导航:首页 > 源码编译 > 文本相似度算法rpa

文本相似度算法rpa

发布时间:2022-10-30 05:00:43

Ⅰ 如何用wordnet计算 文本相似度 算法实现

1.信息检索中的重要发明TF-IDF
1.1TF
Term frequency即关键词词频,是指一篇文章中关键词出现的频率,比如在一篇M个词的文章中有N个该关键词,则
(公式1.1-1)
为该关键词在这篇文章中的词频。
1.2IDF
Inverse document frequency指逆向文本频率,是用于衡量关键词权重的指数,由公式
(公式1.2-1)
计算而得,其中D为文章总数,Dw为关键词出现过的文章数。
2.基于空间向量的余弦算法
2.1算法步骤
预处理→文本特征项选择→加权→生成向量空间模型后计算余弦。
2.2步骤简介
2.2.1预处理
预处理主要是进行中文分词和去停用词,分词的开源代码有:ICTCLAS。
然后按照停用词表中的词语将语料中对文本内容识别意义不大但出现频率很高的词、符号、标点及乱码等去掉。如“这,的,和,会,为”等词几乎出现在任何一篇中文文本中,但是它们对这个文本所表达的意思几乎没有任何贡献。使用停用词列表来剔除停用词的过程很简单,就是一个查询过程:对每一个词条,看其是否位于停用词列表中,如果是则将其从词条串中删除。

Ⅱ 20-余弦相似度及其R实现

余弦相似度 (Cosine Similarity) 通过计算两个向量的夹角余弦值来评估他们的相似度。将向量根据坐标值,绘制到向量空间中,求得他们的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征这两个向量的相似性。夹角越小,余弦值越接近于1,它们的方向越吻合,则越相似。

以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得:

在文本处理中,要使用余弦相似度算法,首先得将文本向量化,将词用“词向量”的方式表示可谓是将 Deep Learning 算法引入 NLP 领域的一个核心技术。自然语言处理转化为机器学习问题的第一步都是通过一种方法将这些文本数学化。其思路如下:

举例:
句子A:这只皮靴号码大了。那只号码合适。
句子B:这只皮靴号码不小,那只更合适。

1、中文分词:
使用结巴分词对上面两个句子分词后,分别得到两个词集:

2、列出所有词,将listA和listB放在一个set中,构成词包:

3、使用词集分别对listA和listB计算词频。

4、对listA和listB进行oneHot编码后得到的结果如下:
listAcode = [1, 2, 1, 2, 1, 1, 1, 1, 0, 0]
listBcode = [1, 2, 1, 1, 0, 0, 1, 1, 1, 1]
5、得出两个句子的词频向量之后,就变成了计算两个向量之间夹角的余弦值,值越大相似度越高。

6、两个向量的余弦值为0.805823,接近1,说明两句话相似度很高。

两个句子的相似度计算步骤如下:
1.通过中文分词,把完整的句子分成独立的词集合;
2.求出两个词集合的并集(词包);
3.计算各自词集的词频并将词频向量化;
4.代入余弦公式就可以求出文本相似度。
注意,词包确定之后,词的顺序是不能再修改的,不然会影响到向量的变化。

以上是对两个句子做相似度计算,如果是对两篇文章做相似度计算,步骤如下:
1.找出各自文章的关键词并合成一个词集合;
2.求出两个词集合的并集(词包);
3.计算各自词集的词频并将词频向量化;
4.代入余弦公式就可以求出文本相似度。
句子的相似度计算只是文章相似度计算的一个子部分。文章的关键词提取可以通过其他的算法来实现。

词频TF(Term Frequency),是一个词语在文章或句子中出现的次数。要在一篇很长的文章中寻找关键字(词),就一般的理解,一个词对文章越关键在文章中出现的次数就越多,于是我们就采用“词频”进行统计。

但是这也不是绝对的,比如“地”,“的”,“啊”等词,它们出现的次数对一篇文章的中心思想是没有帮助的,只是中文语法结构的一部分而已。这类词也被称为“停用词”,所以,在计算一篇文章的词频时,停用词是应该过滤掉的。

仅仅过滤掉停用词就能解决问题吗?也不一定。比如分析政府工作报告,“中国”这个词语必定在每篇文章中都出现很多次,但是对于每份报告的主干思想有帮助吗?对比“反腐败”、“人工智能”、“大数据”、“物联网”等词语,“中国”这个词语在文章中应该是次要的。

TF算法的优点是简单快速,结果比较符合实际情况。缺点是单纯以“词频”做衡量标准,不够全面,词性和词的出现位置等因素没有考虑到,而且有时重要的词可能出现的次数并不多。这种算法无法体现词的位置信息,位置靠前的词与位置靠后的词,都被视为重要性相同,这是不科学的。

联系到层次分析法的思想,可以赋予每个词特定的权重,给那类最常见的词赋予较小的权重,相应的较少见的词赋予较大的权重,这个权重叫做“逆文档频率”(Inverse Doucument Frequency,缩写为IDF),它的大小与一个词的常见程度成反比。而TF-IDF值就是将词频TF和逆文档频率IDF相乘,值越大,说明该词对文章的重要性越高。这就是TF-IDF算法。

Ⅲ 中文短句相似度匹配方法

一、原始落后的VSM
网上搜索关键词“短文本 相似度”,出来的结果基本上都是以BOW(Bag of words)的VSM方案,大致流程如下:

分词 —> 提取关键词 —> 计算tf或if-idf,以向量的形式替换原文本 —> 文本相似度的问题转变为计算向量相似度
一开始这样的一个思路,很清晰明了,而且网上相应的资料也很多,然后就开搞吧。

1、把所有短文本去掉标点符号,用jieba分词分好词,去除停用词,得到分好的文本;

2、按一定规则抽取特征词汇,作为后期向量的每一维;

3、用sklearn库中的原生方法CountVectorizer、TfidfVectorizer等得到矩阵;

4、每个短文本计算对应得到的向量,采用K-Means聚类的方法进行非监督学习。

文本分类的大致思路基本上就如上所述,具体的细节调整就视实际情况而定。然而,想法是美好的,现实是残酷的,全部分好词的文本,抽取的特征词较多,即向量的维度较大,且向量是稀疏的,在使用K-Means时,会出现有个别cluster下的文本数量特别大;

Ⅳ 如何计算两个文档的相似度

有一个网上工具,叫textsimilarity (后面加.net), 可以用百分比显示两个文本的相似度,你试试吧

Ⅳ 有人用php实现文本相似度算法吗

本文实例讲述了PHP简单实现文本计数器的方法。分享给大家供大家参考,具体如下:
<?php if (file_exists('count_file.txt')) { $fil = fopen('count_file.txt', r); $dat = fread($fil, filesize('count_file.txt')); echo $dat+1; fclose($fil); $fil = fopen('count_file.txt', w); fwrite($fil, $dat+1); } else { $fil = fopen('count_file.txt', w); fwrite($fil, 1); echo '1'; fclose($fil); } ?>
更多关于PHP相关内容感兴趣的读者可查看本站专题:《php正则表达式用法总结》、《PHP+ajax技巧与应用小结》、《PHP运算与运算符用法总结》、《PHP网络编程技巧总结》、《PHP基本语法入门教程》、《php操作office文档技巧总结(包括word,excel,access,ppt)》、《php日期与时间用法总结》、《php面向对象程序设计入门教程》、《php字符串(string)用法总结》、《php+mysql数据库操作入门教程》及《php常见数据库操作技巧汇总》

希望本文所述对大家PHP程序设计有所帮助。

Ⅵ 文本相似度 之余弦夹角 度量算法

相似度度量(Similarity),即计算个体间的相似程度,相似度度量的值越小,说明个体间相似度越小,相似度的值越大说明个体差异越大。

对于多个不同的文本或者短文本对话消息要来计算他们之间的相似度如何,一个好的做法就是将这些文本中词语,映射到向量空间,形成文本中文字和向量数据的映射关系,通过计算几个或者多个不同的向量的差异的大小,来计算文本的相似度。下面介绍一个详细成熟的向量空间余弦相似度方法计算相似度

上图两个向量a,b的夹角很小可以说a向量和b向量有很高的的相似性,极端情况下,a和b向量完全重合。如下图:

上图中:可以认为a和b向量是相等的,也即a,b向量代表的文本是完全相似的,或者说是相等的。如果a和b向量夹角较大,或者反方向。

如上图三: 两个向量a,b的夹角很大可以说a向量和b向量有很底的的相似性,或者说a和b向量代表的文本基本不相似。那么是否可以用两个向量的夹角大小的函数值来计算个体的相似度呢?

向量空间余弦相似度理论就是基于上述来计算个体相似度的一种方法。下面做详细的推理过程分析。

想到余弦公式,最基本计算方法就是初中的最简单的计算公式,计算夹角的余弦定值公式为:

但是这个是只适用于直角三角形的,而在非直角三角形中,余弦定理的公式是
三角形中边a和b的夹角 的余弦计算公式为:

在向量表示的三角形中,假设a向量是(x1, y1),b向量是(x2, y2),那么可以将余弦定理改写成下面的形式:

扩展,如果向量a和b不是二维而是n维,上述余弦的计算法仍然正确。假定a和b是两个n维向量,a是 ,b是 ,则a与b的夹角 的余弦等于:

下面举一个例子,来说明余弦计算文本相似度

举一个例子来说明,用上述理论计算文本的相似性。为了简单起见,先从句子着手。

句子A

句子B

怎样计算上面两句话的相似程度?

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

句子A

句子B

这只,皮靴,号码,大了。那只,合适,不,小,很

句子A

句子B

句子A

句子B

到这里,问题就变成了如何计算这两个向量的相似程度。我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同、线段重合,这是表示两个向量代表的文本完全相等;如果夹角为90度,意味着形成直角,方向完全不相似;如果夹角为180度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

使用上面的多维向量余弦计算公式

计算两个句子向量

句子A

和句子B

的向量余弦值来确定两个句子的相似度。

计算过程如下:

计算结果中夹角的余弦值为0.81非常接近于1,所以,上面的句子A和句子B是基本相似的

由此,我们就得到了文本相似度计算的处理流程是:

Ⅶ 文本相似度计算(一):距离方法

距离方法
1、文本的表示
1.1、VSM表示
1.2、词向量表示
1.3、迁移方法
2、距离计算方法
2.1、欧氏距离 (L 2 范数)、曼哈顿距离 (L 1 范数)、 明氏距离
2.2、汉明距离
2.3、Jaccard相似系数、 Jaccard距离( 1-Jaccard相似系数)
2.4、余弦距离
2.5、皮尔森相关系数
2.5、编辑距离

场景举例:
1)计算 Query 和文档的相关度、2)问答系统中计算问题和答案的相似度、3)广告系统中计算 Query 和广告词的匹配程度、4)推荐系统中 要给某个用户推荐某件物品,计算这件物品和这个用户兴趣的相似度
更多地,判断两个query表达的意思是否相同也可以看作属于文本相似度的范畴。
相似度一定是指两个东西(姑且分别用 P 和 Q 表示)的相似程度,而这两个东西可以是任何形式的,例如文本、图片、声音等等。最终要计算相似度,那必须把这些东西抽象成数学形式,说白了 ,就是怎么用数字把 这些 东西表示出来, 一 般会表示成向量或者矩阵。那如果表示成了向量, 计算相似度就可以使用大家在数学课上学的知识了。
这里希望可以比较清晰全面地介绍一下文本相似度的计算方法,目前来说,大致分为距离、hash、深度学习三种方法。

这些所谓的距离其实都是一些 固定 的公式而己,关键在于如何应用。实际应用中可以使用tf-idf、word2vec、LDA等方法实现相似度的距离计算。

很多相似度的第一步其实都是文本的表示问题,即把文本用数字的形式表示出来,这一步目前主要有 VSM(vector space model) ,和 词向量表示 两种方式。

这种方法其实灵活性较大,可以基于分词,对于中文基于字符或n-grams的表示也有一定效果。
1) tf-idf/bow表示 :在给定文档集合C和词典D的条件下,将某篇文档通过词袋模型表示成一个个的词,而后根据 TF-IDF 为每个词计算出一个实数值;
由于词典D的大小为M,因此 将这篇文档转化成一个M维向量 ,如果词典中某个词未出现在文档中,则这个词的在向量中对应的元素为0,若某个词出现在文档中,则这个词在向量中 对应的元素值为这个词的tf-idf值 。这样,就把文档表示成向量了,而这就是 向量空间模型(vector space model) 。从这里也可看出:向量空间模型并没有catch住词(term)与词(term)之间的关系,它假设各个term之间是相互独立的。
而有了文档向量,就可以计算文档之间的相似度了。
这种表示方法与词典大小相关,往往会使文本的表示比较稀疏且高维,可以通过PCA缓解这一问题。
2) 主题模型表示 :实际上VSM可以作为一种文本表示的思想:把对文本内容的处理简化为向量空间中的向量运算,并且它以空间上的相似度表达语义的相似度。
在这个角度,使用LDA,LSA等主题模型同样可以完成文本的VSM表示:将文本表示为topic的向量空间。
这种方法维度可自定义(topic数),且不稀疏,但是可能存在文本对之间距离相似度分布空间密集的情况导致效果不佳。

这种方法一般直接将文本分词后 将词向量相加除以句子长度就可得到 。也可以使用如 smooth inverse frequency的加权方法 将词向量加权:每个词嵌入都由a/(a + p(w))进行加权,其中a的值经常被设置为0.01,而p(w)是词语在语料中预计出现的频率。
一般来说word2vec的词向量方法 强于glove方法 ,而对于word2vec,cbow方法强于skip-gram(具体原因并不复杂,感兴趣可以从训练方法角度思考一下~)

更多地,上述文本表示方法其实会损失或无法捕捉到语义信息,通过bert、elmo等预训练方法的表示更加靠谱,也可以用于无监督的文本相似度计算。

欧氏距离:

曼哈顿距离:

表示两个(相同长度)字对应位不同的数量,我们以d(x,y)表示两个字x,y之间的汉明距离。对两个字符串进行异或运算,并统计结果为1的个数,那么这个数就是汉明距离。

(1)雅各相似系数:
两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

杰卡德相似系数是衡量两个集合的相似度一种指标。
实际使用中,可以用去重与不去重两种方式计算,更多地,可以转换为交集的tf-idf值之和除以并集的tf-idf值之和

(2) 杰卡德距离
  与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。
杰卡德距离可用如下公式表示:


杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。文本的相似度一般取绝对值。

皮尔森相关系数在推荐系统用的较多,它的公式如下 :

指两个字符串,由一个变成另一个所需的最少的编辑次数,这个编 就包括替换、插入、删除操作。

文本相似度的计算一般使用VSM/cbow+cos距离/欧式距离,或jaccard距离

Dice 系数可以计算两个字符串的相似度:Dice(s1,s2)=2*comm(s1,s2)/(leng(s1)+leng(s2))。

https://blog.csdn.net/weixin_43526820/article/details/89883640?spm=1001.2014.3001.5501

Ⅷ 如何计算两个文本内容的相似度

楼上说的挺全面,这种类型的比较,方法有很多,基本都是先转换成同一种编码格式进行字符串比较,返回下标,转换成现有字符串。但是如果考虑性能的话,就应该用递归去做。

个人愚见~

Ⅸ 文本相似度算法

TF是指归一化后的词频,IDF是指逆文档频率。给定一个文档集合D,有d1,d2,d3,......,dn∈D。文档集合总共包含m个词(注:一般在计算TF−IDF时会去除如“的”这一类的停用词),有w1,w2,w3,......,wm∈W。我们现在以计算词wi在文档dj中的TF−IDF指为例。
TF的计算公式为:
TF=freq(i,j) / maxlen(j)
在这里freq(i,j) 为wi在dj中出现的频率,maxlen(j)为dj长度。

TF只能时描述词在文档中的频率,但假设现在有个词为”我们“,这个词可能在文档集D中每篇文档中都会出现,并且有较高的频率。那么这一类词就不具有很好的区分文档的能力,为了降低这种通用词的作用,引入了IDF。
IDF的表达式如下:
IDF=log(len(D) / n(i))
在这里len(D)表示文档集合D中文档的总数,n(i)表示含有wi这个词的文档的数量。

得到TF和IDF之后,我们将这两个值相乘得到TF−IDF的值:
TF−IDF=TF∗IDF
TF可以计算在一篇文档中词出现的频率,而IDF可以降低一些通用词的作用。因此对于一篇文档我们可以用文档中每个词的TF−IDF组成的向量来表示该文档,再根据余弦相似度这类的方法来计算文档之间的相关性。

BM25算法通常用来做搜索相关性评分的,也是ES中的搜索算法,通常用来计算query和文本集合D中每篇文本之间的相关性。我们用Q表示query,在这里Q一般是一个句子。在这里我们要对Q进行语素解析(一般是分词),在这里以分词为例,我们对Q进行分词,得到q1,q2,......,qt这样一个词序列。给定文本d∈D,现在以计算Q和d之间的分数(相关性),其表达式如下:

Score(Q,d)=∑ti=1wi∗R(qi,d)
上面式子中wi表示qi的权重,R(qi,d)为qi和d的相关性,Score(Q,d)就是每个语素qi和d的相关性的加权和。

wi的计算方法有很多,一般是用IDF来表示的,但这里的IDF计算和上面的有所不同,具体的表达式如下:

wi=IDF(qi)=logN−n(qi)+0.5n(qi)+0.5
上面式子中N表示文本集合中文本的总数量,n(qi)表示包含qi这个词的文本的数量,0.5主要是做平滑处理。

R(qi,d)的计算公式如下:

R(qi,d)=fi∗(k1+1)fi+K∗qfi∗(k2+1)qfi+k2
其中

K=k1∗(1−b+b∗dlavgdl)
上面式子中fi为qi在文本d中出现的频率,qfi为qi在Q中出现的频率,k1,k2,b都是可调节的参数,dl,avgdl分别为文本d的长度和文本集D中所有文本的平均长度。

一般qfi=1,取k2=0,则可以去除后一项,将上面式子改写成:

R(qi,d)=fi∗(k1+1)fi+K
通常设置k1=2,b=0.75。参数b的作用主要是调节文本长度对相关性的影响。

Ⅹ 常见的相似度度量算法




本文目录:




  定义在两个向量(两个点)上:点x和点y的欧式距离为:

  常利用欧几里得距离描述相似度时,需要取倒数归一化,sim = 1.0/(1.0+distance),利用numpy实现如下:

python实现欧式距离

  从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源, 曼哈顿距离也称为城市街区距离(City Block distance)。

  (1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离

  (2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼哈顿距离

   python实现曼哈顿距离:


  国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。

  (1)二维平面两点a(x1,y1)与b(x2,y2)间的切比雪夫距离

  (2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的切比雪夫距离

   python实现切比雪夫距离:


  闵氏距离不是一种距离,而是一组距离的定义。

  两个n维变量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

  其中p是一个变参数。

  当p=1时,就是曼哈顿距离

  当p=2时,就是欧氏距离

  当p→∞时,就是切比雪夫距离

  根据变参数的不同,闵氏距离可以表示一类的距离。

  闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。

  举个例子:二维样本(身高,体重),其中身高范围是150 190,体重范围是50 60,有三个样本:a(180,50),b(190,50),c(180,60)。那么a与b之间的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c之间的闵氏距离,但是身高的10cm真的等价于体重的10kg么?因此用闵氏距离来衡量这些样本间的相似度很有问题。

  简单说来,闵氏距离的缺点主要有两个:

  (1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了。

  (2)没有考虑各个分量的分布(期望,方差等)可能是不同的。


  标准欧氏距离的定义

  标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:

  而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是:

  标准化后的值 = ( 标准化前的值 - 分量的均值 ) /分量的标准差

  经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式:

  如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。


  有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为:

  而其中向量Xi与Xj之间的马氏距离定义为:

  若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了:

  也就是欧氏距离了。

  若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。

  马氏距离的优缺点:量纲无关,排除变量之间的相关性的干扰。


  几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

  在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

  两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

  类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

  即:

  夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。

python实现余弦相似度:


  两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。

  应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

python实现汉明距离:


  两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

  杰卡德相似系数是衡量两个集合的相似度一种指标。

  与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:

  杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

  可将杰卡德相似系数用在衡量样本的相似度上。

  样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

  p :样本A与B都是1的维度的个数

  q :样本A是1,样本B是0的维度的个数

  r :样本A是0,样本B是1的维度的个数

  s :样本A与B都是0的维度的个数

  这里p+q+r可理解为A与B的并集的元素个数,而p是A与B的交集的元素个数。

  而样本A与B的杰卡德距离表示为:


  皮尔逊相关系数即为相关系数 ( Correlation coefficient )与相关距离(Correlation distance)

  相关系数的定义

  相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。








1. 机器学习中的相似性度量

2. 推荐算法入门(1)相似度计算方法大全

3. Python Numpy计算各类距离

4. 皮尔逊积矩相关系数

阅读全文

与文本相似度算法rpa相关的资料

热点内容
旅游手机网站源码 浏览:311
android关联表 浏览:925
安卓导航无声音怎么维修 浏览:317
app怎么装视频 浏览:420
安卓系统下的软件怎么移到桌面 浏览:78
windows拷贝到linux 浏览:753
mdr软件解压和别人不一样 浏览:886
单片机串行通信有什么好处 浏览:321
游戏开发程序员书籍 浏览:844
pdf中图片修改 浏览:272
汇编编译后 浏览:477
php和java整合 浏览:833
js中执行php代码 浏览:445
国产单片机厂商 浏览:59
苹果手机怎么设置不更新app软件 浏览:287
转行当程序员如何 浏览:496
苹果id怎么验证app 浏览:866
查看手机命令 浏览:956
抖音反编译地址 浏览:228
如何加密软件oppoa5 浏览:235