长,在 K 轮之后,cwnd = 2^K。如下图:

当接收方开启延时 ACK,则发送方 cwnd 增长曲线如图中蓝色曲线,虽然起步看起来慢,但仍是指数增长。当然这对于带宽延时积很大的网络来说,确实有所浪费,应该采用更好的办法。

当然不可能让窗口大小无限增长,否则会造成严重的网络拥堵直至网络瘫痪。在上述情况下,cwnd 将大幅减小(减至原值一半),也是慢启动和 拥塞避免 的转折点,与 慢启动阈值 (slow start threshold, ssthresh)有关。

当 cwnd 达到 ssthresh 时,可能还有一些传输资源未被占用。但这时候需要谨慎的试探,不能再以较快速度增大 cwnd。采用避免拥塞算法,每接收到一个新的 ACK,cwnd 会做以下更新:

cwnd = cwnd + SMSS * SMSS / cwnd

假设 cwnd = k * SMSS,则可推导如下:

cwnd = cwnd + SMSS / k

发包来看像这样:

通常认为拥塞避免阶段 cwnd 呈线性增长,称为累加增长。

通常 TCP 连接总是会选择慢启动和拥塞避免中的一个,依据就是之前提到的慢启动阈值。当 cwnd < ssthresh,采用慢启动算法, cwnd > ssthresh 采用拥塞避免,相等时选择任意都行。所以关键就是 ssthresh 的值,该值并不是固定的,它的主要目的是, 记录上一次最好的窗口估计值

ssthresh 初始值可以任意设定(如 awnd 或更大),这通常会使 TCP 总是以慢启动开始。当出现重传,无论是超时重传还是快速重传,都会导致 ssthresh 值更新如下:

ssthresh = max(在外数据值 / 2, 2 * SMSS)

在外数据值其实就是当前窗口大小。这样通常会使 ssthresh 变小(但也可能使其变大),然后触发拥塞避免。

Tahoe 算法规定当重传时,都会进入慢启动,并且丢包时,将 cwnd 设为 1 SMSS。这显然性能不太好,已被弃用,不用深究。

Reno 算法是标准 TCP 的基础,它根据之前提到的“包守恒”实现了快速恢复,较好的利用了带宽。快速恢复是针对快速重传的情景实现的,来看一下它在标准 TCP 中的使用:

以下是 Reno 的状态转换图:

Reno 算法在同一窗口下丢失多个包时,其中一个包快速重传成功,就会停止 cwnd 膨胀,造成其它丢失的包可能触发超时重传,然后 cwnd 降为 1 SMSS,吞吐量大大降低。NewReno 采用了一个“恢复点”,指的是收到的 ACK 号大于已发送包的序列号的最大值,达到这个恢复点,才会退出快速恢复。下图最右图中, ACK11 达到了恢复点。

限制传输策略对 TCP 做了微小改进,主要是为了解决窗口较小时,出现丢包,但是没有足够的包去引发快速重传/快速恢复机制。为了尽快触发快速重传,每接收两个连续重复 ACK,就发送一个新的包,使网络中的数据量维持一定数量。这是 TCP 推荐策略。

这里对应 TCP/IP 详解卷一里,书上对于“应用受限”说法不正确。书上说此时“无法发送”,但是查阅 rfc 原文如下:

拥塞窗口校验(Congestion Window Validation)机制规定,需要发送新数据时,距离上次发送操作超过一个 RTO,如果是:

在长时间发送暂停后,cwnd 低于 ssthresh,再次发送时会进入慢启动。Linux 默认开启 CWV。

在之前的超时重传里,我们提到了 伪超时,再来回顾下(注意下图是相当简易的情形,没有考虑延时 ACK 以及 cwnd 增长,会意即可):

伪超时可能引起“回退 N 步”的行为,并且可能触发快速重传,浪费不少资源。

该算法利用 TCP 的 TSOPT 选项,在发送生超时后,重传报文并记录 TSV,期待一个 ACK,若 ACK 的 TSER 小于重传报文的 TSV,则认为该 ACK 是对原始报文的确认而不是对重传报文的确认,即认定该重传是伪重传。

前面提到过,发生超时,则 ssthresh 减半,cwnd 降为 1 SMSS。发生伪超时的话,在 RTO 之后到来的 ACK 会使 cwnd 快速变大,但仍会有不必要重传。

采用 Eifel 算法,在判定伪超时后,会撤销对 ssthresh 的修改。在每次超时对 ssthresh 修改之前,会用 pipe_prev 变量来保存当前的 ssthresh,以便撤销修改。

若出现伪重传,当 ACK 到达时,假设 ACK 确认的报文段长度为 A:

前面讨论了当失序或者超时的时候 TCP 的行为,这些行为都是通过 ACK 的反馈来触发或者驱动的,换句话说,这些“拥塞”的情况是“猜出来的”。当明确知道发生拥堵了,TCP 会执行 拥塞窗口缩减 (congestion window recing,CWR)。明确知道拥堵的情况主要有两种:

CWR 处理过程如下:

直到 cwnd 达到新的 ssthresh 值或者由于其他原因(如丢包)打断 CWR。

到此,我们总结一下 TCP 拥塞控制的几个重要状态:

这个问题还是很有趣的,所以拿出来讲一下。先说结论,网络设备的缓冲区并不是越大越好,也不是越小越好,而是需要根据链路速率和RTT进行计算,得到一个经验值。

缓冲区过小的问题很明显,如果缓冲区太小,很容易就被写满了,只要不能进行适当的排队,丢包率会高,导致传输效率差。

假设如下场景:

上图中,我们假设中间的路由设备的buffer极大,理论来说无论来多少数据,都能buffer起来。中间的路由设备,接收速率是1M/s,而发送速率只有10k/s。

到某一时刻,发送方认为某一数据超时丢失(实际上没有丢失,而是在缓冲区没来得及处理),于是重发,导致缓存区有冗余数据。大量的冗余数据导致利用率变得极低。

而缓冲区为正常大小的时候,多的数据会被丢弃,过一会而缓冲区有新的位置,新的数据会到来,接收方收到数据是失序的,于是发送冗余 ACK,促进快速重传,反而使链路利用率得到保障。

大多数攻击是强迫 TCP 发送速率比一般情况更快或更慢。

原理是接收方将原来的确认范围划分成很多小块,把一个 ACK 变成多个 ACK,使得发送方不断增大 cwnd,使网络变的拥堵。可以通过计算每个 ACK 的确认量(而不是一个包)来判断是否是正确的 ACK。

接收方对还没到达的数据进行提前确认,使得 RTT 变得比较小,同样使得发送方不断增大 cwnd。可以采用一个可累加的随机数,动态匹配 ACK。

阅读全文

与新reno算法的拥塞避免相关的资料

热点内容
自己购买云主服务器推荐 浏览:412
个人所得税java 浏览:754
多余的服务器滑道还有什么用 浏览:182
pdf劈开合并 浏览:19
不能修改的pdf 浏览:742
同城公众源码 浏览:478
一个服务器2个端口怎么映射 浏览:285
java字符串ascii码 浏览:67
台湾云服务器怎么租服务器 浏览:466
旅游手机网站源码 浏览:323
android关联表 浏览:934
安卓导航无声音怎么维修 浏览:326
app怎么装视频 浏览:426
安卓系统下的软件怎么移到桌面 浏览:85
windows拷贝到linux 浏览:763
mdr软件解压和别人不一样 浏览:895
单片机串行通信有什么好处 浏览:331
游戏开发程序员书籍 浏览:853
pdf中图片修改 浏览:279
汇编编译后 浏览:484