导航:首页 > 源码编译 > hive编译所需

hive编译所需

发布时间:2022-10-31 13:22:46

Ⅰ hive怎么实现update操作

1、要想使用Hive首先需要启动hadoop,因为hive的使用是依赖于hadoop的hdfs文件系统以及MapRece计算的,下图是启动hadoop,如下图。

Ⅱ Hive入门概述

1.1 什么是Hive

Hive:由Facebook开源用于解决海量结构化日志的数据统计。

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。本质是:将HQL转化成MapRece程序

Hive处理的数据存储在HDFS

Hive分析数据底层的实现是MapRece

执行程序运行在Yarn上

1.2 Hive的优缺点

1.2.1 优点

操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。

避免了去写MapRece,减少开发人员的学习成本。

Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。

Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。

Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。

1.2.2 缺点

1.Hive的HQL表达能力有限

(1)迭代式算法无法表达

(2)数据挖掘方面不擅长

2.Hive的效率比较低

(1)Hive自动生成的MapRece作业,通常情况下不够智能化

(2)Hive调优比较困难,粒度较粗

1.3 Hive架构原理

1.用户接口:Client

CLI(hive shell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)

2.元数据:Metastore

元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;

默认存储在自带的derby数据库中,推荐使用MySQL替代derby存储Metastore

3.Hadoop

使用HDFS进行存储,使用MapRece进行计算。

4.驱动器:Driver

(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。

(2)编译器(Physical Plan):将AST编译生成逻辑执行计划。

(3)优化器(Query Optimizer):对逻辑执行计划进行优化。

(4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapRece,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。

1.4 Hive和数据库比较

由于 Hive 采用了类似SQL 的查询语言 HQL(Hive Query Language),因此很容易将 Hive 理解为数据库。其实从结构上来看,Hive 和数据库除了拥有类似的查询语言,再无类似之处。本文将从多个方面来阐述 Hive 和数据库的差异。数据库可以用在 Online 的应用中,但是Hive 是为数据仓库而设计的,清楚这一点,有助于从应用角度理解 Hive 的特性。

1.4.1 查询语言

由于SQL被广泛的应用在数据仓库中,因此,专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。

1.4.2 数据存储位置

Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中。

1.4.3 数据更新

由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不建议对数据的改写,所有的数据都是在加载的时候确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO … VALUES 添加数据,使用 UPDATE … SET修改数据。

1.4.4 索引

Hive在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些Key建立索引。Hive要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapRece 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。

1.4.5 执行

Hive中大多数查询的执行是通过 Hadoop 提供的 MapRece 来实现的。而数据库通常有自己的执行引擎。

1.4.6 执行延迟

Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapRece框架。由于MapRece 本身具有较高的延迟,因此在利用MapRece 执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。

1.4.7 可扩展性

由于Hive是建立在Hadoop之上的,因此Hive的可扩展性是和Hadoop的可扩展性是一致的(世界上最大的Hadoop 集群在 Yahoo!,2009年的规模在4000 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有100台左右。

1.4.8 数据规模

由于Hive建立在集群上并可以利用MapRece进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。

Ⅲ 程序中的Hive具体是干什么用的呢

Hive是基于Hadoop平台的数仓工具,具有海量数据存储、水平可扩展、离线批量处理的优点,解决了传统关系型数仓不能支持海量数据存储、水平可扩展性差等问题,但是由于Hive数据存储和数据处理是依赖于HDFS和MapRece,因此在Hive进行数据离线批量处理时,需将查询语言先转换成MR任务,由MR批量处理返回结果,所以Hive没法满足数据实时查询分析的需求。
Hive是由FaceBook研发并开源,当时FaceBook使用Oracle作为数仓,由于数据量越来越大,Oracle数仓性能越来越差,没法实现海量数据的离线批量分析,因此基于Hadoop研发Hive,并开源给Apacha。
由于Hive不能实现数据实时查询交互,Hbase可提供实时在线查询能力,因此Hive和Hbase形成了良性互补。Hbase因为其海量数据存储、水平扩展、批量数据处理等优点,也得到了广泛应用。
Pig与HIVE工具类似,都可以用类sql语言对数据进行处理。但是他们应用场景有区别,Pig用于数据仓库数据的ETL,HIVE用于数仓数据分析。
从架构图当中,可看出Hive并没有完成数据的存储和处理,它是由HDFS完成数据存储,MR完成数据处理,其只是提供了用户查询语言的能力。Hive支持类sql语言,这种SQL称为Hivesql。用户可用Hivesql语言查询,其驱动可将Hivesql语言转换成MR任务,完成数据处理。
【Hive的访问接口】
CLI:是hive提供的命令行工具
HWI:是Hive的web访问接口
JDBC/ODBC:是两种的标准的应用程序编程访问接口
Thrift Server:提供异构语言,进行远程RPC调用Hive的能力。
因此Hiv具备丰富的访问接口能力,几乎能满足各种开发应用场景需求。
【Driver】
是HIVE比较核心的驱动模块,包含编译器、优化器、执行器,职责为把用户输入的Hivesql转换成MR数据处理任务
【Metastore】
是HIVE的元数据存储模块,数据的访问和查找,必须要先访问元数据。Hive中的元数据一般使用单独的关系型数据库存储,常用的是Mysql,为了确保高可用,Mysql元数据库还需主备部署。
架构图上面Karmasphere、Hue、Qubole也是访问HIVE的工具,其中Qubole可远程访问HIVE,相当于HIVE作为一种公有云服务,用户可通过互联网访问Hive服务。
Hive在使用过程中出现了一些不稳定问题,由此发展出了Hive HA机制,

Ⅳ hive 自定义函数需要哪些jar包

为什么使用Hive?为什么使用Hive?那么,在哪里使用Hive呢?在载入了60亿行(经度、维度、时间、数据值、高度)数据集到MySQL后,系统崩溃了,并经历过数据丢失。这可能部分是因为我们最初的策略是将所有的数据都存储到单一的一张表中了。后来,我们调整了策略通过数据集和参数进行分表,这有所帮助但也因此引入了额外的消耗,而这并非是我们愿意接受的。相反,我们决定尝试使用ApacheHive技术。我们安装了Hive0.5+20,使用CDHv3和ApacheHadoop(0202+320)。CDHv3还包含有许多其他相关工具,包括Sqoop和Hue这些在我们的架构中都标识出来了,如图23-3底部所示。我们使用ApacheSqoop转储数据到Hive中,然后通过写一个ApacheOODT包装器,来使Hive按照空间/时间约束查询数据,然后将结果提供给RCMET和其他用户(图23-2中间部分显示)。RCMES集群的完整的架构如图23-3所示。我们有5台机器,包括图中所示的一个主/从配置,通过一个运行GigE的私人网进行连接。Hive提供了什么Photobucket公司使用Hive的主要目标是为业务功能、系统性能和用户行为提供答案。为了满足这些需求,我们每晚都要通过Flume从数百台服务器上的MySQL数据库中转储来自Web服务器和自定义格式日志TB级别的数据。这些数据有助于支持整个公司许多组织,比如行政管理、广告、客户支持、产品开发和操作,等等。对于历史数据,我们保持所有MySQL在每月的第一天创建的所有的数据作为分区数据并保留30天以上的日志文件。Photobucket使用一个定制的ETL框架来将MySQL数据库中数据迁移到Hive中。使用Flume将日志文件数据写入到HDFS中并按照预定的Hive流程进行处理。Hive支持的用户有哪些行政管理依赖于使用Hadoop提供一般业务健康状况的报告。Hive允许我们解析结构化数据库数据和非结构化的点击流数据,以及业务所涉及的数据格式进行读取。广告业务使用Hive筛选历史数据来对广告目标进行预测和定义配额。产品开发无疑是该组织中产生最大数量的特定的查询的用户了。对于任何用户群,时间间隔变化或随时间而变化。Hive是很重要的,因为它允许我们通过对在当前和历史数据中运行A/B测试来判断在一个快速变化的用户环境中新产品的相关特性。在Photobucket公司中,为我们的用户提供一流的系统是最重要的目标。从操作的角度来看,Hive被用来汇总生成跨多个维度的数据。在公司里知道最流行的媒体、用户、参考域是非常重要的。控制费用对于任何组织都是重要的。一个用户可以快速消耗大量的系统资源,并显着增加每月的支出。Hive可以用于识别和分析出这样的恶意用户,以确定哪些是符合我们的服务条款,而哪些是不符合的。也可以使用Hive对一些操作运行A/B测试来定义新的硬件需求和生成ROI计算。Hive将用户从底层MapRece代码解放出来的能力意味着可以在几个小时或几天内就可以获得答案,而不是之前的数周。Hive中的数据库Hive中数据库的概念本质上仅仅是表的一个目录或者命名空间。然而,对于具有很多组和用户的大集群来说,这是非常有用的,因为这样可以避免表命名冲突。通常会使用数据库来将生产表组织成逻辑组。如果用户没有显式指定数据库,那么将会使用默认的数据库default。下面这个例子就展示了如何创建一个数据库:hive>CREATEDATABASEfinancials;如果数据库financials已经存在的话,那么将会抛出一个错误信息。使用如下语句可以避免在这种情况下抛出错误信息:hive>;虽然通常情况下用户还是期望在同名数据库已经存在的情况下能够抛出警告信息的,但是IFNOTEXISTS这个子句对于那些在继续执行之前需要根据需要实时创建数据库的情况来说是非常有用的。在所有的数据库相关的命令中,都可以使用SCHEMA这个关键字来替代关键字TABLE。随时可以通过如下命令方式查看Hive中所包含的数据库:hive>SHOWDATABASES;defaultfinancialshive>CREATEDATABASEhuman_resources;hive>SHOWDATABASES;defaultfinancialshuman_resources如果数据库非常多的话,那么可以使用正则表达式匹配来筛选出需要的数据库名,正则表达式这个概念,将会在第6.2.3节“Like和RLike”介绍。下面这个例子展示的是列举出所有以字母h开头,以其他字符结尾(即.*部分含义)的数据库名:hive>SHOWDATABASESLIKE'h.*';human_resourceshive>Hive会为每个数据库创建一个目录。数据库中的表将会以这个数据库目录的子目录形式存储。有一个例外就是default数据库中的表,因为这个数据库本身没有自己的目录。数据库所在的目录位于属性hive.metastore.warehouse.dir所指定的顶层目录之后,这个配置项我们已经在前面的第2.5.1节“本地模式配置”和第2.5.2节“分布式模式和伪分布式模式配置”中进行了介绍。假设用户使用的是这个配置项默认的配置,也就是/user/hive/warehouse,那么当我们创建数据库financials时,Hive将会对应地创建一个目录/user/hive/warehouse/financials.db。这里请注意,数据库的文件目录名是以.db结尾的。用户可以通过如下的命令来修改这个默认的位置:hive>CREATEDATABASEfinancials>LOCATION'/my/preferred/directory';用户也可以为这个数据库增加一个描述信息,这样通过DESCRIBEDATABASE命令就可以查看到该信息。hive>CREATEDATABASEfinancials>COMMENT'Holdsallfinancialtables';hive>DESCRIBEDATABASEfinancials;://master-server/user/hive/warehouse/financials.db从上面的例子中,我们可以注意到,DESCRIEBDATABASE语句也会显示出这个数据库所在的文件目录位置路径。在这个例子中,URI格式是hdfs。如果安装的是MapR,那么这里就应该是maprfs。对于亚马逊弹性MapRece(EMR)集群,这里应该是hdfs,但是用户可以设置hive.metastore.warehouse.dir为亚马逊S3特定的格式(例如,属性值设置为s3n://bucketname)。用户可以使用s3作为模式,但是如果使用新版的规则s3n会更好。前面DESCRIBEDATABASE语句的输出中,我们使用了master-server来代表URI权限,也就是说应该是由文件系统的“主节点”(例如,HDFS中运行NameNode服务的那台服务器)的服务器名加上一个可选的端口号构成的(例如,服务器名:端口号这样的格式)。如果用户执行的是伪分布式模式,那么主节点服务器名称就应该是localhost。对于本地模式,这个路径应该是一个本地路径,例如file:///user/hive/warehouse/financials.db。如果这部分信息省略了,那么Hive将会使用Hadoop配置文件中的配置项fs.default.name作为master-server所对应的服务器名和端口号,这个配置文件可以在$HADOOP_HOME/conf这个目录下找到。需要明确的是,hdfs:///user/hive/warehouse/financials.db和hdfs://master-server/user/hive/warehouse/financials.db是等价的,其中master-server是主节点的DNS名和可选的端口号。为了保持完整性,当用户指定一个相对路径(例如,some/relative/path)时,对于HDFS和Hive,都会将这个相对路径放到分布式文件系统的指定根目录下(例如,hdfs:///user/)。然而,如果用户是在本地模式下执行的话,那么当前的本地工作目录将是some/relative/path的父目录。为了脚本的可移植性,通常会省略掉那个服务器和端口号信息,而只有在涉及到另一个分布式文件系统实例(包括S3存储)的时候才会指明该信息。此外,用户还可以为数据库增加一些和其相关的键-值对属性信息,尽管目前仅有的功能就是提供了一种可以通过DESCRIBEDATABASEEXTENDED语句显示出这些信息的方式:hive>CREATEDATABASEfinancials>WITHDBPROPERTIES('creator'='MarkMoneybags','date'='2012-01-02');hive>DESCRIBEDATABASEfinancials;financialshdfs://master-server/user/hive/warehouse/financials.dbhive>;financialshdfs://master-server/user/hive/warehouse/financials.db{date=2012-01-02,creator=MarkMoneybags);USE命令用于将某个数据库设置为用户当前的工作数据库,和在文件系统中切换工作目录是一个概念:hive>USEfinancials;现在,使用像SHOWTABLES这样的命令就会显示当前这个数据库下所有的表。不幸的是,并没有一个命令可以让用户查看当前所在的是哪个数据库!幸运的是,在Hive中是可以重复使用USE…命令的,这是因为在Hive中并没有嵌套数据库的概念。可以回想下,在第2.7.2节“变量和属性”中提到过,可以通过设置一个属性值来在提示符里面显示当前所在的数据库(Hivev0.8.0版本以及之后的版本才支持此功能):hive>sethive.cli.print.current.db=true;hive(financials)>USEdefault;hive(default)>sethive.cli.print.current.db=false;hive>最后,用户可以删除数据库:hive>;IFEXISTS子句是可选的,如果加了这个子句,就可以避免因数据库finanacials不存在而抛出警告信息。默认情况下,Hive是不允许用户删除一个包含有表的数据库的。用户要么先删除数据库中的表,然后再删除数据库;要么在删除命令的最后面加上关键字CASCADE,这样可以使Hive自行先删除数据库中的表:hive>CASCADE;如果使用的是RESTRICT这个关键字而不是CASCADE这个关键字的话,那么就和默认情况一样,也就是,如果想删除数据库,那么必须先要删除掉该数据库中的所有表。如果某个数据库被删除了,那么其对应的目录也同时会被删除。

Ⅳ 如何编译hive_hbase-handler.jar

之前上传了一个文档:http://wenku..com/view/faec57fb04a1b0717fd5dd00.html?st=1你可以看看。

Ⅵ hive定义一个自定义函数类时,需要继承以下哪个类

一个类一定要进行初始化的啊 如果一个类中没有定义任何的构造函数,那么编译器只有在以下三种情况,才会提供默认的构造函数:1、如果类有虚拟成员函数或者虚拟继承父类(即有虚拟基类)时;2、如果类的基类有构造函数(可以是用户定义的构造函数,或编译器提供的默认构造函数);3、在类中的所有非静态的对象数据成员,它们对应的类中有构造函数(可以是用户定义的构造函数,或编译器提供的默认构造函数)。

Ⅶ Hive是什么

此外,hive也支持熟悉map-rece的开发者使用map-rece程序对数据做更加复杂的分析。 hive可以很好的结合thrift和控制分隔符,也支持用户自定义分隔符。 hive基于hadoop,hadoop是批处理系统,不能保存低延迟,因此,hive的查询也不能保证低延迟。 hive的工作模式是:提交一个任务,等到任务结束时被通知,而不是实时查询。相对应的是,类似于Oracle这样的系统当运行于小数据集的时候,响应非常快,可当处理的数据集非常大的时候,可能需要数小时。需要说明的是,hive即使在很小的数据集上运行,也可能需要数分钟才能完成。 低延迟不是hive追求的首要目标。

Ⅷ 我想学习hive,请问安装hive之前,必须安装centos、hadoop、java这些吗

安装需要
java 1.6,java 1.7或更高版本。
Hadoop 2.x或更高, 1.x. Hive 0.13 版本也支持 0.20.x, 0.23.x
linux,mac,windows操作系统。以下内容适用于linux系统。
安装打包好的hive
需要先到apache下载已打包好的hive镜像,然后解压开该文件
$ tar -xzvf hive-x.y.z.tar.gz

设置hive环境变量
$ cd hive-x.y.z$ export HIVE_HOME={{pwd}}

设置hive运行路径
$ export PATH=$HIVE_HOME/bin:$PATH

编译Hive源码
下载hive源码
此处使用maven编译,需要下载安装maven。

以Hive 0.13版为例
编译hive 0.13源码基于hadoop 0.23或更高版本
$cdhive$mvncleaninstall-Phadoop-2,dist$cdpackaging/target/apache-hive-{version}-SNAPSHOT-bin/apache-hive-{version}-SNAPSHOT-bin$lsLICENSENOTICEREADME.txtRELEASE_NOTES.txtbin/(alltheshellscripts)lib/(requiredjarfiles)conf/(configurationfiles)examples/(sampleinputandqueryfiles)hcatalog/(hcataloginstallation)scripts/(upgradescriptsforhive-metastore)
编译hive 基于hadoop 0.20
$cdhive$antcleanpackage$cdbuild/dist#lsLICENSENOTICEREADME.txtRELEASE_NOTES.txtbin/(alltheshellscripts)lib/(requiredjarfiles)conf/(configurationfiles)examples/(sampleinputandqueryfiles)hcatalog/(hcataloginstallation)scripts/(upgradescriptsforhive-metastore)
运行hive
Hive运行依赖于hadoop,在运行hadoop之前必需先配置好hadoopHome。
export HADOOP_HOME=<hadoop-install-dir>

在hdfs上为hive创建\tmp目录和/user/hive/warehouse(akahive.metastore.warehouse.dir) 目录,然后你才可以运行hive。
在运行hive之前设置HiveHome。
$ export HIVE_HOME=<hive-install-dir>

在命令行窗口启动hive
$ $HIVE_HOME/bin/hive

若执行成功,将看到类似内容如图所示

Ⅸ Hive 数据库表的基本操作,必须掌握的基本功

说明:hive 的表存放位置模式是由 hive-site.xml 当中的一个属性指定的,默认是存放在该配置文件设置的路径下,也可在创建数据库时单独指定存储路径。

数据库有一些描述性的属性信息,可以在创建时添加:

查看数据库的键值对信息

修改数据库的键值对信息

与mysql查询语句是一样的语法

删除一个空数据库,如果数据库下面有数据表,那么就会报错

强制删除数据库,包含数据库下面的表一起删除(请谨慎操作)


[]里的属性为可选属性,不是必须的,但是如果有可选属性,会使 sql 语句的易读性更好,更标准与规范。

例如:[comment '字段注释信息'][comment '表的描述信息']等,[external]属性除外


1. CREATE TABLE
创建一个指定名字的表,如果相同名字的表已存在,则抛出异常提示:表已存在,使用时可以使用IF NOT EXISTS语句来忽略这个异常。

如果创建的表名已存在,则不会再创建,也不会抛出异常提示:表已存在。否则则自动创建该表。


2. EXTERNAL
顾名思义是外部的意思,此关键字在建表语句中让使用者可以创建一个外部表,如果不加该关键字,则默认创建内部表。

外部表在创建时必须同时指定一个指向实际数据的路径(LOCATION),Hive在创建内部表时,会将数据移动到数据仓库指向的路径;

若创建外部表,仅记录数据所在的路径,不对数据的位置作任何改变。

内部表在删除后,其元数据和数据都会被一起删除。
外部表在删除后,只删除其元数据,数据不会被删除。


3. COMMENT
用于给表的各个字段或整张表的内容作解释说明的,便于他人理解其含义。


4. PARTITIONED BY
区分表是否是分区表的关键字段,依据具体字段名和类型来决定表的分区字段。


5. CLUSTERED BY
依据column_name对表进行分桶,在 Hive 中对于每一张表或分区,Hive 可以通过分桶的方式将数据以更细粒度进行数据范围划分。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。


6. SORTED BY
指定表数据的排序字段和排序规则,是正序还是倒序排列。


7. ROW FORMAT DELIMITED FIELDS TERMINATED BY ' '
指定表存储中列的分隔符,这里指定的是' ',也可以是其他分隔符。


8. STORED AS SEQUENCEFILE|TEXTFILE|RCFILE
指定表的存储格式,如果文件数据是纯文本格式,可以使用STORED AS TEXTFILE,如果数据需要压缩,则可以使用STORED AS SEQUENCEFILE。


9. LOCATION
指定 Hive 表在 hdfs 里的存储路径,一般内部表(Managed Table)不需要自定义,使用配置文件中设置的路径即可。
如果创建的是一张外部表,则需要单独指定一个路径。


1. 使用create table语句创建表
例子:


2. 使用create table ... as select...语句创建表
例子:

使用 create table ... as select ...语句来创建新表sub_student,此时sub_student 表的结构及表数据与 t_student 表一模一样, 相当于直接将 t_student 的表结构和表数据复制一份到 sub_student 表。


注意:
(1). select 中选取的列名(如果是 * 则表示选取所有列名)会作为新表 sub_student 的列名。

(2). 该种创建表的方式会改变表的属性以及结构,例如不能是外部表,只能是内部表,也不支持分区、分桶。

如果as select后的表是分区表,并且使用select *,则分区字段在新表里只是作为字段存在,而不是作为分区字段存在。

在使用该种方式创建时,create 与 table 之间不能加 external 关键字,即不能通过该种方式创建外部目标表,默认只支持创建内部目标表。

(3). 该种创建表的方式所创建的目标表存储格式会变成默认的格式textfile。


3.使用like语句创建表
例子:


注意:
(1). 只是将 t_student 的表结构复制给 sub1_student 表。

(2). 并不复制 t_student 表的数据给 sub1_student 表。

(3). 目标表可以创建为外部表,即:

Ⅹ 怎样只编译hive的一个component

windows自带的记事本只能做编辑源代码使用,要编译需要有编译器才行,找些其他的集成化软件,编辑编译连接调试集成一体的,如vc6.0,wintc等

阅读全文

与hive编译所需相关的资料

热点内容
windows拷贝到linux 浏览:751
mdr软件解压和别人不一样 浏览:884
单片机串行通信有什么好处 浏览:320
游戏开发程序员书籍 浏览:843
pdf中图片修改 浏览:270
汇编编译后 浏览:474
php和java整合 浏览:830
js中执行php代码 浏览:442
国产单片机厂商 浏览:57
苹果手机怎么设置不更新app软件 浏览:285
转行当程序员如何 浏览:494
苹果id怎么验证app 浏览:864
查看手机命令 浏览:953
抖音反编译地址 浏览:227
如何加密软件oppoa5 浏览:235
java从入门到精通明日科技 浏览:98
拆解汽车解压视频 浏览:599
新版百度云解压缩 浏览:593
android上下拉刷新 浏览:882
centos可执行文件反编译 浏览:840