导航:首页 > 源码编译 > 复杂度最大的算法

复杂度最大的算法

发布时间:2022-10-30 15:04:22

① 一文讲透算法中的时间复杂度和空间复杂度计算方式

作为一名“程序猿”,大家应该都听过这么一句话:程序=数据结构+算法。

这句话是由瑞士计算机科学家尼古拉斯·沃斯(Niklaus Wirth)在 1984 年获得图灵奖时说的一句话,这位大佬还以这句话为名出了一本书《Algorithms + Data Structures=Programs》,从此这句话就成为了大家耳熟能详的一句名言。

随着时间的推移,不管这句话是不是非常准确,但至少能说明数据结构与算法对程序来说是非常核心的基础,如果我们想要写出更多优秀优雅的代码,那么数据结构与算法是必须要掌握好的。

很多人可能觉得,我不会算法,代码一样写得很"溜",算法这东西似乎用处不大。现在互联网的发达,我们想要什么几乎都可以在网上找到现成的,各种框架功能十分强大,似乎看起来确实不用算法也可以写出“好代码”。然而假如我们不懂算法,比如项目中用到了排序,我们如何评估代码的执行效率?再比如最常用的 ArrayList 和 LinkedList ,我们该如何选择,又比如说我们需要去集合中找某一个数,又该如何写出性能优秀的代码呢?

同样的代码,如何判断谁的代码是优秀的代码?可读性,可扩展性,健壮性可能都可以用来判定,然而这些东西我觉得并不能直接体现出你代码的优秀,因为对用户而言,访问你的代码响应速度快那就是优秀的代码,相反,动辄响应几秒甚至更长时间的接口,恐怕就算你可读性再好,再健壮也称不上是好代码。

所以说一段代码是否优秀,最直接的判断标准就是性能,而如果要写出高性能的代码,那么就必须要了解算法,而且抛开这个因素,但凡不想一辈子都写 CRUD 代码的,也需要去了解算法,我们使用的很多框架和中间件底层都有数据结构和算法的身影,学好算法对我们源码阅读时理解其设计思想也是大有裨益的。

要说功利性的目的,那就是面试,目前很多大厂的面试,算法基本必面,所以想进大厂的话,咱们也得好好学学算法。

提到算法,很多人的第一反应就是太难学了,学不会,或者说经常是看完就忘了,但是其实对于我们一个普通的开发者而言,因为并不需要我们去发明算法,我们需要的仅仅只是去灵活的运用算法,所以并不需要非常扎实的数据基础,当然基本的数学常识还是要有的。

如果说需要去发明设计一款算法,那就要去推导去证明算法的可行性,这种是需要具有非常扎实的数学基础的,一般人确实无法做到,然而我们普通程序员口中提到算法无非是二分查找法,哈希算法等,高级一点的就还有回溯,贪心,动态规划等等,这些所谓的算法都是已经有现成的公式了,我们要做的无非就是理解它,然后灵活的运用它。这就和我们以前学习数学公式一样,给你一个公式,然后你去做题,做题的过程其实就是去灵活地运用这个公式。

算法也是同理,都是有特定方法和特定思路的,我们也并不需要去推导证明这种方式为什么可行,所以学习算法没有其他诀窍,就是先理解思路,然后多练,等熟练了,自然就可以灵活运用了,也不会说学了立刻就忘了。学完就忘无非两个原因,一是没理解,二是没有练习巩固。

数据结构与算法经常是放在一起讲,这两者是没办法独立的,因为算法是为了达到某种目的的一种实现方式,而数据结构是一种载体,也就是说算法必须依赖数据结构这种载体,否则就是空谈。换句话说:数据结构是为算法服务的,而算法又需要作用在特定的数据结构之上。

一个算法到底好不好,我们如何去评价?前面我们提到了,你的代码好不好,最直观的就是看响应速度,算法也一样,同样实现一个目的(比如说排序),谁的算法速度快,我们就可以认为谁的算法更优,如果说两种算法实现的速度差不多,那么我们还可以去评价算法所占用的空间,谁占用的空间少,那么就可以认为谁的算法更优,这就是算法的基础:时间复杂度和空间复杂度。

学习算法之前,我们必须要学会如何分析时间复杂度和空间复杂度(也就是“快”和“省”),否则自己写出来的算法自己都不知道算法的效率。

接触过算法的都知道,算法的时间复杂度是用大写的“O”来表示的,比如: O(1) , O(n) , O(logn) , O(nlogn) , O(n²) 等等。

变量指的是变量,也就是一段代码的执行时间是随着变量的变化而变化的,而不变指的是常量,也就是不论我的变量如何改变,执行时间都不会改变。

接下来我们就实际的来分析下常用时间复杂度的例子来练习一下。

0(1) 复杂度算法也称之为常数阶算法。这里的 1 是用来代指常量,也就是说这个算法的效率是固定的,无论你的数据量如何变化,效率都一样,这种复杂度也是最优的一种算法。

上面的示例中不论有多少行代码,时间复杂度都是属于常数阶段。换言之:只要代码不存在 循环 递归 等循环类调用,不论代码有多少行,其复杂度都是常数阶。

O(n) 复杂度算法也称之为线性阶段。比如下面这个示例我们应该怎么分析复杂度呢?

前面常量阶没分析是因为常量阶比较容易理解,接下来我们就以线性阶这个为例子来分析下具体是怎么得到的。

我们假设每一行代码的执行时间是 T ,那么上面这段代码的执行复杂度是多少呢?

答案很明显,那就是 T+n*T ,也就是 (n+1)T ,而在算法中有一个原则,那就是常量可以被忽略,所以就得到了 nT ,换成大 O 表示法就是 O(n) 。

这只是一个简略的计算过程,大家也不用较真说每行代码执行时间可能不一样之类的,也不要较真说 for 循环占用了一行,下面的大括号也占用了一行,如果要较真这个,那我建议可以去想一下 1=1 为什么等于 2 。

算法中的复杂度反应的只是一个趋势,这里 O(n) 反应的就是一个趋势,也就是说随着 n 的变化,算法的执行时间是会降低的。

知道了上面的线性阶,那么平方阶就很好理解了,双层循环就是平方阶,同理,三次循环就是立方阶, k 次循环就是 k 次方阶。

O(logn) 也称之为对数阶,对数阶也很常见,像二分查找,二叉树之类的问题中会见到比较多的对数阶复杂度,但是对数阶也是比较难理解的一种算法复杂度。

下面我们还是来看一个例子:

这段代码又该如何分析复杂度呢?这段代码最关键的就是要分析出 while 循环中到底循环了多少次,我们观察这个循环,发现 i 并不是逐一递增,而是不断地翻倍: 1->2->4->8->16->32->64 一直到等于 n 为什么才会结束,所以我们得到了这样的一个公式: 2^x=n 。

也就是说我们只要计算出 x 的值,就得到了循环次数,而根据高中的数学知识我们可以得到 x=log2n ( 2 在下面,是底数,试了几种方法都打不出来,放弃了),所以根据上面线性阶的分析方法,我们省略常量,就得到了示例中的算法复杂度为 O(log2n) 。

同样的分析方式,下面的例子,我们可以很快地分析出复杂度就为 O(log3n) :

上面得到的 log3n 我们可以再做进一步的转换: log3n=log32 * log2n ,而 log32 (注意这几个地方的情况 3 是底数,在下面) 是一个常量,常量可以省略,所以也就得到了: O(log3n)=O(log2n) 。同样的道理,不论底数是多少,其实最终都可以转化成和 O(log2n) 相等,正因为如此,为了方便,我们算法中通常就会省略底数,直接写作 O(logn) 。

上面的数学公式大家如果忘了或者看不懂也没关系,只要记住不论对数的底数是多少,我们都算作 O(logn) ,而对于一个算法的复杂度是否是对数阶,还有一个简易的判断方法: 当循环中下标以指定倍数形式衰减,那么这就是一个对数阶

如果理解了上面的对数阶,那么这种线性对数阶就非常好理解了,只需要在对数阶的算法中再嵌一层循环就是线性对数阶:

分析了前面这些最常用的时间复杂度,其实我们可以得到以下规律:

除了上面常用的复杂度之外,另外还有指数阶,阶层阶,根号阶等,这些接触的相对会较少,我们就不特意做分析了,如果大家感兴趣的话,可以自己去了解下。

前面我们分析的都是只有一段代码比较复杂的情况下得到的复杂度结果,那么假如我一个算法中,有多段代码都比较复杂呢?这时候复杂度该如何分析?

我们先看下面这个例子:

这个例子中有三个循环,首先第一个,是一个常量,那么根据前面的结论,不论这个常量是多大,都属于常量级,所以第一个循环中的复杂度为 O(1) ,第二个和第三个循环我们前面也分析过,复杂度分别为 O(n) 和 O(n²) 。

也就是这一段代码中有三段代码产生了三种不同复杂度,而且这三个复杂度可以很明显得到的大小关系为: O(1)<o(n)<o(n²) span=""> </o(n)<o(n²)> ,像这种在同一个算法中有明确大小关系的,我们就可以直接取最大值作为这个算法的复杂度,所以这个例子中算法的复杂度就是 O(n²) 。

接下来我们再来看一个例子:

这个例子我们同样对三段循环分别分析可以分别得到如下复杂度: O(1) , O(m) , O(n) 。这时候我们只能知道 O(1) 最小可以忽略,但是后面两个无法却无法确定大小,所以这时候我们需要取两段循环复杂度之和来作为算法的复杂度,所以可以得到这个例子的算法复杂度为: O(m+n) 。

上面分析的时间复杂度都是比较简单的,实际算法中可能会比示例中复杂的多,而且我们示例中只要是循环都是无脑循环,也就是一定从头循环到尾,然而实际中我们有时候并不需要从头循环到尾,可能中途就会结束循环,所以我们根据实际情况,又可以将时间复杂度从以下四个方面来进一步分析:

这四种类型的时间复杂度在这里只会介绍前面三种,因为第四种比较复杂,而且使用场景也非常有限,而且对于这四种复杂度的分析,大家也作为了解就可以,不敢兴趣的朋友们可以跳过这一小部分,因为在绝大部分情况我们只需要分析最坏复杂度就行,也就是假设循环全部执行完毕场景下的时间复杂度。

我们通过一个例子来理解下最好时间复杂度:

这个方法就是在一个指定数组中找到指定元素的下标,找不到就返回 -1 ,这个方法比较简单,应该比较好理解。

注意这个方法中的循环体,如果找到元素,那么就直接返回,这就会有一个现象,那就是我这个循环体到底会循环多少次是不确定的,可能是 1 次,也可能是 n (假设数组的长度) 次,所以假如我们要找的元素就在数组中的第一个位置,那么我循环一次就找到了,这个算法的复杂度就是 O(1) ,这就是最好情况时间复杂度。

理解了最好时间复杂度,那么最坏时间复杂度也很好理解了,那就是数组中不存在我要找到元素,或者说最后一个值才是我要找的元素,那么这样我就必须循环完整个数组,那么时间复杂度就是 O(n) ,这也就是最坏时间复杂度。

最好时间复杂度和最坏时间复杂度毕竟只有特殊情况才会发生,概率还是相对较小,所以我们很容易就想到我们也需要有一个平均时间复杂度。

我们简单的来分析一下,为了便于分析,我们假设一个元素在数组和不在数组中的概率都为 1/2 ,然后假如在数组在,那么又假设元素出现在每个位置的概率也是一样的,也就是每个位置出现元素的概率为: 1/n 。

所以最终得到的平均时间复杂度应该等于元素在数组中和元素不在数组中两种情况相加。

因为元素在数组中的概率为 1/2 ,然后在每个位置出现的概率也为 1/n 。假如元素出现在第一个位置,复杂度为 1*(1/2n) ;假如元素出现在第二个位置,复杂度为 2 * (1/2n) ,最终得到当前场景下时间复杂度为: 1*(1/2n) + 2 * (1/2n) + ... + n*(1/2n) =(n+1)/4。

前面已经假定了元素不在数组中的概率为 1/2 ,所以当前场景下的时间复杂度为: n * (1/2) ,因为元素不在数组中,那么这个算法必然会将整个循环执行完毕,也就循环是 n 次。

最后我们把两种情况的复杂度之和相加就得到了平均时间复杂度: (n+1)/4 + n/2 = (3n+1)/4 ,最终我们将常数类的系数忽略掉,就得到了平均时间复杂度为 O(n) 。

均摊时间复杂度的算法需要使用摊还分析法,计算方式相对有点复杂,而且使用场景很有限,本文就不做过多介绍了。

空间复杂度全称就是渐进空间复杂度,用来表示算法的存储空间与数据规模之间的增长关系。和时间复杂度一样,空间复杂度也是用大 O 进行表示。

其实学会了分析时间复杂度,那么空间复杂度的分析就简单了,主要就看我们在一个算法当中到底有没有使用到了额外的空间来进行存储数据,然后判断这个额外空间的大小会不会随着 n 的变化而变化,从而得到空间复杂度。

我们来看一个给数组赋值例子,假设这就是一个算法,我们可以来分析下这个算法的空间复杂度:

一开始定义了一个变量,这里需要空间,但是这是一个常量级的(不随 n 的变化而变化),然后再定义了一个数组,数组的长度为 n ,这里数组也需要占用空间,而且数组的空间是随着 n 的变化而变化的,其余代码没有占用额外空间,所以我们就可以认为上面示例中的空间复杂度为 O(n) 。

对于算法的空间复杂度也可以简单的进行总结一下:

本文主要讲述了为什么要学习算法,也简单减少了数据结构与算法之间的关系,随后主要介绍了算法中的入门知识:时间复杂度和空间复杂度。想要学好算法,必须要掌握如何分析一个算法的时间复杂度和空间复杂度,只有自己会分析这两个个衡量算法主要性能的标准,才能更好的写出性能优秀的算法,同时我们也讲到了最好时间复杂度,最坏时间复杂度,平均时间复杂度和均摊时间复杂度,不过这四种复杂度的计算方式大家作为了解即可,等实际确实需要使用到再来回顾也不迟。

② 算法复杂度:时间复杂度和空间复杂度

本文部分摘抄于此
算法复杂度分为时间复杂度和空间复杂度。
时间复杂度是指执行算法所需要的计算工作量;
而空间复杂度是指执行这个算法所需要的内存空间。
(算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度)。

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时, T(n)/f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O(f(n)), O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

将基本语句执行次数的数量级放入大Ο记号中。

如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο( n 2),则整个算法的时间复杂度为Ο(n+ n 2)=Ο( n 2)。

Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。其中 Ο(log2n)、Ο(n)、 Ο(nlog2n)、Ο(n2)和Ο(n3) 称为多项式时间, 而Ο(2n)和Ο(n!)称为指数时间 。计算机科学家普遍认为前者(即多项式时间复杂度的算法)是有效算法,把这类问题称为 P(Polynomial,多项式)类问题 ,而把后者(即指数时间复杂度的算法)称为 NP(Non-Deterministic Polynomial, 非确定多项式)问题

(4)在计算算法时间复杂度时有以下几个简单的程序分析法则:

(1).对于一些简单的输入输出语句或赋值语句,近似认为需要O(1)时间

(2).对于顺序结构,需要依次执行一系列语句所用的时间可采用大O下"求和法则"

求和法则:是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1(n)+T2(n)=O(max(f(n), g(n)))

特别地, 若T1(m)=O(f(m)), T2(n)=O(g(n)),则 T1(m)+T2(n)=O(f(m) + g(n))

(3).对于选择结构,如if语句,它的主要时间耗费是在执行then字句或else字句所用的时间,需注意的是检验条件也需要O(1)时间

(4).对于循环结构,循环语句的运行时间主要体现在多次迭代中执行循环体以及检验循环条件的时间耗费,一般可用大O下"乘法法则"

乘法法则 : 是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则T1 * T2=O(f(n) * g(n))

(5).对于复杂的算法,可以将它分成几个容易估算的部分,然后利用求和法则和乘法法则技术整个算法的时间复杂度

另外还有以下2个运算法则:(1) 若g(n)=O(f(n)),则O(f(n))+ O(g(n))= O(f(n));(2) O(Cf(n)) = O(f(n)),其中C是一个正常数

(5)下面分别对几个常见的时间复杂度进行示例说明:

(1)、O(1)

​ Temp=i; i=j; j=temp;

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。 注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

(2)、O(n2)

2.1. 交换i和j的内容

解: 因为Θ(2n2+n+1)=n2(Θ即:去低阶项,去掉常数项,去掉高阶项的常参得到),所以T(n)= =O(n2);

2.2.

解: 语句1的频度是n-1

一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分,当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

(3)、O(n)

解:

(4)、O(log2n)

解:

(5)、O(n3)

解:

(5)常用的算法的时间复杂度和空间复杂度

一个经验规则: 其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n log2n ,那么这个算法时间效率比较高 ,如果是 2n * , 3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

​ 算法时间复杂度分析是一个很重要的问题,任何一个程序员都应该熟练掌握其概念和基本方法,而且要善于从数学层面上探寻其本质,才能准确理解其内涵。

2、算法的空间复杂度

​ 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。

算法的输入输出数据所占用的存储空间是由要解决的问题决定的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。存储算法本身所占用的存储空间与算法书写的长短成正比,要压缩这方面的存储空间,就必须编写出较短的算法。

算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们称这种算法是“就地"进行的,是节省存储的算法,如这一节介绍过的几个算法都是如此;

有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如将在第九章介绍的快速排序和归并排序算法就属于这种情况。

如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为O(log2n);当一个算法的空I司复杂度与n成线性比例关系时,可表示为O(n).

【1】如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

解答:
T(n)=O(1),
这个程序看起来有点吓人,总共循环运行了1100次,但是我们看到n没有?
没。这段程序的运行是和n无关的,
就算它再循环一万年,我们也不管他,只是一个常数阶的函数

【2】当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:
则该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)

【3】算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。

在数值A[0..n-1]中查找给定值K的算法大致如下:

此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关:

(5)时间复杂度评价性能

有两个算法A1和A2求解同一问题,时间复杂度分别是T1(n)=100n2,T2(n)=5n3。
(1)当输入量n<20时,有T1(n)>T2(n),后者花费的时间较少。
(2)随着问题规模n的增大,两个算法的时间开销之比5n3/100n2=n/20亦随着增大。
即当问题规模较大时,算法A1比算法A2要有效地多。它们的渐近时间复杂度O(n2)和O(n3)从宏观上评价了这两个算法在时间方面的质量。

在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予区分,而经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。

其实生活很美好,只是你想的太多了。没有,不会,有差距很正常,因为我不会

③ 大数据最常用的算法有哪些

奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutschan博士在自己的页面上发布了一篇文章,提到他做了一个调查,参与者大多数是计算机科学家,他请这些科学家投票选出最重要的算法,以下是这次调查的结果,按照英文名称字母顺序排序。

大数据等最核心的关键技术:32个算法

1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。

2、集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。

3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。

5、Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。

7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。

9、离散微分算法(Discrete differentiation)。

10、动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法

11、欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。

12、期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值。

13、快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。

14、梯度下降(Gradient descent)——一种数学上的最优化算法。

15、哈希算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。

18、LLL算法(Lenstra-Lenstra-Lovasz lattice rection)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。

19、最大流量算法(Maximum flow)——该算法试图从一个流量网络中找到最大的流。它优势被定义为找到这样一个流的值。最大流问题可以看作更复杂的网络流问题的特定情况。最大流与网络中的界面有关,这就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一个流网络中的最大流。

20、合并排序(Merge Sort)。

21、牛顿法(Newton’s method)——求非线性方程(组)零点的一种重要的迭代法。

22、Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。

23、两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。

24、RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。

25、RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。

26、Sch?nhage-Strassen算法——在数学中,Sch?nhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。

27、单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待最大化(或最小化)的固定线性函数。

28、奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。

29、求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。

31、合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:

查找:判断某特定元素属于哪个组。

合并:联合或合并两个组为一个组。

32、维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。

以上就是Christoph博士对于最重要的算法的调查结果。你们熟悉哪些算法?又有哪些算法是你们经常使用的?

④ 冒泡排序法的算法复杂度!!急急急!!

选择C。

双层循环,内层都是n个,所以复杂度是n方。冒泡排序就是把小的元素往前调或者把大的元素往后调,比较是相邻的两个元素比较,交换也发生在这两个元素之间。

所以,如果两个元素相等,是不会再交换的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。

(4)复杂度最大的算法扩展阅读:

算法原理:

1、比较相邻的元素。如果第一个比第二个大,就交换他们两个。

2、对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

3、针对所有的元素重复以上的步骤,除了最后一个。

4、持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

⑤ 从n个数中取出m个最大的最好的算法是什么

有很多算法,复杂度也不尽相同。以下简单举几个例子:
1. n×m遍扫描
【算法基本描述】n×m遍扫描
【算法思想】每次都扫描一遍数组,取出最大元素,这样扫描m遍就能得到m个最大的数
【算法复杂度】O(nm)

2.排序后取最大m个数
【算法基本描述】对n个数排序,对拍完序后的序列取m个最大的数
【算法复杂度】视排序的复杂度,一般为O(nlogn)或O(n^2)

3.最小堆
【算法基本描述】一遍扫描+最小堆
【算法伪代码】
00-建立一个最小堆(优先队列),最小堆的大小控制在m之内
01-for 每个数:
02-----if 这个数比最小堆的堆顶元素大:
03---------弹出最小堆的最小元素
04---------把这个数插入到最小堆
05-最小堆中的m个元素就是所要求的元素
06-其中最小堆的作用就是保持里面始终有m个最大元素,且m个元素中最小的元素在堆顶。
【算法复杂度】O(nlogm) 遍历O(n) 最小堆O(logm)
【其他】如果要求n个数中取最小的m个,只要把算法反一下即可

总结:当n与m差不多大时,采用复杂度较低的排序是比较可取的,因为简单。当m<<n时,排序是很浪费时间的,因为我们不需要后(n-m)个数,所以可以采用最小堆的方法。
我不敢说我的算法是最好的,但是它一定是一个复杂度较低的算法。

⑥ 常见排序算法以及对应的时间复杂度和空间复杂度

排序 :将杂乱无章的数据,按照一定的方法进行排列的过程叫做排序。

排序大的分类可分为 内排序 外排序 ,不需要访问外存就能进行排序的叫做内排序。

排序也可以分为 稳定排序 不稳定排序

稳定排序 :假设在待排序的文件中,存在两个或两个以上的记录具有相同的关键字,在用某种排序法排序后,若这些相同关键字的元素的相对次序仍然不变,则这种排序方法是稳定的。即;若 a[i]=a[j] , a[i] a[j] 之前,经过排序后 a[i] 依然在 a[j] 之前。冒泡排序、直接插入排序、二分插入排序、归并排序,基数排序都是稳定排序。
不稳定排序 :直接选择排序、堆排序、快速排序、希尔排序,猴子排序。

以升序为例,比较相邻的元素,如果第一个比第二个大,则交换他们两个。如果两个元素一样大,则继续比较下一对。所以冒泡排序是一种稳定排序。

选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。快速排序是不稳定排序。

将序列分为两个部分{{有序序列},{无序}},每次处理就是将无序数列的第一个元素与有序数列的元素从后往前逐个进行比较,找出插入位置,将该元素插入到有序数列的合适位置中。如果碰到相等的元素,就会把它插入到想等元素后面,顺序不会改变,所以直接插入排序是稳定排序。

在直接插入排序的基础上,对有序序列进行划分。例如:序列为 {{a[0]......a[i-1]},a[i]} 其中 {a[0]......a[i-1]} 为有序序列,取 a[(i-1)/2] ,将其与 a[i] 比较,即可确定 a[i] 的范围 (a[0]...a[(i-1)/2] 或者 a[(i-1)/2]...a[i-1]) ,然后继续在已确定的范围内进行二分。范围依次缩小为: 1/2、1/4、1/8、1/16...... 可快速确定a[i]应该插入的位置。二分插入排序也是稳定排序。

将整个序列分割成若干个小的子序列,每个子序列内分别进行插入排序。一般情况下步长取n/2。直到最后一次步长为1,即所有元素在一个组中进行排序。由于希尔排序是先将整个序列划分为多个子序列进行排序,相同的元素顺序在这个过程中顺序可能会被打乱,所以希尔排序是不稳定排序。

从待排序的数据元素中,选出最小或最大的元素与序列第一个数交换。直到所有数据排完。直接选择排序是不稳定排序。例如: {3,3,1} ,第一次排序就将1和第一个3交换,想等元素的顺序改变了。

以n=10的一个数组49, 38, 65, 97, 26, 13, 27, 49, 55, 4为例

堆排序是一种树形选择排序,是对直接选择排序的有效改进。
最大堆:每个节点的值都大于等于它的孩子节点。
最小堆:每个节点的值都小于等于它的孩子节点。
最大堆第0个数据是最大数,最小堆第0个数据是最小数。
堆排序是不稳定排序

思想

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
如何将两个有序序列合并?(升序)
{a[0]......a[i-1]},{b[0]......b[j-1]}
b[0]<a[0] ,取 b[0] 放入数组 c 中,然后继续比较数组 a b 中的第一个元素,直到数组 a b 中最后一对元素比较完成。

思想

将数组分成二组 a , b 如果这二组组内的数据都是有序的,那么就可以按照上述方法对这二组数据进行排序。如果这二组数据是无序的?
可以将 a , b 组各自再分成二组。递归操作,直到每个小组只有一个数据,每个小组只有一个元素所以我们可以认为它已经是有序序列,然后进行合并。
先分解后合并。
归并排序是稳定排序

将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。从最低位起从0-9依次扫描序列,一边扫描一边将扫描到的数据加到新的序列中,得到一个序列。然后比较高一位,重复上述操作,直到最高位排序完成。数列就变成一个有序序列。基数排序是稳定排序。

以全是二位数的序列举例

无限猴子定理 :指一只猴子随机在打字机键盘上按键,最后必然可以打出法国国家图书馆的每本图书。

时间复杂度最低1次,最高可执行到世界的尽头。。。

阅读全文

与复杂度最大的算法相关的资料

热点内容
安卓导航无声音怎么维修 浏览:317
app怎么装视频 浏览:420
安卓系统下的软件怎么移到桌面 浏览:78
windows拷贝到linux 浏览:753
mdr软件解压和别人不一样 浏览:886
单片机串行通信有什么好处 浏览:321
游戏开发程序员书籍 浏览:844
pdf中图片修改 浏览:272
汇编编译后 浏览:476
php和java整合 浏览:833
js中执行php代码 浏览:445
国产单片机厂商 浏览:58
苹果手机怎么设置不更新app软件 浏览:287
转行当程序员如何 浏览:496
苹果id怎么验证app 浏览:866
查看手机命令 浏览:956
抖音反编译地址 浏览:228
如何加密软件oppoa5 浏览:235
java从入门到精通明日科技 浏览:98
拆解汽车解压视频 浏览:600