导航:首页 > 源码编译 > 蚁群优化算法aco

蚁群优化算法aco

发布时间:2022-10-28 20:06:15

‘壹’ 蚁群算法是什么

蚁群算法,又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。 它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

原理
设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼地编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。

然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?

‘贰’ 遗传算法,蚁群算法和粒子群算法都是什么算法

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等[1] 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。

‘叁’ 蚁群算法,退火算法这些东西究竟属于什么,这些东西要从哪里才能系统学习

第1章绪论
1.1蚂蚁的基本习性
1.1.1蚂蚁的信息系统
1.1.2蚁群社会的遗传与进化
1.2蚁群觅食行为与觅食策略
1.2.1蚂蚁的觅食行为
1.2.2蚂蚁的觅食策略
1.3人工蚁群算法的基本思想
1.3.1人工蚁与真实蚂蚁的异同
1.3.2人工蚁群算法的实现过程
1.4蚁群优化算法的意义及应用
1.4.1蚁群优化算法的意义
l.4.2蚁群算法的应用
1.5蚁群算法的展望
第2章蚂蚁系统——蚁群算法的原型
2.1蚂蚁系统模型的建立
2.2蚁量系统和蚁密系统的模型
2.3蚁周系统模型
第3章改进的蚁群优化算法
3.1带精英策略的蚂蚁系统
3.2基于优化排序的蚂蚁系统
3.3蚁群系统
3.3.1蚁群系统状态转移规则
3.3.2蚁群系统全局更新规则
3.3.3蚁群系统局部更新规则
3.3.4候选集合策略
3.4最大一最小蚂蚁系统
3.4.1信息素轨迹更新
3.4.2信息素轨迹的限制
3.4.3信息素轨迹的初始化
3.4.4信息素轨迹的平滑化
3.5最优一最差蚂蚁系统
3.5.1最优一最差蚂蚁系统的基本思想
3.5.2最优一最差蚂蚁系统的工作过程
第4章蚁群优化算法的仿真研究
4.1蚂蚁系统三类模型的仿真研究
4.1.1三类模型性能的比较
4.2.2基于统计的参数优化
4.2基于蚁群系统模型的仿真研究
4.2.1局部优化算法的有效性
4.2.2蚁群系统与其他启发算法的比较
4.3最大一最小蚂蚁系统的仿真研究
4.3.1信息素轨迹初始化研究
4.3.2信息素轨迹量下限的作用
4.3.3蚁群算法的对比
4.4最优一最差蚂蚁系统的仿真研究
4.4.1参数ε的设置
4.4.2几种改进的蚁群算法比较
第5章蚁群算法与遗传、模拟退火算法的对比
5.1遗传算法
5.1.1遗传算法与自然选择
5.1.2遗传算法的基本步骤
5.1.3旅行商问题的遗传算法实现
5.2模拟退火算法
5.2.1物理退火过程和Metroplis准则
5.2.2模拟退火法的基本原理
5.3蚁群算法与遗传算法、模拟退火算法的比较
5.3.1三种算法的优化质量比较
5.3.2三种算法收敛速度比较
5.3.3三种算法的特点与比较分析
第6章蚁群算法与遗传、免疫算法的融合
6.1遗传算法与蚂蚁算法融合的GAAA算法
6.1.1遗传算法与蚂蚁算法融合的基本思想
……
第7章自适应蚁群算法
第8章并行蚁群算法
第9章蚁群算法的收敛性与蚁群行为模型
第10章蚁群算法在优化问题中的应用
附录
参考文献

‘肆’ 求生物学 蚁群算法

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

下面详细说明:
1、范围:
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。
3、觅食规则:
在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
4、移动规则:
每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:
如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
6、播撒信息素规则:
每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。

‘伍’ 什么是蚁群算法,神经网络算法,遗传算法

蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

‘陆’ 蚁群算法难学吗

难学。
一些超级难的算法有遗传算法,蚁群算法。蚁群算法基本原理:在自然界中,生物群体所表现出的智能得到越来越多的关注,许多的群智能优化算法都是通过对群体智能的模拟而实现的。其中模拟蚂蚁群体觅食的蚁群算法成为一种主要的群智能算法。算法原理:在自然界中,对于觅食的蚂蚁群体,其可以在任何和没有提示的情况下找到食物和巢穴之间的最短路径。并且能够根据和环境的变迁,自适应地找到新的最优路径。根据生物学家研究,蚂蚁群体这一行为的根本原因是:蚂蚁在寻找食物的过程中,能在其走过的路径上释放一种特殊的物质信息素,随着时间的推移,这种信息素会逐渐地挥发,而对于后来的蚂蚁,选择某条路径的概率与该路径上信息素的浓度成正比。当某一条路径上通过的蚂蚁越多的时候,这条路径上的信息素的浓度就会累积越大,后来的蚂蚁选择此路径的概率也就越大。路径上蚂蚁越多,导致信息素浓度越高,从而会吸引更多的蚂蚁,从而形成一种正反馈机制,通过这种机制,最终蚁群可以发现最短路径。

‘柒’ 蚁群算法车辆路径优化问题信息素如何选择

述了。
目前蚁群算法主要用在组合优化方面,基本蚁群算法的思路是这样的:
1. 在初始状态下,一群蚂蚁外出,此时没有信息素,那么各自会随机的选择一条路径。
2. 在下一个状态,每只蚂蚁到达了不同的点,从初始点到这些点之间留下了信息素,蚂蚁继续走,已经到达目标的蚂蚁开始返回,与此同时,下一批蚂蚁出动,它们都会按照各条路径上信息素的多少选择路线(selection),更倾向于选择信息素多的路径走(当然也有随机性)。
3. 又到了再下一个状态,刚刚没有蚂蚁经过的路线上的信息素不同程度的挥发掉了(evaporation),而刚刚经过了蚂蚁的路线信息素增强(reinforcement)。然后又出动一批蚂蚁,重复第2个步骤。
每个状态到下一个状态的变化称为一次迭代,在迭代多次过后,就会有某一条路径上的信息素明显多于其它路径,这通常就是一条最优路径。
关键的部分在于步骤2和3:
步骤2中,每只蚂蚁都要作出选择,怎样选择呢?
selection过程用一个简单的函数实现:
蚂蚁选择某条路线的概率=该路线上的信息素÷所有可选择路线的信息素之和
假设蚂蚁在i点,p(i,j)表示下一次到达j点的概率,而τ(i,j)表示ij两点间的信息素,则:
p(i,j)=τ(i,j)/∑τ(i)
(如果所有可选路线的信息素之和∑τ(i)=0,即前面还没有蚂蚁来过,概率就是一个[0,1]上的随机值,即随机选择一条路线)
步骤3中,挥发和增强是算法的关键所在(也就是如何数学定义信息素的)
evaporation过程和reinforcement过程定义了一个挥发因子,是迭代次数k的一个函数
ρ(k)=1-lnk/ln(k+1)
最初设定每条路径的信息素τ(i,j,0)为相同的值
然后,第k+1次迭代时,信息素的多少
对于没有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k),显然信息素减少了
有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k)+ρ(k)/|W|,W为所有点的集合
为什么各个函数要如此定义,这个问题很难解释清楚,这也是算法的精妙所在。如此定义信息素的挥发和增强,以及路径选择,根据马尔可夫过程(随机过程之一)能够推导出,在迭代了足够多次以后,算法能够收敛到最佳路径。
组合优化很有意思的,像禁忌搜索、模拟退火、蚁群算法、遗传算法、神经网络这些算法能够解决很多生活中的实际问题,楼主有空可以招本书看看。

‘捌’ 蚁群算法的概念是怎样的

蚁群算法是由意大利学者M.Doring、V.Maniezzo、A.Colorini等人首先提出的[59]。蚁群算法通过信息素来表示一个解所包含的关于被优化函数的最优解的信息

‘玖’ 蚁群算法 蚂蚁的初始分布位置和最终分布位置由什么决定

概念:蚁群算法(antcolonyoptimization,ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由MarcoDorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃.这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:1、多样性2、正反馈多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来.我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力.正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了.引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合.如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水.这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整.既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化.而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合.而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!蚁群算法的实现下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝.其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了.

‘拾’ 关于神经网络,蚁群算法和遗传算法

  1. 神经网络并行性和自适应性很强,应用领域很广,在任何非线性问题中都可以应用,如控制、信息、预测等各领域都能应用。

  2. 蚁群算法最开始应用于TSP问题,获得了成功,后来又广泛应用于各类组合优化问题。但是该算法理论基础较薄弱,算法收敛性都没有得到证明,很多参数的设定也仅靠经验,实际效果也一般,使用中也常常早熟。

  3. 遗传算法是比较成熟的算法,它的全局寻优能力很强,能够很快地趋近较优解。主要应用于解决组合优化的NP问题。

  4. 这三种算法可以相互融合,例如GA可以优化神经网络初始权值,防止神经网络训练陷入局部极小且加快收敛速度。蚁群算法也可用于训练神经网络,但一定要使用优化后的蚁群算法,如最大-最小蚁群算法和带精英策略。

阅读全文

与蚁群优化算法aco相关的资料

热点内容
个人所得税java 浏览:750
多余的服务器滑道还有什么用 浏览:178
pdf劈开合并 浏览:15
不能修改的pdf 浏览:742
同城公众源码 浏览:478
一个服务器2个端口怎么映射 浏览:283
java字符串ascii码 浏览:62
台湾云服务器怎么租服务器 浏览:464
旅游手机网站源码 浏览:317
android关联表 浏览:932
安卓导航无声音怎么维修 浏览:324
app怎么装视频 浏览:426
安卓系统下的软件怎么移到桌面 浏览:81
windows拷贝到linux 浏览:757
mdr软件解压和别人不一样 浏览:892
单片机串行通信有什么好处 浏览:328
游戏开发程序员书籍 浏览:851
pdf中图片修改 浏览:275
汇编编译后 浏览:482
php和java整合 浏览:836