A. 求解一道关于启发式算法。‘急’LINGO、matlab都可以
表2在哪里?
B. 有关启发式算法(Heuristic Algorithm)的一些总结
节选自维基网络:
启发法 ( heuristics ,源自古希腊语的εὑρίσκω,又译作:策略法、助发现法、启发力、捷思法)是指 依据有限的知识 (或“不完整的信息”)在短时间内找到问题解决方案的一种技术。
它是一种依据 关于系统的有限认知 和 假说 从而得到关于此系统的结论的分析行为。由此得到的解决方案有可能会偏离最佳方案。通过与最佳方案的对比,可以确保启发法的质量。
计算机科学的两大基础目标,就是 发现可证明其运行效率良好 且可 得最佳解或次佳解 的算法。
而启发式算法则 试图一次提供一个或全部目标 。例如它常能发现很不错的解, 但也没办法证明它不会得到较坏的解 ; 它通常可在合理时间解出答案,但也没办法知道它是否每次都可以这样的速度求解。
有时候人们会发现在某些特殊情况下,启发式算法会得到很坏的答案或效率极差, 然而造成那些特殊情况的数据结构,也许永远不会在现实世界出现 。
因此现实世界中启发式算法很常用来解决问题。启发式算法处理许多实际问题时通常可以在合理时间内得到不错的答案。
有一类的 通用启发式策略称为元启发式算法(metaheuristic) ,通常使用随机数搜索技巧。他们可以应用在非常广泛的问题上,但不能保证效率。
节选自网络:
启发式算法可以这样定义:一个 基于直观或经验构造 的算法, 在 可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解 , 该可行解与最优解的偏离程度一般不能被预计。 现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。
目前比较通用的启发式算法一般有模拟退火算法(SA)、遗传算法(GA)、蚁群算法(ACO)。
模拟退火算法(Simulated Annealing, SA)的思想借鉴于固体的退火原理,当固体的温度很高的时候,内能比较大,固体的内部粒子处于快速无序运动,当温度慢慢降低的过程中,固体的内能减小,粒子的慢慢趋于有序,最终,当固体处于常温时,内能达到最小,此时,粒子最为稳定。模拟退火算法便是基于这样的原理设计而成。
求解给定函数的最小值:其中,0<=x<=100,给定任意y的值,求解x为多少的时候,F(x)最小?
遗传算法(Genetic Algorithm, GA)起源于对生物系统所进行的计算机模拟研究。它是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种 高效、并行、全局搜索 的方法,能在搜索过程中自动获取和积累有关搜索空间的知识,并 自适应 地控制搜索过程以求得最佳解。
给定一组五个基因,每一个基因可以保存一个二进制值 0 或 1。这里的适应度是基因组中 1 的数量。如果基因组内共有五个 1,则该个体适应度达到最大值。如果基因组内没有 1,那么个体的适应度达到最小值。该遗传算法希望 最大化适应度 ,并提供适应度达到最大的个体所组成的群体。
想象有一只蚂蚁找到了食物,那么它就需要将这个食物待会蚂蚁穴。对于这只蚂蚁来说,它并不知道应该怎么回到蚂蚁穴。
这只蚂蚁有可能会随机选择一条路线,这条路可能路程比较远,但是这只蚂蚁在这条路上留下了记号(一种化学物质,信息素)。如果这只蚂蚁继续不停地搬运食物的时候,有其它许多蚂蚁一起搬运的话,它们总会有运气好的时候走到更快返回蚂蚁穴的路线。当蚂蚁选择的路线越优,相同时间内蚂蚁往返的次数就会越多,这样就在这条路上留下了更多的信息素。
这时候,蚂蚁们就会选择一些路径上信息素越浓的,这些路径就是较优的路径。当蚂蚁们不断重复这个过程,蚂蚁们就会更多地向更浓的信息素的路径上偏移,这样最终会确定一条路径,这条路径就是最优路径。
C. 启发式算法介绍 启发式算法简介
1、启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。
2、启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。
D. 在什么样的情境下,人们喜欢用启发法解决问题,并举例说明
针对模型求解方法而言的,一种逐次逼近最优解的方法,这种方法对所求得的解进行反复判断实践修正直至满意为止。启发法的特点是模型简单,需要进行方案组合的个数少,因此便于找出最终答案。此方法虽不能保证得到最优解,但只要处理得当,可获得决策者满意的近似最优解。
一般步骤包括:定义一个计算总费用的方法;报定判别准则;规定方案改选的途径;建立相应的模型;送代求解。
(4)启发式算法的例题扩展阅读
计算机科学的两大基础目标,就是发现可证明其执行效率良好且可得最佳解或次佳解的算法。而启发式算法则试图一次提供一或全部目标。 例如它常能发现很不错的解,但也没办法证明它不会得到较坏的解;它通常可在合理时间解出答案,但也没办法知道它是否每次都可以这样的速度求解。
有时候人们会发现在某些特殊情况下,启发式算法会得到很坏的答案或效率极差,然而造成那些特殊情况的数据组合,也许永远不会在现实世界出现。因此现实世界中启发式算法常用来解决问题。启发式算法处理许多实际问题时通常可以在合理时间内得到不错的答案。
E. 贪心算法的例题分析
例题1、
[0-1背包问题]有一个背包,背包容量是M=150。有7个物品,物品不可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg
价值 10$ 40$ 30$ 50$ 35$ 40$ 30$
分析:
目标函数:∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M(M=150)
⑴根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
⑵每次挑选所占重量最小的物品装入是否能得到最优解?
⑶每次选取单位重量价值最大的物品,成为解本题的策略。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
⑴贪心策略:选取价值最大者。
反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
⑵贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
⑶贪心策略:选取单位重量价值最大的物品。
反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
【注意:如果物品可以分割为任意大小,那么策略3可得最优解】
对于选取单位重量价值最大的物品这个策略,可以再加一条优化的规则:对于单位重量价值一样的,则优先选择重量小的!这样,上面的反例就解决了。
但是,如果题目是如下所示,这个策略就也不行了。
W=40
物品:A B C
重量:25 20 15
价值:25 20 15
附:本题是个DP问题,用贪心法并不一定可以求得最优解,以后了解了动态规划算法后本题就有了新的解法。
例题2、
马踏棋盘的贪心算法
123041-23 XX
【问题描述】
马的遍历问题。在8×8方格的棋盘上,从任意指定方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。
【初步设计】
首先这是一个搜索问题,运用深度优先搜索进行求解。算法如下:
⒈ 输入初始位置坐标x,y;
⒉ 步骤 c:
如果c> 64输出一个解,返回上一步骤c--
(x,y) ← c
计算(x,y)的八个方位的子结点,选出那些可行的子结点
循环遍历所有可行子结点,步骤c++重复2
显然⑵是一个递归调用的过程,大致如下:
C++程序: #defineN8voiddfs(intx,inty,intcount){inti,tx,ty;if(count>N*N){output_solution();//输出一个解return;}for(i=0;i<8;i++){tx=hn[i].x;//hn[]保存八个方位子结点ty=hn[i].y;s[tx][ty]=count;dfs(tx,ty,count+1);//递归调用s[tx][ty]=0;}}Pascal程序: ProgramYS;ConstFXx:array[1..8]of-2..2=(1,2,2,1,-1,-2,-2,-1);FXy:array[1..8]of-2..2=(2,1,-1,-2,-2,-1,1,2);VarRoad:array[1..10,1..10]ofinteger;x,y,x1,y1,total:integer;ProcereFind(x,y:integer);varNx,Ny,i:integer;BeginFori:=1to8dobegin{8个方向}If(x+FXx[i]in[1..8])and(y+FXy[i]in[1..8])Then{确定新坐标是否越界}IfRoad[x+Fxx[i],y+Fxy[i]]=0Thenbegin{判断是否走过}Nx:=x+FXx[i];Ny:=y+FXy[i];Road[Nx,Ny]:=1;{建立新坐标}If(Nx=x1)and(Ny=y1)Theninc(total)elseFind(Nx,Ny);{递归}Road[Nx,Ny]:=0{回朔}endendEnd;BEGIN{Main}Total:=0;FillChar(Road,sizeof(road),0);Readln(x,y);{读入开始坐标}Readln(x1,y1);{读入结束坐标}If(x>10)or(y>10)or(x1>10)or(y1>10)Thenwriteln('Error'){判断是否越界}ElseFind(x,y);Writeln('Total:',total){打出总数}END.这样做是完全可行的,它输入的是全部解,但是马遍历当8×8时解是非常之多的,用天文数字形容也不为过,这样一来求解的过程就非常慢,并且出一个解也非常慢。
怎么才能快速地得到部分解呢?
【贪心算法】
其实马踏棋盘的问题很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一个有名的算法。在每个结点对其子结点进行选取时,优先选择‘出口’最小的进行搜索,‘出口’的意思是在这些子结点中它们的可行子结点的个数,也就是‘孙子’结点越少的越优先跳,为什么要这样选取,这是一种局部调整最优的做法,如果优先选择出口多的子结点,那出口少的子结点就会越来越多,很可能出现‘死’结点(顾名思义就是没有出口又没有跳过的结点),这样对下面的搜索纯粹是徒劳,这样会浪费很多无用的时间,反过来如果每次都优先选择出口少的结点跳,那出口少的结点就会越来越少,这样跳成功的机会就更大一些。这种算法称为为贪心算法,也叫贪婪算法或启发式算法,它对整个求解过程的局部做最优调整,它只适用于求较优解或者部分解,而不能求最优解。这样的调整方法叫贪心策略,至于什么问题需要什么样的贪心策略是不确定的,具体问题具体分析。实验可以证明马遍历问题在运用到了上面的贪心策略之后求解速率有非常明显的提高,如果只要求出一个解甚至不用回溯就可以完成,因为在这个算法提出的时候世界上还没有计算机,这种方法完全可以用手工求出解来,其效率可想而知。
F. 启发式算法的最短路径
所谓的最短路径问题有很多种意思, 在这里启发式指的是一个在一个搜寻树的节点上定义的函数h(n),用于评估从此节点到目标节点最便宜的路径。启发式通常用于资讯充分的搜寻算法,例如最好优先贪婪算法与A*。最好优先贪婪算法会为启发式函数选择最低代价的节点;A*则会为g(n) + h(n)选择最低代价的节点,此g(n)是从起始节点到目前节点的路径的确实代价。如果h(n)是可接受的(admissible)意即h(n)未曾付出超过达到目标的代价,则A*一定会找出最佳解。
最能感受到启发式算法好处的经典问题是n-puzzle。此问题在计算错误的拼图图形,与计算任两块拼图的曼哈顿距离的总和以及它距离目的有多远时,使用了本算法。注意,上述两条件都必须在可接受的范围内。
G. 数学建模中的那些模型究竟能有多大实际作用
很有用;只要你敢想,想得到就非常有用:比如1根据车流量控制任何交通路口红绿灯秒数;2一张椅子不管路面多不平,在一定范围内都可以放平3根据一定数据可以在商业经济中使用,如商品库存量计算,采购量计算;定价;4项目可行性研究中的建模,包含工程项目模拟化施工及开发等5科技领域,导弹火箭卫星;基本涉及计算应用领域都可以使用到,用途非常广泛。
H. 什么是启发式算法(转)
它并不告诉你该如何直接从A点到达B点,它甚至可能连A点和B点在哪里都不知道。实际上,启发式方法是穿着小丑儿外套的算法:它的结果不太好预测,也更有趣,但不会给你什么30 天无效退款的保证。 驾驶汽车到达某人的家,写成算法是这样的:沿167 号高速公路往南行至Puyallup;从SouthHillMall出口出来后往山上开4.5 英里;在一个杂物店旁边的红绿灯路口右转,接着在第一个路口左转;从左边褐色大房子的车道进去,就是NorthCedar路714号。 用启发式方法来描述则可能是这样:找出上一次我们寄给你的信,照着信上面的寄出地址开车到这个镇;到了之后你问一下我们的房子在哪里。这里每个人都认识我们——肯定有人会很愿意帮助你的;如果你找不到人,那就找个公共电话亭给我们打电话,我们会出来接你。 从上面的启发式算法的解释可以看出,启发式算法的难点是建立符合实际问题的一系列启发式规则。
I. 什么是启发式算法(转)
启发式方法(试探法)是一种帮你寻求答案的技术,但它给出的答案是具有偶然性的(subjecttochance),因为启发式方法仅仅告诉你该如何去找,而没有告诉你要找什么。它并不告诉你该如何直接从A点到达B点,它甚至可能连A点和B点在哪里都不知道。实际上,启发式方法是穿着小丑儿外套的算法:它的结果不太好预测,也更有趣,但不会给你什么30
天无效退款的保证。
驾驶汽车到达某人的家,写成算法是这样的:沿167
号高速公路往南行至Puyallup;从SouthHillMall出口出来后往山上开4.5
英里;在一个杂物店旁边的红绿灯路口右转,接着在第一个路口左转;从左边褐色大房子的车道进去,就是NorthCedar路714号。
用启发式方法来描述则可能是这样:找出上一次我们寄给你的信,照着信上面的寄出地址开车到这个镇;到了之后你问一下我们的房子在哪里。这里每个人都认识我们——肯定有人会很愿意帮助你的;如果你找不到人,那就找个公共电话亭给我们打电话,我们会出来接你。
从上面的启发式算法的解释可以看出,启发式算法的难点是建立符合实际问题的一系列启发式规则。启发式算法的优点在于它比盲目型的搜索法要高效,一个经过仔细设计的启发函数,往往在很快的时间内就可得到一个搜索问题的最优解,对于NP问题,亦可在多项式时间内得到一个较优解。
J. A*算法(启发式算法)
A*算法
这是我写的第一篇有关A*算法的文章,写得比较简洁,我决定再写一篇,补充一下对A*算法的理解。
A*算法把 Dijkstra算法 (靠近初始点的结点)和 BFS算法 (靠近目标点的结点)的信息块结合起来。
g(n)表示从初始结点到任意结点n的实际代价
h(n)表示从结点n到目标点的启发式评估代价
(1)h(n)=0,一种极端情况
如果h(n)=0,则只有g(n)起作用,此时A*演变成Dijkstra算法,这保证能找到最短路径,但效率不到,因为得不到启发。
(2)h(n)<实际代价
如果h(n)经常都比从n移动到目标的实际代价小(或者相等),则A*保证能找到一条最短路径。h(n)越小,A*扩展的结点越多,运行就越慢。
(3)h(n)=实际代价
如果h(n)精确地等于从n移动到目标的实际代价,则A*将会仅仅寻找最佳路径而不扩展别的任何结点,这会运行得非常快。尽管这不可能在所有情况下发生,你仍可以在一些特殊情况下让它们精确地相等(指让h(n)精确地等于实际代价)。只要提供完美的信息,A*就会运行得很完美。
(4)h(n)>实际代价
如果h(n)有时比从n移动到目标的实际代价大,则A*不能保证找到一条最短路径,但它运行得更快。
(5)h(n)>>实际代价(>>远大于),另一种极端情况
如果h(n)比g(n)大很多,则只有h(n)起作用,A*演变成BFS算法。
数组?链表?
在Open集上主要有三种操作:查找优先级最高的结点&删除结点、查找相邻结点是否在集合中、插入新结点
在Close集上主要有两种操作:查找相邻结点是否在集合中、插入新节点
(1)未排序数组或链表
最简单的数据结构是未排序数组或链表。查找结点,花费O(N);插入结点,花费O(1);删除结点,花费O(N)
(2)排序数组
为了加快删除操作,可以对数组进行排序。查找结点,变成O(logN),因为可以使用折半查找;插入结点,花费O(N);查找和删除优先级最高的结点,花费O(1)
(3)排序链表
在排序数组中,插入操作很慢。如果使用链表则可以加速该操作。查找结点,花费O(N);插入结点,花费O(1),但查找插入位置,需要花费O(N)
(4)哈希表
使用哈希表,查找结点,花费O(1);插入结点,花费O(1);查找和删除优先级最高的结点,花费O(N)
https://blog.csdn.net/coutamg/article/details/53923717#!/_alzvzu0wsphb4nstr5bbro1or