导航:首页 > 源码编译 > 霍纳之前发现算法的中国数学家

霍纳之前发现算法的中国数学家

发布时间:2022-10-31 21:39:17

Ⅰ 写出5个中国古代数学家的故事与贡献

额,我这答的是贡献:
刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成着名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学着作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名着,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中着名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其着作甚多。
他着名的数学书共五种二十一卷。着有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。

Ⅱ 秦九韶在数学上有哪些突出的成就

秦九韶是南宋时期官员?数学家,与李冶?杨辉?朱世杰并称“宋元数学四大家”。他精研星象?算术?营造之学,完成着作《数书九章》,取得了具有世界意义的重要贡献。

秦九韶最重要的数学成就是“大衍总数术”,即一次同余组解法,还有“正负开方术”,即高次方程数值解法。这些成果在中世纪世界数学史上占有突出的地位。

在楚汉战争中,有一次,刘邦手下大将韩信与楚王项羽手下大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。

就在汉军行至一山坡时,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。

韩信兵马到坡顶,见来敌不足500骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。

韩信马上向将士们宣布:我军有1073名勇士,敌人不足500人,我们居高临下,以众击寡,一定能打败敌人。

汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”?“神机妙算”,于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。

交战不久,楚军果然大败,落荒而逃。

在这个故事中,韩信能迅速算出有1073名勇士,其实是运用了一个数学原理。他3次排兵布阵,按照数学语言来说就是:一个数除以3余2,除以5余3,除以7余2,求这个数。

对于这类问题的有解条件和解的方法,是由宋代数学家秦九韶首先提出来的,被后世称为“中国剩余定理”。

秦九韶是一位非常聪明的人,处处留心,好学不倦。通过这一阶段的学习,他成为一位学识渊博?多才多艺的青年学者。时人说他“性极机巧,星象?音律?算术,以至营造等事,无不精究”,“游戏?毬?马?弓?剑,莫不能知。”

秦九韶考中进士后,先后担任县尉?通判?参议官?州守?同农?寺丞等职。他在政务之余,对数学进行虔心钻研,并广泛收集历学?数学?星象?音律?营造等资料,进行分析?研究。

秦九韶在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了举世闻名的巨着《数书九章》。全书共列算题81问,分为9类,每类9个问题,不但在数量上取胜,重要的是在质量上也是拔尖的。

《数书九章》的内容主要有:大衍类,包括一次同余式组解法;天时类,包括历法计算?降水量;田域类,包括土地面积;测望类,包括勾股?重差;赋役类,包括均输?税收;钱谷类,包括粮谷转运?仓窖容积;营建类,包括建筑?施工;军族类,包括营盘布置?军需供应;市物类,包括交易和利息。

《数书九章》系统地总结和发展了高次方程数值解法和一次同余组解法,提出了相当完备的“三斜求积术”和“大衍求一术”等,达到了当时世界数学的最高水平。

秦九韶的正负方术,列算式时,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。

秦九韶所论的“正负开方术”,被称为“秦九韶程序”。世界各国从小学?中学到大学的数学课程,几乎都接触到他的定理?定律和解题原则。

此项成果是中世纪世界数学的最高成就,比1819年英国人霍纳的同样解法早五六百年。

秦九韶还改进了一次方程组的解法,用互乘对减法消元,与现今的加减消元法完全一致;同时它又给出了筹算的草式,可使它扩充到一般线性方程中的解法。

在欧洲最早是1559年法国布丢给出的,比秦九韶晚了300多年。布丢用很不完整的加减消元法解一次方程组,而且理论上的完整性也逊于秦九韶。

我国古代求解一类大衍问题的方法。秦九韶对此类问题的解法作了系统的论述,并称之为“大衍求一术”,即现代数论中一次同余式组解法。

这一成就是中世纪世界数学的最高成就,比西方1801年着名数学家高斯建立的同余理论早500多年,被西方称为“中国剩余定理”。秦九韶不仅为中国赢得无上荣誉,也为世界数学作出了杰出贡献。

秦九韶还创用了“三斜求积术”等,给出了已知三角形三边求三角形面积公式。还给出一些经验常数,如筑土问题中的“坚三穿四壤五,粟率五十,墙法半之”等,即使对现在仍有现实意义。

秦九韶还在“推计互易”中给出了配分比例和连锁比例的混合命题的巧妙且一般的运算方法,至今仍有意义。

《数书九章》是对我国古典数学奠基之作《九章算术》的继承和发展,概括了宋元时期我国传统数学的主要成就,标志着我国古代数学的高峰。其中的正负开方术和大衍求一术长期以来影响着我国数学的研究方向。

秦九韶的成就代表了中世纪世界数学发展的主流与最高水平,在世界数学史上占有崇高的地位。

德国着名数学史家?集合论的创始人格奥尔格.康托尔高度评价了大衍求一术,他称赞发现这一算法的中国数学家是“最幸运的天才”。

美国着名科学史家萨顿说道:

秦九韶是他那个民族,他那个时代,并且确实也是所有时代最伟大的数学家之一。

三角形支钉

Ⅲ 中国古代着名的数学家有谁

1、刘徽(约225年—约295年),汉族,山东滨州邹平市 人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。

2、赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上着名的数学家与天文学家。生平不详,约182---250年。

据载,他研究过张衡的天文学着作《灵宪》和刘洪的《乾象历》,也提到过“算术”。他的主要贡献是约在222年深入研究了《周髀》,该书是我国最古老的天文学着作,唐初改名为《周髀算经》该书写了序言,并作了详细注释。

3、祖冲之(429年—500年),字文远,出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。

祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。

4、祖暅(456年—536年),一作祖暅之,字景烁,范阳遒县(今河北涞水)人。中国南北朝时期数学家、天文学家,祖冲之之子。同父亲祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式,并据此提出了着名的“祖暅原理”。

5、张丘建,清河(今邢台市清河县)人,我国着名的大数学家。他从小聪明好学,酷爱算术。一生从事数学研究,造诣很深。“百鸡问题”是中古时期,关于不定方程正整数解的典型问题,邱建对此有精湛和独到的见解。

着有《张邱建算经》3卷。后世学者北周甄鸾、唐李淳风相继为该书作了注释。刘孝孙为算经撰了细草。算经的体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份遗产。

Ⅳ 秦九韶算法着作 这种算法是谁提出来的呢

1、秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法。秦九韶(约公元1202年-1261年),字道古,南宋末年人,出生于鲁郡(今山东曲阜一带人)。

2、早年曾从隐君子学数术,后因其父往四川做官,即随父迁徙,也认为是普州安岳(今四川安岳县)人。

3、秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的算法。其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法。在西方被称作霍纳算法,是以英国数学家霍纳命名的。

Ⅳ 中国古代数学家成就及其贡献

早期中国数学和世界其它地方的数学有很大的不同,因此可以合理的认为是独立发展的。现存最古老的中国数学文献是《周髀算经》,成书年代有很多说法,从公元前 1200 年到公元前 100 年都有。中国现存最古老的几何学作品来自《墨经》,由墨子的弟子编撰。《墨经》涉及了很多物理科学的领域,也讲解了少量的几何定理。

《九章算术》为现存最古老的中国数学着作之一。该书完整的标题首次出现在公元 179 年,但在这之前也有文献提到过该书的部分。《九章算术》包括了 246 个应用题,包含了农业、商业、求塔的高度、工程学和测绘学。它还证明了勾股定理,以及高斯消元的公式。勾股定理即为西方的毕达哥拉斯定理,描述了直角三角形中三条边长度的关系。

三国时代数学家刘徽的割圆术是中国古代数学中一个重要的成就。刘徽是中国数学史上最早创造出一个从数学上计算圆周率到任意精确度的迭代程序。他自己通过分割圆为 192 边形,计算出圆周率在 3.14 与 3.142704 之间。后来刘徽发明一种快捷算法,可以只用 96 边形得到和 1536 边形同等的精确度,得到圆周率近似为 3.1416。因为刘徽割圆术简单而又严谨,富于程序性,可以继续分割下去,而求得更精确的圆周率。南北朝时期着名数学家祖冲之用刘徽割圆术计算 11 次,分割圆为 12288 边形,得圆周率 3.1415926,成为此后千年世界上最准确的圆周率。刘徽割圆术虽然不是世界最早,却是数学史上最严谨简洁的割圆术。比阿基米德割圆术更简洁,比托勒密 (Claudius Ptolemaeus) 割圆术更严谨。

中国数学的最高峰出现在 13 世纪宋朝,此时代数学得到了极大的发展。其中最重要的着作是朱世杰的《四元玉鉴》。书中记载了研究一元高次方程组的解的方法,后称为秦九韶算法,即后世欧洲的霍纳算法 (Horner's method)。前苏联数学史家尤什克维奇说 “这是中国传统数学最伟大成就之一”。

中国古代数学被世界所公认的最卓越发现是孙子定理,在全世界的代数学教科书中亦称为中国剩余定理 (Chinese remainder theorem)。中国南北朝时期 (公元5世纪) 的数学着作《孙子算经》卷下第二十六题,叫做 “物不知数” 问题,原文如下:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?
即:一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了这种一元线性同余方程组的问题,以及以上具体问题的解法。而这种同余问题直到 1801 年才被伟大的天才德国数学家高斯在其名着 《算术研究》中研究并用来计算复活节的日期。

Ⅵ 秦九韶算法

秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的算法。其大大简化了计

秦九韶算法
算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法。
在西方被称作霍纳算法,是以英国数学家霍纳命名的。
编辑本段秦九韶简介
秦九韶(约公元1202年-1261年),字道古,南宋末年人,出生于鲁郡(今山东曲阜一带人)。早年曾从隐君子学数术,后因其父往四川做官,即随父迁徙,也认为是普州安岳(今四川安岳县)人。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。(安岳县于1998年9月正式开工建设秦九韶纪念馆,2000年12月竣工落成。)
秦九韶聪敏勤学,宋绍定四年(公元1231),秦九韶考中进士,先后担任县尉、通判、参议官、州守等职。先后在湖北、安徽、江苏、浙江等地做官。南宋理宗景定元年(公元1260年)出任梅州(今广东梅县)守,翌年卒于梅州。据史书记载,他“性及机巧,星象、音律、算术以至营造无不精究”,还尝从李梅亭学诗词。他在政务之余,以数学为主线进行潜心钻研,且应用范围至为广泛:天文历法、水利水文、建筑、测绘、农耕、军事、商业金融等方面。
秦九韶是我国古代数学家的杰出代表之一,他的《数书九章》概括了宋元时期中国传统数学的主要成就,尤其是系统总结和发展了高次方程的数值解法与一次同余问题的解法,提出了相当完备的“正负开方术”和“大衍求一术”。对数学发展产生了广泛的影响。
秦九韶是一位既重视理论又重视实践,既善于继承又勇于创新的科学家,他被国外科学史家称为是“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一。
编辑本段数书九章
宋淳祜四至七年(公元1244至1247),秦九韶在湖州为母亲守孝三年期间,把长期积累的数学知识和研究所得加以编辑,写成了举世闻名的数学巨着《数书九章》。 书成后,并未出版。原稿几乎流失,书名也不确切。后历经宋、元,到明建国,此书无人问津,直到明永乐年间,在解缙主编《永乐大典》时,记书名为《数学九章》。又经过一百多年,经王应麟抄录后,由王修改为《数书九章》。
全书不但在数量上取胜,重要的是在质量上也是拔尖的。从历史上来看,秦九韶的《数

秦九韶纪念馆
书九章》可与《九章算术》相媲美;从世界范围来看,秦九韶的《数书九章》也不愧为世界数学名着。
他在《数书九章》序言中说,数学“大则可以通神明,顺性命;小则可以经世务,类万物”。所谓“通神明”,即往来于变化莫测的事物之间,明察其中的奥秘;“顺性命”,即顺应事物本性及其发展规律。在秦九韶看来,数学不仅是解决实际问题的工具,而且应该达到“通神明,顺性命”的崇高境界。
《数书九章》全书共九章九类,十八卷,每类9题共计81个算题。该书着述方式,大多由“问曰”、“答曰”、“术曰”、“草曰”四部分组成:“问曰”,是从实际生活中提出问题;“答曰”,是给出答案;“术曰”,是阐述解题原理与步骤;“草曰”,是给出详细的解题过程。另外,每类下还有颂词,词简意赅,用来记述本类算题主要内容、与国计民生的关系及其解题思路等。
编辑本段秦九韶算法
一般地,一元n次多项式的求值需要经过[n(n+1)]/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。特别是在现代,在使用计算机解决数学问题时,对于计算机程序算法而言秦九韶算法可以以更快的速度得到结果,减少了CPU运算时间。
把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形

秦九韶

f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=......
=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[0]=a[n]
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
(注:中括号里的数表示下标)
结论:对于一个n次多项式,至多做n次乘法和n次加法。
编辑本段意义
该算法看似简单,其最大的意义在于将求n次多项式的值转化为求n个一次多项式的值。在人工计算时,利用秦九韶算法和其中的系数表可以大幅简化运算;对于计算机程序算法而言,加法比乘法的计算效率要高很多,因此该算法仍有极大的意义,对于计算机来说,做一次乘法运算所用的时间比作一次加法运算要长得多,所以此算法极大地缩短了CPU运算时间。
(附:计算机程序)
INPUT “n=”;n
INPUT “an=”;a
INPUT “x=”;x
v=a
i=n-1
WHILE i>=0
PRINT “i=”;i
INPUT “ai=”;a
v=v*x+a
i=i-1
WEND
PRINT v
END
编辑本段PASCAL算法实现
v[1]:=a[n]*k+a[n-1];
for i:=2 to n do
v[i]:=v[i-1]*k+a[n-i];
writeln(v[n]);

Ⅶ 关于数学家的故事(50字左右)

1、朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。

此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要着作是《算学启蒙》与《四元玉鉴》。

2、贾宪的主要贡献是创造了“贾宪三角”和“增乘开方法”。增乘开方法即求高次幂的正根法。目前中学数学中的综合除法,其原理和程序都与它相仿。

增乘开方法比传统的方法整齐简捷,又更程序化,所以在开高次方时,尤其显出它的优越性。增乘开方法的计算程序大致和欧洲数学家霍纳(公元1819年)的方法相同,但比他早770年。

在中国数学史上贾宪最早发现贾宪三角形。杨辉在所着《详解九章算法》《开方作法本元》一章中作贾宪开方作法图,并说明“出释锁算书,贾宪用此术”。贾宪开方作法图就是贾宪三角形。杨辉还详细解说贾宪还发明的释锁开平方法,释锁开立方法,增乘开平方法,增乘开立方法。

3、陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。

1949年至1953年就读于厦门大学数学系,1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。

1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。 1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员,中国科学院原数学研究所研究员。1992年任《数学学报》主编。

1996年3月19日下午1点10分,陈景润在北京医院去世,年仅63岁。

2018年12月18日,党中央、国务院授予陈景润同志改革先锋称号,颁授改革先锋奖章,并获评激励青年勇攀科学高峰的典范。

4、祖冲之(429年—500年),字文远,出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。

祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。

由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要着作有《安边论》《缀术》《述异记》《历议》等。

5、苏步青(1902年9月23日—2003年3月17日),浙江温州平阳人,祖籍福建省泉州市,中国科学院院士,中国着名的数学家、教育家,中国微分几何学派创始人,被誉为“东方国度上灿烂的数学明星”、“东方第一几何学家”、“数学之王”。

1927年毕业于日本东北帝国大学数学系,1931年获该校理学博士学位,1948年当选为中央研究院院士,1955年被选聘为中国科学院学部委员,1959年加入中国共产党,1978年后任复旦大学校长、数学研究所所长,复旦大学名誉校长、教授。

从1927年起在国内外发表数学论文160余篇,出版了10多部专着,他创立了国际公认的浙江大学微分几何学学派;他对“K展空间”几何学和射影曲线的研究。

苏步青主要从事微分几何学和计算几何学等方面的研究,在仿射微分几何学和射影微分几何学研究方面取得出色成果,在一般空间微分几何学、高维空间共轭理论、几何外型设计、计算机辅助几何设计等方面取得突出成就。

6、华罗庚早年的研究领域是解析数论,他在解析数论方面的成就尤其广为人知,国际间颇具盛名的“中国解析数论学派”即华罗庚开创的学派,该学派对于质数分布问题与哥德巴赫猜想做出了许多重大贡献。

华罗庚也是中国解析数论、矩阵几何学、典型群、自守函数论等多方面研究的创始人和开拓者。[9]

华罗庚在多复变函数论,典型群方面的研究领先西方数学界10多年,是国际上有名的“典型群中国学派”。

Ⅷ 中国古代数学有多牛,仅留下的书籍就将近1500万字,中国古代有哪些数学成就

中国数学起源于上古至西汉末期,中国数学的全盛时期是隋中叶至元后期。接下来在元后期至清中期,中国数学的发展缓慢。
十七个成就
纵观中国数学发展史,中国古代在数学方面的成就其实也算足以开一座陈列馆,这里就我认为最瞩目的17个成就列举如下:
(1)十进位制记数法和零的采用。
十进位制记数法在我国原始社会就已经形成,完成于奴隶社会初期的商代,到商代已发展为完整的十进制系统,并且有了“十”、“百”、“千”、“万”等专用的大数名称。1899年从河南安阳发掘出来的象形文字,说明我国在公元前1600年,已经采用了十进位值制记数法,早于第二发明者印度1000多年。0是极为重要的数字,0的发现被称为人类伟大的发现之一。
“0”这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了“0”。
0在我国古代叫做金元数字,(意即极为珍贵的数字),说起“0”的出现,应该指出,我国古代文字中,“零”字出现很早,使用也较广泛。
(2)二进位制思想起源。源于《周易》中的八卦法,早于第二发明者德国数学家莱布尼兹(公元1646—1716)2000多年。
着名的哲学家、数学家莱布尼茨(1646—1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想。从《易经》可以看到二进制的起源,中国古代的二进制运用与现代电子计算机中的运用相同。我国上古的伏羲时代就有了《周易》,《周易》是研究日月之间的变化的一门科学,通过卦爻来说明天地之间、日月系统以内人生与事物变化的大法则,就借助了二进制手段。
(3)几何思想起源。源于战国时期墨翟的《墨经》,早于第二发明者欧几里德(公元前330—前275)100多年。
着名的《墨经》中给出了某些几何名词的定义和命题,例如:“圆,一中同长也”、“ 平,同高也”等等。墨家还给出有穷和无穷的定义。
《墨经》中有8条论述了几何光学知识,它阐述了影、小孔成像、平面镜、凹面镜、凸面镜成像,还说明了焦距和物体成像的关系,这些比古希腊欧几里德(约公元前330—275)的光学记载早百余年。在力学方面的论说也是古代力学的代表作。对力的定义、杠杆、滑轮、轮轴、斜面及物体沉浮、平衡和重心都有论述。而且这些论述大都来自实践。《墨经》光学八条,反映了春秋战国时期我国物理学的重大成就。
(4)勾股定理(商高定理)。发明者商高(西周人),早于第二发明者毕达哥拉斯(公元前580—前500)550多年。
勾股定理是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。西方称毕达哥拉斯定理或毕氏定理(英文:Pythagorean
theorem或Pythagoras's
theorem)是一个基本的几何定理,相传由古希腊的毕达哥拉斯首先证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。
法国和比利时称为驴桥定理,埃及称为埃及三角形。
我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在中国,在公元前1000多年前,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。目前初中数学教材的证明方法采用赵爽弦图,证明使用青朱出入图。
赵爽弦图
青朱出入图
勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。
(5)幻方。我国最早记载幻方法的是春秋时代的《论语》和《书经》,而在国外,幻方的出现在公元2世纪,我国早于国外600多年。
幻方又称为魔方,方阵或厅平方,它最早起源于我国,宋代数学家杨辉称之为纵横图。幻方的幻在于:无论取哪一条路线,最后得到的和或积都是完全相同的,即在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵列及对角线的几个数之和或积都相等,具有这种性质的图表,称为“幻方”。我国古代称为“河图”、“洛书”,
中国汉朝的数术记遗中,称之为九宫算,又叫九宫图。又叫“纵横图”。
在中国古典文献《易经》中记载了洛书的传说:公元前23世纪大禹治水之时,一只巨大的神龟出现于黄河支流洛水中,龟甲上有9种花点的图案,分别代表1,2,3,4,5,,6,7,8,9这9个数,而3行、3列以及两对角线上各自的数之和均为15,世人称之为洛书。
南宋数学家杨辉着《续古摘奇算法》把类似于九宫图的图形命名为纵横图,书中列举3、4、5、6、7、8、9、10阶幻方。其中所述三阶幻方构造法:
“九子斜排,上下对易,左右相更,四维挺出,戴九履一,左三右七,二四为肩,六八为足”,比法国数学家Claude Gaspar
Bachet提出的方法早三百余年。
三阶幻方。射雕英雄传里黄蓉也背过这段三阶幻方的口诀。
幻方最早记载于我国公元前500年的春秋时期《大戴礼》中,这说明我国人民早在2500年前就已经知道了幻方的排列规律。而在国外,公元130年,希腊人塞翁才第一次提起幻方。
我国不仅拥用幻方的发明权,而且是对幻方进行深入研究的国家。公元13世纪的数学家杨辉已经编制出3-10阶幻方,记载在他1275年写的《续古摘厅算法》一书中。在欧洲,直到1514年,德国着名画家丢勒才绘制出了完整的四阶幻方。
(6)分数运算法则和小数。中国完整的分数运算法则出现在《九章算术》中,它的传本至迟在公元1世纪已经出现。印度在公元7世纪才出现了同样的法则,并被认为是此法的“鼻祖”。我国早于印度500多年。
中国运用最小公倍数的时间则早于西方1200年。运用小数的时间,早于西方1100多年。
(7)负数的发现。这个发现最早见于《九章算术》,这一发现早于印度600多年,早于西方1600多年。
据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。刘徽第一次给出了区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”。
我国古代着名的数学专着《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”
除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。
(8)盈不足术。又名双假位法。最早见于《九章算术》中的第七章。在世界上,直到13世纪,才在欧洲出现了同样的方法,比中国晚了1200多年。
盈不足术是我国古代计算盈亏类问题的一种算术方法,借有余、不足以求隐含之数,为《周礼》九数之一。《九章算术·盈不足》:“今有共买物,人出八,盈三;人出七,不足四。问:人数、物价各几何?答曰:七人,物价五十三。”。在11—13世纪一些阿拉伯数学家的着作中,也出现了盈不足术,并称之为天秤术或契丹算法。当时阿拉伯人所说的“契丹”,即指中国,这也说明古代中国的盈不足术处于世界前沿。
(9)方程术。与现今不同,线性方程组在古代称为方程,其解法称为方程术。最早出现于《九章算术》中,其中解联立一次方程组的方法,早于印度600多年,早于欧洲1500多年。在用矩阵排列法解线性方程组方面,我国要比世界其他国家早1800多年。
(10)最精确的圆周率“祖率”。中国数学家刘徽在注释《九章算术》时(公元263年)只用圆内接正多边形就求得π的近似值,得出精确到两位小数的π值,他的方法被后人称为割圆术,其中有求极限的思想。南北朝时代的数学家祖冲之利用割圆术进一步得出精确到小数点后7位的π值(公元466年),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus
otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;这一纪录在世界上保持了一千年之久。为纪念祖冲之对中国圆周率发展的贡献,将这一推算值用他的名字被命名为“祖冲之圆周率”,简称“祖率”。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
(11)等积原理。又名“祖暅”原理。保持世界纪录1100多年。
等积原理是由我国南北朝杰出的数学家祖冲之的儿子祖暅(数学家、天文学家)首先提出来的。他同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中着名的“祖暅原理”,在公元五世纪,是祖暅对世界数学的杰出贡献。祖暅总结了刘徽的有关工作,提出“幂势既同则积不容异”,即“等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等”,这就是着名的祖暅公理(或刘祖原理)。祖暅应用这个原理,解决了刘徽尚未解决的球体积公式。该原理在西方直到十七世纪才由意大利数学家卡瓦列利﹝Bonavent
uraCavalieri﹞发现,比祖暅晚一千一百多年。
(12)二次内插法。隋朝天文学家刘焯最早发明,早于“世界亚军”牛顿(公元1642—1727)1000多年。
我国古代早就发明了内插法(内插法是用一组已知的未知函数的自变量的值和与它对应的函数值来求一种未知函数其它值的近似计算方法,是一种数值逼近求法,天文学上和农历计算中经常用的是白塞尔内插法。内插法当时称为招差术,如公元前1世纪左右的《九章算术)中的“盈不足术”即相当于一次差内插(线性内插);公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式(抛物线内插);这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式;元朝作《授时历》的郭守敬进一步发明了三次差内插法。在刘焯1000年后,郭守敬400年后,英国牛顿才提出内插法的一般公式。
(13)增乘开方法。增乘开方法为中国古代数学中求高次方程数值解的一般方法,在现代数学中又名“霍纳法”。
我国宋代数学家贾宪最早发明于11世纪,比19世纪英国数学家霍纳提出的时间早800年左右。它由11世纪的贾宪首创,中经12世纪的刘益,到13世纪秦九韶最后完成,19欧洲出现的霍纳法的步骤以及现代数学中综合除法的原理与它相同。该方法由《九章算术》的开方术衍生而来,经过贾宪、刘益、杨辉等人的推广和传播,到13世纪被发展成为求高次方程数值解的系统方法,秦九韶、李冶、朱世杰的着作中都有记载,其中以秦九韶的《数书九章》论述最为详细。霍纳在1819年发表的《解所有次方程》论文中的算例,其算法程序和数字处理都远不及五百多年前的秦九韶有条理;秦九韶算法不仅在时间上早于霍纳,也比较成熟。增乘开平方法是北宋数学家贾宪发明的开方法,原收《释锁算书》一书。贾宪原作已佚,但他对数学的重要贡献,被南宋数学家杨辉引用,被抄入《永乐大典》卷一万六千三百四十四,幸得以保存下来,现存英国剑桥大学图书馆。
(14)杨辉三角。杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,实际上是一个二项展开式系数表。它本是贾宪创造的,见于他着作《黄帝九章算法细草》中,后此书流失,南宋人杨辉在他的《详解九章算法》中又编此表,故名“杨辉三角”。
杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。杨辉三角形所蕴含的数字排列规律,让我们在感受数学美的同时,也体会到它的趣味性和实用性。
在世界上除了中国的贾宪、杨辉,第二个发明者是法国的数学家帕斯卡(公元1623—1662),他的发明时间是年,比贾宪晚了近600年。
(15)中国剩余定理。又称孙子定理,是中国古代求解一次同余式组的方法。中国剩余定理,实际上就是解联立一次同余式的方法。这个方法最早见于《孙子算经》,1801年德国数学家高斯(公元1777—1855)在《算术探究》中提出这一解法,西方人以为这个方法是世界第一,称之为“高斯定理”,但后来发现,它比中国晚1500多年,因此为其正名为“中国剩余定理”,
它是数论中一个重要定理。
(16)数字高次方程方法,又名“天元术”。 中国古代求解高次方程的方法。13世纪,高次方程的数值解法是数学难题之一。
天元术是中国古代的代数学方法之一种,是中国古代建立高次方程的方法。1248年,金代数学家李冶在其着作《测圆海镜》、《益古演段》中,系统地介绍了用天元术建立二次方程,并巧妙地把它表达在筹算中。元代数学家王恂广泛使用天元术解高次方程。这个方法早于世界其他国家300年以上,为以后出现的多元高次方程解法打下很好的基础。
(17)招差术。招差术即高次内插法,是现代计算数学中一种常用的插值方法,也就是高阶等差级数求和方法。从北宋起中国就有不少数学家研究这个问题,到了元代,朱世杰首先发明了招差术,使这一问题得以解决。在世界上,比朱世杰晚近400年之后,牛顿才获得了同样的公式。中国古代关于高阶等差数列和的差分能否相分于求内插公式的方法。朱世杰的《四元玉鉴》(1303)卷中“如像招数”中的问题都是讨论招差问题的。
其中朱世杰给出了一个四次招差公式:
这与牛顿插值公式一致,但牛顿提出这一公式晚于朱世杰三百多年。
招差术的创立、发展和应用是中国数学史和天文学史上具有世界意义的重大成就。
总的来说,中国古代的数学发展缺乏公理化体系。而这恰恰是从初等数学到高等数学发展的瓶颈。中国数学从一开始就没有向公理化发展的倾向,更多的是对某类具体问题的解法或者对某类规律的归纳。而西方数学家的代表人物欧几里得所做的最重要的工作可以说就是几何学的公理化。《几何原本》就是以数个不证自明的公理为基础的公理化体系的着作。这种方式建立的所谓数学的和谐之美、简洁之美。这位古希腊数学家对整个欧洲科学都影响深远。牛顿最重要的着作《自然哲学的数学原理》就是沿用的这种公理化体系的过程。对现象的描述,再把这类有规律的现象整理为最基本的数个公理、定律,再运用这些定律解释更复杂的现象。其最更根本的便是万有引力定律,以及三大运动定律。以当时的水平来讲,这样就足以“预言万物的运动”了。
另外,中国古代数学水平的落后是和整个科技水平的落后也是联系在一起的,两者是共进共退的。中国古代科技水平的衰落那就是另一个大问题了。
参考文献:
1.《探究勾股定理》同济大学出版社
2.《 神奇的纵横图》 王前卫
3.《九章算术》张苍 耿寿昌
4.《杨辉三角与棋盘形街道走法》 琚国起有

阅读全文

与霍纳之前发现算法的中国数学家相关的资料

热点内容
安卓系统下的软件怎么移到桌面 浏览:78
windows拷贝到linux 浏览:751
mdr软件解压和别人不一样 浏览:886
单片机串行通信有什么好处 浏览:320
游戏开发程序员书籍 浏览:843
pdf中图片修改 浏览:270
汇编编译后 浏览:474
php和java整合 浏览:830
js中执行php代码 浏览:442
国产单片机厂商 浏览:57
苹果手机怎么设置不更新app软件 浏览:286
转行当程序员如何 浏览:494
苹果id怎么验证app 浏览:865
查看手机命令 浏览:953
抖音反编译地址 浏览:227
如何加密软件oppoa5 浏览:235
java从入门到精通明日科技 浏览:98
拆解汽车解压视频 浏览:599
新版百度云解压缩 浏览:593
android上下拉刷新 浏览:882