‘壹’ 一文总结聚类分析步骤!
一、聚类
1.准备工作
(1) 研究目的
聚类分析是根据事物本身的特性研究个体分类的方法,聚类分析的原则是同一类别的个体有较大相似性,不同类别的个体差异比较大。
(2) 数据类型
1)定量:数字有比较意义,比如数字越大代表满意度越高,量表为典型定量数据。
2)定类:数字无比较意义,比如性别,1代表男,2代表女。
PS: SPSSAU会根据数据类型自动选择聚类方法。
K-modes聚类: 数据类型仅定类时。
2.上传数据到SPSSAU
登录账号后进入SPSSAU页面,点击右上角“上传数据”,将处理好的数据进行“点击上传文件”上传即可。
3.SPSSAU操作
(1)拖拽分析项
1) SPSSAU进阶方法→聚类。
2)检查
检查分析项是否都在左侧分析框中。
3)进行拖拽
(2)选择参数
聚类个数: 聚类个数设置为几类主要以研究者的研究思路为标准,如果不进行设置,SPSSAU默认聚类个数为3,通常情况下,建议设置聚类数量介于3~6个之间。
标准化: 聚类算法是根据距离进行判断类别,因此一般需要在聚类之前进行标准化处理,SPSSAU默认是选中进行标准化处理。数据标准化之后,数据的相对大小意义还在(比如数字越大GDP越高),但是实际意义消失了。
保存类别: 分析选择保存‘保存类别’,SPSSAU会生成 新标题 用于标识,也可以右上角“我的数据”处查看到分析后的“聚类类别”。
新标题类似如下:Cluster_********。
4.SPSSAU分析
(1)聚类类别基本情况汇总分析
使用聚类分析对样本进行分类,使用Kmeans聚类分析方法,从上表可以看出:最终聚类得到4类群体,此4类群体的占比分别是20.00%, 30.00%, 20.00%, 30.00%。整体来看, 4类人群分布较为均匀,整体说明聚类效果较好。
(2)聚类类别汇总图分析
上图可以直观的看到各个类别所占百分比,4类群体的占比分别是20.00%, 30.00%, 20.00%, 30.00%。
(3)聚类类别方差分析差异对比
使用方差分析去探索各个类别的差异特征,从上表可知:聚类类别群体对于所有研究项均呈现出显着性(p<0.05),意味着聚类分析得到的4类群体,他们在研究项上的特征具有明显的差异性,具体差异性可通过平均值进行对比,并且最终结合实际情况,对聚类类别进行命名处理。
(4)聚类项重要性对比
从上述结果看,所有研究项均呈现出显着性,说明不同类别之间的特征有明显的区别,聚类的效果较好。
(5)聚类中心
5.其它说明
(1)聚类中心是什么?
聚类中心是聚类类别的中心点情况,比如某类别时年龄对应的聚类中心为20,意味着该类别群体年龄基本在20岁左右。初始聚类中心基本无意义,它是聚类算法随机选择的聚类点,如果需要查看聚类中心情况,需要关注于最终聚类中心。实际分析时聚类中心的意义相对较小,其仅为聚类算法的计算值而已。
(2)k-prototype聚类是什么?
如果说聚类项中包括定类项,那么SPSSAU默认会进行K-prototype聚类算法(而不是kmeans算法)。定类数据不能通过数字大小直接分析距离,因而需要使用K-prototype聚类算法。
(3)聚类分析时SSE是什么意思?
在进行Kmeans聚类分析时SPSSAU默认输出误差平方和SSE值,该值可用于测量各点与中心点的距离情况,理论上是希望越小越好,而且如果同样的数据,聚类类别越多则SSE值会越小(但聚类类别过多则不便于分析)。
SSE指标可用于辅助判断聚类类别个数,建议在不同聚类类别数量情况下记录下SSE值,然后分析SSE值的减少幅度情况,如果发现比如从3个聚类到4个类别时SSE值减少幅度明显很大,那么此时选择4个聚类类别较好。
二、分层聚类
1.准备工作
(1)研究目的
从分析角度上看,聚类分析可分为两种,一种是按样本(或个案)聚类,此类聚类的代表是K-means聚类方法;另外一种是按变量(或标题)聚类,此类聚类的代表是分层聚类。
(2)数据类型
2.上传数据到SPSSAU
登录账号后进入SPSSAU页面,点击右上角“上传数据”,将处理好的数据进行“点击上传文件”上传即可。
3.SPSSAU操作
(1)拖拽分析项
1) SPSSAU进阶方法→分层聚类。
2)检查
检查分析项是否都在左侧分析框中。
3)进行拖拽
(2)确定参数
SPSSAU会默认聚类为3类并且呈现表格结果,如果希望更多的类别个数,可自行进行设置。
4.SPSSAU分析
(1)聚类项描述分析
上表格展示总共8个分析项(即8个裁判数据)的基本情况,包括均值,最大或者最小值,中位数等,以便对于基础数据有个概括性了解。整体上看,8个裁判的打分基本平均在8分以上。
(2)聚类类别分布表分析
总共聚类为3个类别,以及具体分析项的对应关系情况。在上表格中展示出来,上表格可以看出:裁判8单独作为一类;裁判5,3,7这三个聚为一类;以及裁判1,6,2,4作为一类。
(PS:聚类类别与分析项上的对应关系可以在上表格中得到,同时也可以查看聚类树状图得出更多信息。至于聚类类别分别应该叫做什么名字,这个需要结合对应有关系情况,自己单独进行命名。)
(3)聚类树状图分析
上图为聚类树状图的展示,聚类树状图是将聚类的具体过程用图示法手法进行展示;最上面一行的数字仅仅是一个刻度单位,代表相对距离大小;一个结点表示一次聚焦过程。
树状图的解读上,建议单独画一条垂直线,然后对应查看分成几个类别,以及每个类别与分析项的对应关系。比如上图中,红色垂直线最终会拆分成3个类别;第1个类别对应裁判8;第2个类别对应裁判5,3,7;第3个类别对应裁判1,6,2,4。
如果是聚为四类;从上图可看出,明显的已经不再合适。原因在于垂直线不好区分成四类。也即说明有2个类别本应该在一起更合适(上图中的裁判1与6/2/4);但是如果分成4类,此时裁判1会单独成一类。所以画垂直线无法区分出类别。因而综合分析来看,最终聚类为3个类别最为适合。
当然在分析时也可以考虑分成2个类别,此时只需要对应将垂直线移动即可。
5.其它说明
(1)针对分层聚类,需要注意以下几点:
(2)什么时候做因子分析后再做聚类分析?
如果题项较多,可先做因子分析,得到每个维度(因子)的数据,再进行聚类。
三、总结
聚类分析广泛的应用于自然科学、社会科学等领域。在分析时可以比较多次聚类结果,综合选择更适合的方案。
以上就是聚类分析步骤汇总,更多干货请前往官网查看!
‘贰’ 用于数据挖掘的聚类算法有哪些
一部专着的篇幅。即使是做综述性的介绍,一篇三五十页的论文也可以写成了。所以我一直想怎么能从头到尾把这个问题logically串连起来。正好这段时间我在修改我做的交易策略里面关于聚类的部分。就我的理解而言,如果想全面的了解聚类算法并对其进行区别和比较的话,最好能把聚类的具体算法放到整个聚类分析的语境中理解。那我接下来主要谈谈我的理解,就不搬弄教科书里的概念了。相似性衡量(similarity measurement)相似性衡量又可以细分为直接法和间接:直接法是直接求取input data的相似性,间接法是求取data中提取出的features的相似性。但无论是求data还是feature的相似性,方法都是这么几种:距离。距离主要就是指Minkovski距离。这个名字虽然听起来陌生,但其算法就是Lp norm的算法,如果是L1 norm,那就是绝对值/曼哈顿距离(Manhattan distance);如果是L2 norm,那就是着名的欧式距离(Euclidean distance)了,也是应用最广泛的;如果,supremum距离,好像也有叫切比雪夫距离的,但就很少有人用了。另外,还有Mahalanobis距离,目前来看主要应用于Gaussian Mixture Model(GMM),还有Lance&Williams距离等等,但几乎没见过求距离的时候会专门用这个的。相似系数。主要有夹角余弦和相关系数。相关系数的应用也非常广泛,其主要优势是它不受原线性变换的影响,而且可以轻松地转换为距离,但其运算速度要比距离法慢得多,当维数很高的时候。
‘叁’ 聚类的计算方法
传统的聚类分析计算方法主要有如下几种:
1、划分方法(partitioning methods)
给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;
大部分划分方法是基于距离的。给定要构建的分区数k,划分方法首先创建一个初始化划分。然后,它采用一种迭代的重定位技术,通过把对象从一个组移动到另一个组来进行划分。一个好的划分的一般准备是:同一个簇中的对象尽可能相互接近或相关,而不同的簇中的对象尽可能远离或不同。还有许多评判划分质量的其他准则。传统的划分方法可以扩展到子空间聚类,而不是搜索整个数据空间。当存在很多属性并且数据稀疏时,这是有用的。为了达到全局最优,基于划分的聚类可能需要穷举所有可能的划分,计算量极大。实际上,大多数应用都采用了流行的启发式方法,如k-均值和k-中心算法,渐近的提高聚类质量,逼近局部最优解。这些启发式聚类方法很适合发现中小规模的数据库中小规模的数据库中的球状簇。为了发现具有复杂形状的簇和对超大型数据集进行聚类,需要进一步扩展基于划分的方法。
2、层次方法(hierarchical methods)
这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。例如在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等;
层次聚类方法可以是基于距离的或基于密度或连通性的。层次聚类方法的一些扩展也考虑了子空间聚类。层次方法的缺陷在于,一旦一个步骤(合并或分裂)完成,它就不能被撤销。这个严格规定是有用的,因为不用担心不同选择的组合数目,它将产生较小的计算开销。然而这种技术不能更正错误的决定。已经提出了一些提高层次聚类质量的方法。
3、基于密度的方法(density-based methods)
基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。这个方法的指导思想就是,只要一个区域中的点的密度大过某个阀值,就把它加到与之相近的聚类中去。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等;
4、基于网格的方法(grid-based methods)
这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。这么处理的一个突出的优点就是处理速度很快,通常这是与目标数据库中记录的个数无关的,它只与把数据空间分为多少个单元有关。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法;
很多空间数据挖掘问题,使用网格通常都是一种有效的方法。因此,基于网格的方法可以和其他聚类方法集成。
5、基于模型的方法(model-based methods)
基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在的假定就是:目标数据集是由一系列的概率分布所决定的。通常有两种尝试方向:统计的方案和神经网络的方案。
当然聚类方法还有:传递闭包法,布尔矩阵法,直接聚类法,相关性分析聚类,基于统计的聚类方法等。
‘肆’ 常用聚类(K-means,DBSCAN)以及聚类的度量指标:
一年前需要用聚类算法时,自己从一些sklearn文档和博客粗略整理了一些相关的知识,记录在电子笔记里备忘,现在发到网上,当时就整理的就很乱,以后有空慢慢把内容整理、完善,用作备忘。之前把电影标签信息的聚类结果作为隐式反馈放进SVD++中去训练,里面有两个小例子
利用条件熵定义的同质性度量:
sklearn.metrics.homogeneity_score:每一个聚出的类仅包含一个类别的程度度量。
sklearn.metrics.completeness:每一个类别被指向相同聚出的类的程度度量。
sklearn.metrics.v_measure_score:上面两者的一种折衷:
v = 2 * (homogeneity * completeness) / (homogeneity + completeness)
可以作为聚类结果的一种度量。
sklearn.metrics.adjusted_rand_score:调整的兰德系数。
ARI取值范围为[-1,1],从广义的角度来讲,ARI衡量的是两个数据分布的吻合程度
sklearn.metrics.adjusted_mutual_info_score:调整的互信息。
利用基于互信息的方法来衡量聚类效果需要实际类别信息,MI与NMI取值范围为[0,1],AMI取值范围为[-1,1]。
在scikit-learn中, Calinski-Harabasz Index对应的方法是metrics.calinski_harabaz_score.
CH指标通过计算类中各点与类中心的距离平方和来度量类内的紧密度,通过计算各类中心点与数据集中心点距离平方和来度量数据集的分离度,CH指标由分离度与紧密度的比值得到。从而,CH越大代表着类自身越紧密,类与类之间越分散,即更优的聚类结果。
silhouette_sample
对于一个样本点(b - a)/max(a, b)
a平均类内距离,b样本点到与其最近的非此类的距离。
silihouette_score返回的是所有样本的该值,取值范围为[-1,1]。
这些度量均是越大越好
K-means算法应该算是最常见的聚类算法,该算法的目的是选择出质心,使得各个聚类内部的inertia值最小化,计算方法如下:
inertia可以被认为是类内聚合度的一种度量方式,这种度量方式的主要缺点是:
(1)inertia假设数据内的聚类都是凸的并且各向同性( convex and isotropic),
各项同性是指在数据的属性在不同方向上是相同的。数据并不是总能够满足这些前提假设的,
所以当数据事细长簇的聚类,或者不规则形状的流形时,K-means算法的效果不理想。
(2)inertia不是一种归一化度量方式。一般来说,inertia值越小,说明聚类效果越好。
但是在高维空间中,欧式距离的值可能会呈现迅速增长的趋势,所以在进行K-means之前首先进行降维操作,如PCA等,可以解决高维空间中inertia快速增长的问题,也有主意提高计算速度。
K-means算法可以在足够长的时间内收敛,但有可能收敛到一个局部最小值。
聚类的结果高度依赖质心的初始化,因此在计算过程中,采取的措施是进行不止一次的聚类,每次都初始化不同的质心。
sklearn中可以通过设置参数init='kmeans++'来采取k-means++初始化方案,
即初始化的质心相互之间距离很远,这种方式相比于随机初始质心,能够取得更好的效果。
另外,sklearn中可以通过参数n_job,使得K-means采用并行计算的方式。
##sklearn 中K-means的主要参数:
1) n_clusters: 设定的k值
2)max_iter: 最大的迭代次数,一般如果是凸数据集的话可以不管这个值,如果数据集不是凸的,可能很难收敛,此时可以指定最大的迭代次数让算法可以及时退出循环。
3)n_init:用不同的初始化质心运行算法的次数。由于K-Means是结果受初始值影响的局部最优的迭代算法,因此需要多跑几次以选择一个较好的聚类效果,默认是10。如果你的k值较大,则可以适当增大这个值。
4)init: 即初始值选择的方式,可以为完全随机选择'random',优化过的'k-means++'或者自己指定初始化的k个质心。一般建议使用默认的'k-means++'。
5)algorithm:有“auto”, “full” or “elkan”三种选择。"full"就是我们传统的K-Means算法, “elkan”elkan K-Means算法。默认的"auto"则会根据数据值是否是稀疏的,来决定如何选择"full"和“elkan”。一般来说建议直接用默认的"auto"
聚类的中心
print clf.cluster_centers_
每个样本所属的簇
print clf.labels_
用来评估簇的个数是否合适,距离越小说明簇分的越好,选取临界点的簇个数
print clf.inertia_
Sum of distances of samples to their closest cluster center.
两个小例子(很久以前弄的,写得比较简略比较乱,有空再改,数据是movielen中的电影标签信息):
例1:
例2,在区间[2,200]上遍历k,并生成两个聚类内部评价指标CH分、轮廓系数以及kmeans自带inertia分和对应的k值的图片来选择k:
其中两点相似度s(i, j)的度量默认采用负欧氏距离。
sklearn.cluster.AffinityPropagation
有参数preference(设定每一个点的偏好,将偏好于跟其他节点的相似性进行比较,选择
高的作为exmplar,未设定则使用所有相似性的中位数)、damping (阻尼系数,
利用阻尼系数与1-阻尼系数对r 及 a进行有关迭代步数的凸组合,使得算法收敛
default 0.5 可以取值与[0.5, 1])
cluster_centers_indices_:中心样本的指标。
AP算法的主要思想是通过数据点两两之间传递的信息进行聚类。
该算法的主要优点是能够自主计算聚类的数目,而不用人为制定类的数目。
其缺点是计算复杂度较大 ,计算时间长同时空间复杂度大,
因此该算法适合对数据量不大的问题进行聚类分析。
数据点之间传递的信息包括两个,吸引度(responsibility)r(i,k)和归属度(availability)a(i,k)。
吸引度r(i,k)度量的是质心k应当作为点i的质心的程度,
归属度a(i,k)度量的是点i应当选择质心k作为其质心的程度。
其中t是迭代的次数,λ是阻尼因子,其值介于[0,1],在sklearn.cluster.AffinityPropagation中通过参数damping进行设置。
每次更新完矩阵后,就可以为每个数据点分配质心,分配方式?是针对数据点i,遍历所有数据点k(包括其自身),
找到一个k使得r(i,k)+a(i,k)的值最大,则点k就是点i所属的质心,迭代这个过程直至收敛。
所谓收敛就是所有点所属的质心不再变化
首先说明不引入核函数时的情况。
算法大致流程为:随机选取一个点作为球心,以一定半径画一个高维球(数据可能是高维的),
在这个球范围内的点都是这个球心的邻居。这些邻居相对于球心都存在一个偏移向量,
将这些向量相加求和再平均,就得到一个mean shift,起点在原球心,重点在球内的其他位置。
以mean shift的重点作为新的球心,重复上述过程直至收敛。
这个计算过程中,高维球内的点,无论其距离球心距离多远,对于mean shift的计算权重是一样的。
为了改善这种情况,在迭代计算mean shift的过程中引入了核函数
sklearn中相关实现是sklearn.cluster.MeanShift。
sklearn中实现的是自底向上的层次聚类,实现方法是sklearn.cluster.AgglomerativeClustering。
初始时,所有点各自单独成为一类,然后采取某种度量方法将相近的类进行合并,并且度量方法有多种选择。
合并的过程可以构成一个树结构,其根节点就是所有数据的集合,叶子节点就是各条单一数据。
sklearn.cluster.AgglomerativeClustering中可以通过参数linkage选择不同的度量方法,用来度量两个类之间的距离,
可选参数有ward,complete,average三个。
ward:选择这样的两个类进行合并,合并后的类的离差平方和最小。
complete:两个类的聚类被定义为类内数据的最大距离,即分属两个类的距离最远的两个点的距离。
选择两个类进行合并时,从现有的类中找到两个类使得这个值最小,就合并这两个类。
average:两个类内数据两两之间距离的平均值作为两个类的距离。
同样的,从现有的类中找到两个类使得这个值最小,就合并这两个类。
Agglomerative cluster有一个缺点,就是rich get richer现象,
这可能导致聚类结果得到的类的大小不均衡。
从这个角度考虑,complete策略效果最差,ward得到的类的大小最为均衡。
但是在ward策略下,affinity参数只能是“euclidean”,即欧式距离。
如果在欧氏距离不适用的环境中,average is a good alternative。
另外还应该注意参数affinity,这个参数设置的是计算两个点之间距离时采用的策略,
注意和参数linkage区分,linkage设置的是衡量两个类之间距离时采用的策略,
而点之间的距离衡量是类之间距离衡量的基础。
affinity的可选数值包括 “euclidean”, “l1”, “l2”, “manhattan”, “cosine”,
‘precomputed’. If linkage is “ward”, only “euclidean” is accepted.
DBSCAN算法的主要思想是,认为密度稠密的区域是一个聚类,各个聚类是被密度稀疏的区域划分开来的。
也就是说,密度稀疏的区域构成了各个聚类之间的划分界限。与K-means等算法相比,该算法的主要优点包括:可以自主计算聚类的数目,不需要认为指定;不要求类的形状是凸的,可以是任意形状的。
DBSCAN中包含的几个关键概念包括core sample,non-core sample,min_sample,eps。
core samle是指,在该数据点周围eps范围内,至少包含min_sample个其他数据点,则该点是core sample,
这些数据点称为core sample的邻居。与之对应的,non-sample是该点周围eps范围内,所包含的数据点个数少于min_sample个。从定义可知,core sample是位于密度稠密区域的点。
一个聚类就是一个core sample的集合,这个集合的构建过程是一个递归的构成。
首先,找到任意个core sample,然后从它的邻居中找到core sample,
接着递归的从这些邻居中的core sample的邻居中继续找core sample。
要注意core sample的邻居中不仅有其他core sample,也有一些non-core smaple,
也正是因为这个原因,聚类集合中也包含少量的non-core sample,它们是聚类中core sample的邻居,
但自己不是core sample。这些non-core sample构成了边界。
在确定了如何通过单一core sample找到了一个聚类后,下面描述DBSCAN算法的整个流程。
首先,扫描数据集找到任意一个core sample,以此core sample为起点,按照上一段描述的方法进行扩充,确定一个聚类。然后,再次扫描数据集,找到任意一个不属于以确定类别的core sample,重复扩充过程,再次确定一个聚类。
迭代这个过程,直至数据集中不再包含有core sample。
这也是为什么DBSCAN不用认为指定聚类数目的原因。
DBSCAN算法包含一定的非确定性。数据中的core sample总是会被分配到相同的聚类中的,哪怕在统一数据集上多次运行DBSCAN。其不确定性主要体现在non-core sample的分配上。
一个non-core sample可能同时是两个core sample的邻居,而这两个core sample隶属于不同的聚类。
DBSCAN中,这个non-core sample会被分配给首先生成的那个聚类,而哪个聚类先生成是随机的。
sklearn中DBSCAN的实现中,邻居的确定使用的ball tree和kd-tree思想,这就避免了计算距离矩阵。
‘伍’ 16种常用的数据分析方法-聚类分析
聚类(Clustering)就是一种寻找数据之间内在结构的技术。聚类把全体数据实例组织成一些相似组,而这些相似组被称作簇。处于相同簇中的数据实例彼此相同,处于不同簇中的实例彼此不同。
聚类分析定义
聚类分析是根据在数据中发现的描述对象及其关系的信息,将数据对象分组。目的是,组内的对象相互之间是相似的(相关的),而不同组中的对象是不同的(不相关的)。组内相似性越大,组间差距越大,说明聚类效果越好。
聚类效果的好坏依赖于两个因素:1.衡量距离的方法(distance measurement) 2.聚类算法(algorithm)
聚类分析常见算法
K-均值聚类也称为快速聚类法,在最小化误差函数的基础上将数据划分为预定的类数K。该算法原理简单并便于处理大量数据。
K-均值算法对孤立点的敏感性,K-中心点算法不采用簇中对象的平均值作为簇中心,而选用簇中离平均值最近的对象作为簇中心。
也称为层次聚类,分类的单位由高到低呈树形结构,且所处的位置越低,其所包含的对象就越少,但这些对象间的共同特征越多。该聚类方法只适合在小数据量的时候使用,数据量大的时候速度会非常慢。
案例
有20种12盎司啤酒成分和价格的数据,变量包括啤酒名称、热量、钠含量、酒精含量、价格。
问题一:选择那些变量进行聚类?——采用“R 型聚类”
现在我们有4个变量用来对啤酒分类,是否有必要将4个变量都纳入作为分类变量呢?热量、钠含量、酒精含量这3个指标是要通过化验员的辛苦努力来测定,而且还有花费不少成本。
所以,有必要对4个变量进行降维处理,这里采用spss R型聚类(变量聚类),对4个变量进行降维处理。输出“相似性矩阵”有助于我们理解降维的过程。
4个分类变量各自不同,这一次我们先用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,此时,涉及到相关,4个变量可不用标准化处理,将来的相似性矩阵里的数字为相关系数。若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。
只输出“树状图”就可以了,从proximity matrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。
至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。
问题二:20 中啤酒能分为几类?—— 采用“Q 型聚类”
现在开始对20中啤酒进行聚类。开始不确定应该分为几类,暂时用一个3-5类范围来试探。Q型聚类要求量纲相同,所以我们需要对数据标准化,这一回用欧式距离平方进行测度。
主要通过树状图和冰柱图来理解类别。最终是分为4类还是3类,这是个复杂的过程,需要专业知识和最初的目的来识别。
这里试着确定分为4类。选择“保存”,则在数据区域内会自动生成聚类结果。
问题三:用于聚类的变量对聚类过程、结果又贡献么,有用么?——采用“单因素方差分析”
聚类分析除了对类别的确定需讨论外,还有一个比较关键的问题就是分类变量到底对聚类有没有作用有没有贡献,如果有个别变量对分类没有作用的话,应该剔除。
这个过程一般用单因素方差分析来判断。注意此时,因子变量选择聚为4类的结果,而将三个聚类变量作为因变量处理。方差分析结果显示,三个聚类变量sig值均极显着,我们用于分类的3个变量对分类有作用,可以使用,作为聚类变量是比较合理的。
问题四:聚类结果的解释?——采用”均值比较描述统计“
聚类分析最后一步,也是最为困难的就是对分出的各类进行定义解释,描述各类的特征,即各类别特征描述。这需要专业知识作为基础并结合分析目的才能得出。
我们可以采用spss的means均值比较过程,或者excel的透视表功能对各类的各个指标进行描述。其中,report报表用于描述聚类结果。对各类指标的比较来初步定义类别,主要根据专业知识来判定。这里到此为止。
以上过程涉及到spss层次聚类中的Q型聚类和R型聚类,单因素方差分析,means过程等,是一个很不错的多种分析方法联合使用的案例。
聚类分析的应用
聚类分析是细分市场的有效工具,被用来发现不同的客户群,并且它通过对不同的客户群的特征的刻画,被用于研究消费者行为,寻找新的潜在市场。
聚类分析被用来对动植物和基因进行分类,以获取对种群固有结构的认识。
聚类分析可以通过平均消费来鉴定汽车保险单持有者的分组,同时可以根据住宅类型、价值、地理位置来鉴定城市的房产分组。
聚类分析被用来在网上进行文档归类。
聚类分析通过分组聚类出具有相似浏览行为的客户,并分析客户的共同特征,从而帮助电子商务企业了解自己的客户,向客户提供更合适的服务。
‘陆’ DBSCAN原理
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,它是一种基于高密度连通区域的、基于密度的聚类算法,能够将具有足够高密度的区域划分为簇,并在具有噪声的数据中发现任意形状的簇。我们总结一下DBSCAN聚类算法原理的基本要点:
DBSCAN算法需要选择一种距离度量,对于待聚类的数据集中,任意两个点之间的距离,反映了点之间的密度,说明了点与点是否能够聚到同一类中。由于DBSCAN算法对高维数据定义密度很困难,所以对于二维空间中的点,可以使用欧几里德距离来进行度量。
DBSCAN算法需要用户输入2个参数:一个参数是半径(Eps),表示以给定点P为中心的圆形邻域的范围;另一个参数是以点P为中心的邻域内最少点的数量(MinPts)。如果满足:以点P为中心、半径为Eps的邻域内的点的个数不少于MinPts,则称点P为核心点。
DBSCAN聚类使用到一个k-距离的概念,k-距离是指:给定数据集P={p(i); i=0,1,…n},对于任意点P(i),计算点P(i)到集合D的子集S={p(1), p(2), …, p(i-1), p(i+1), …, p(n)}中所有点之间的距离,距离按照从小到大的顺序排序,假设排序后的距离集合为D={d(1), d(2), …, d(k-1), d(k), d(k+1), …,d(n)},则d(k)就被称为k-距离。也就是说,k-距离是点p(i)到所有点(除了p(i)点)之间距离第k近的距离。对待聚类集合中每个点p(i)都计算k-距离,最后得到所有点的k-距离集合E={e(1), e(2), …, e(n)}。
根据经验计算半径Eps:根据得到的所有点的k-距离集合E,对集合E进行升序排序后得到k-距离集合E’,需要拟合一条排序后的E’集合中k-距离的变化曲线图,然后绘出曲线,通过观察,将急剧发生变化的位置所对应的k-距离的值,确定为半径Eps的值。
根据经验计算最少点的数量MinPts:确定MinPts的大小,实际上也是确定k-距离中k的值,DBSCAN算法取k=4,则MinPts=4。
另外,如果觉得经验值聚类的结果不满意,可以适当调整Eps和MinPts的值,经过多次迭代计算对比,选择最合适的参数值。可以看出,如果MinPts不变,Eps取得值过大,会导致大多数点都聚到同一个簇中,Eps过小,会导致以一个簇的分裂;如果Eps不变,MinPts的值取得过大,会导致同一个簇中点被标记为噪声点,MinPts过小,会导致发现大量的核心点。
‘柒’ 常用的聚类方法有哪几种
聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。
1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。
2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。
3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。
4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。
5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。
6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。
(7)聚类算法贪心算法扩展阅读:
在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。
它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。
许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。
许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。
‘捌’ 四种聚类方法之比较
四种聚类方法之比较
介绍了较为常见的k-means、层次聚类、SOM、FCM等四种聚类算法,阐述了各自的原理和使用步骤,利用国际通用测试数据集IRIS对这些算法进行了验证和比较。结果显示对该测试类型数据,FCM和k-means都具有较高的准确度,层次聚类准确度最差,而SOM则耗时最长。
关键词:聚类算法;k-means;层次聚类;SOM;FCM
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等[1]。
聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。
聚类技术[2]正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。
1 聚类算法的分类
目前,有大量的聚类算法[3]。而对于具体应用,聚类算法的选择取决于数据的类型、聚类的目的。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。
主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法[4-6]。
每一类中都存在着得到广泛应用的算法,例如:划分方法中的k-means[7]聚类算法、层次方法中的凝聚型层次聚类算法[8]、基于模型方法中的神经网络[9]聚类算法等。
目前,聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类[10]也是聚类分析中研究较为广泛的一个分支。模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如着名的FCM算法等。
本文主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。
2 四种常用聚类算法研究
2.1 k-means聚类算法
k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:
这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi是簇Ci的平均值[9]。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下:
输入:包含n个对象的数据库和簇的数目k;
输出:k个簇,使平方误差准则最小。
步骤:
(1) 任意选择k个对象作为初始的簇中心;
(2) repeat;
(3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;
(4) 更新簇的平均值,即计算每个簇中对象的平均值;
(5) until不再发生变化。
2.2 层次聚类算法
根据层次分解的顺序是自底向上的还是自上向下的,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。
凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。四种广泛采用的簇间距离度量方法如下:
这里给出采用最小距离的凝聚层次聚类算法流程:
(1) 将每个对象看作一类,计算两两之间的最小距离;
(2) 将距离最小的两个类合并成一个新类;
(3) 重新计算新类与所有类之间的距离;
(4) 重复(2)、(3),直到所有类最后合并成一类。
2.3 SOM聚类算法
SOM神经网络[11]是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。
SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。
算法流程:
(1) 网络初始化,对输出层每个节点权重赋初值;
(2) 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量;
(3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;
(4) 提供新样本、进行训练;
(5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。
2.4 FCM聚类算法
1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析[12]。
FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。
算法流程:
(1) 标准化数据矩阵;
(2) 建立模糊相似矩阵,初始化隶属矩阵;
(3) 算法开始迭代,直到目标函数收敛到极小值;
(4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。
3 四种聚类算法试验
3.1 试验数据
实验中,选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS[13]数据集,IRIS数据集包含150个样本数据,分别取自三种不同的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度,单位为cm。在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。
3.2 试验结果说明
文中基于前面所述各算法原理及算法流程,用matlab进行编程运算,得到表1所示聚类结果。
如表1所示,对于四种聚类算法,按三方面进行比较:(1)聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和;(2)运行时间:即聚类整个过程所耗费的时间,单位为s;(3)平均准确度:设原数据集有k个类,用ci表示第i类,ni为ci中样本的个数,mi为聚类正确的个数,则mi/ni为第i类中的精度,则平均精度为:
3.3 试验结果分析
四种聚类算法中,在运行时间及准确度方面综合考虑,k-means和FCM相对优于其他。但是,各个算法还是存在固定缺点:k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定,本实验中虽是经过多次实验取的平均值,但是具体初始点的选择方法还需进一步研究;层次聚类虽然不需要确定分类数,但是一旦一个分裂或者合并被执行,就不能修正,聚类质量受限制;FCM对初始聚类中心敏感,需要人为确定聚类数,容易陷入局部最优解;SOM与实际大脑处理有很强的理论联系。但是处理时间较长,需要进一步研究使其适应大型数据库。
聚类分析因其在许多领域的成功应用而展现出诱人的应用前景,除经典聚类算法外,各种新的聚类方法正被不断被提出。
‘玖’ 多元统计学-聚类分析
1. 应用统计学与R语言实现学习笔记(十)——聚类分析 )
2. 厦门大学-多元统计分析
3. DBSCAN 密度聚类法
4. 四大聚类算法(KNN、Kmeans、密度聚类、层次聚类)
俗话说,物以类聚,人以群分。聚类在日常生活中,非常常见.
就是将相似的物体,放在一起.
聚类的目的 ——根据已知数据( 一批观察个体的许多观测指标) , 按照一定的数学公式计算各观察个体或变量(指标)之间亲疏关系的统计量(距离或相关系数等)。 根据某种准则( 最短距离法、最长距离法、中间距离法、重心法等),使同一类内的差别较小,而类与类之间的差别较大,最终将观察个体或变量分为若干类。
根据分类的对象可将聚类分析分为:
样品间亲疏程度的测度
研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点属于不同的类。
变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。
而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。
距离
假使每个样品有p个变量,则每个样品都可以看成p维空间中的一个点, n个样品就是p维空间中的n个点,则第i样品与第j样品之间的距离可以进行计算。
几种常用方式度量:
欧式距离 L2(Euclidean distance)--- 常用
马氏距离(Mahalanobis distance)---协方差矩阵
Minkowski测度( Minkowski metric)
Canberra测度(Canberra metric)
有了距离衡量度量,我们可以计算两两的距离,就得到距离矩阵~
比如:下面用dist 计算距离的方法
定义了距离之后,怎样找到"合理"的规则,使相似的/距离小的个体聚成一个族群?
考虑所有的群组组合显然在计算上很难实现,所以一种常用的聚类方法为层次聚类/系统聚类(hierarchical
clustering)
从系统树图中可以看出,我们需要度量族群与族群之间的距离,不同的定义方法决定了不同的聚类结果:
计算族群距离的三种方法的比较:
(可以看到都是小小的族群合并在一起,因为让方差增加最小,倾向与合并小群体)
一般情况,我们得到系统树,需要对树进行切割. 如下图一条条竖线.
层次聚类族群数的选择:
1、建立n个初始族群,每个族群中只有一个个体
2、计算n个族群间的距离矩阵
3、合并距离最小的两个族群
4、计算新族群间的距离矩阵。如果组别数为1,转步骤5;否则转步骤3
5、绘制系统树图
6、选择族群个数
在层次聚类中,一旦个体被分入一个族群,它将不可再被归入另一个族群,故现在介绍一个“非层次”的聚类方法——分割法(Partition)。最常用的分割法是k-均值(k-Means)法
k-均值法试图寻找 个族群 的划分方式,使得划分后的族群内方差和(within-group sum of squares,WGSS)最小.
思路也是将相近的样本,聚在一起,使得组内方差小,组间方差大.
① 选定 个“种子”(Cluster seeds)作为初始族群代表
② 每个个体归入距离其最近的种子所在的族群
③ 归类完成后,将新产生的族群的质心定为新的种子
④ 重复步骤2和3,直到不再需要移动
⑤ 选择不同的k 值,计算WGSS,找到拐点确定最合适的K.
有多种初始种子的选取方法可供选择:
1、在相互间隔超过某指定最小距离的前提下,随机选择k个个体
2、选择数据集前k个相互间隔超过某指定最小距离的个体
3、选择k个相互距离最远的个体
4、选择k个等距网格点(Grid points),这些点可能不是数据集的点
可以想到,左侧的点收敛更快得到全局最优;左侧可能聚类效果一般,或者收敛非常慢,得到局部最优.
我们的目标是使得WGSS足够小,是否应该选取k使得WGSS最小?
我们需要选择一个使得WGSS足够小(但不是最小)的k值.(PS: 族群内方差和最小时候,k=n,此时WGSS为0,此时是过拟合问题~)
当我们分部计算k=1,2,3,4,5... 时候,WGSS值,就可以绘制下面碎石图。及WGSS 随着k 变化过程。k 越大,WGSS越小.
‘拾’ 聚类分析(Cluster Analysis)
聚类,将相似的事物聚集在一起,将不相似的事物划分到不同的类别的过程。是将复杂数据简化为少数类别的一种手段。
设有m个样本单位,每个样本测的n项指标(变量),原始资料矩阵:
指标的选择非常重要:
必要性要求:和聚类分析的目的密切相关,并不是越多越好
代表性要求:反映要分类变量的特征
区分度要求:在不同研究对象类别上的值有明显的差异
独立性要求:变量之间不能高度相关(儿童生长身高和体重非常相关)
散布性要求:最好在值域范围内分布不太集中
在各种标准量度值scale差异过大时,或数据不符合正态分布时,可能需要进行数据标准化。
(1) 总和标准化 。 分别求出各聚类指标所对应的数据的总和, 以各指标的数据除以该指标的数据的总和。
根据聚类对象的不同,分为Q型聚类,R型聚类
(1)常见距离统计量 - 闵可夫斯基距离系列(线性距离)
p=2,时为欧氏距离(n维空间中的几何距离)
p=∞,时为切比雪夫距离(棋盘格距离)
(2)常见距离统计量 - 马氏距离(协方差距离)
均值为μ,协方差矩阵为∑的向量x=(1,2,...n)
相比于欧式距离,马氏距离考虑到各种指标之间的联系(如身高和体重并不独立,)且马氏距离具有尺度无关性(scale-invariant),因此可不必做标准化。
如果协方差矩阵为单位矩阵(各指标之间完全相互独立),则马氏距离化为欧几里得距离。
如果协方差矩阵为对角矩阵,则马氏距离化为正规化的欧几里得距离(normalized Euclidean distance)
(3)常见距离统计量 - 文本距离
文本距离通常用来度量文本之间的相似度,在生物研究中常见于序列比对分析。
常见相似系数统计量
相似系数= 1,表明完全相似
相似系数= -1 表明完全相反
相似系数 = 0 表明完全独立
相关系数:
类与类之间 距离的度量方法:
系统聚类法不仅需要度量个体与个体之间的距离,还要度量类与类之间的距离。类间距离被度量出来之后,距离最小的两个小类将首先被合并成为一类。 由类间距离定义的不同产生了不同的系统聚类法。
目前有1000多种聚类算法:没有一种聚类算法可以包打天下,聚类算法中的各种参数也必须依据具体问题而调节
常见聚类算法的分类:
1,层次聚类(Hierarchical clustering)
2,划分聚类(Partitioning clustering)
3,密度聚类(Density-based)
4,期望最大化聚类(Expectation Maximization)
5,网格聚类(Grid-based)
6,模型聚类(Model-based)
1. 层次聚类的方法
基本思想:
在聚类分析的开始,每个样本(或变量)自成一类; 然后,按照某种方法度量所有样本(或变量)之间的亲疏程度,并把最相似的样本(或变量)首先聚成一小类; 接下来,度量剩余的样本(或变量)和小类间的亲疏程度,并将当前最接近的样本(或变量)与小类聚成一类;如此反复,知道所有样本聚成一类为止。
举例:
有一组数据D={a,b,c,d,e} 给了它们之间的距离矩阵。
首先,每一个例子都是一个类:
2. 划分聚类的方法
划分聚类算法:
给定一个包含n个样本的数据集,基于划分的方法(Partitioning Method)就是将n个样本按照特定的度量划分为k个簇(k≤n),使得每个簇至少包含一个对象,并且每个对象属于且仅属于一个簇,而且簇之间不存在层次关系。
基于划分的方法大多数是基于距离来划分的,首先对样本进行初始化分,然后计算样本间的距离,重新对数据集中的样本进行划分,将样本划分到距离更近的簇中,得到一个新的样本划分,迭代计算直到聚类结果满足用户指定的要求。
要想得到最优的聚类结果,算法需要穷举数据集所有可能的划分情况,但是在实际应用中数据量都比较大,利用穷举方法聚类显然是不现实的,因此大部分基于划分的聚类方法采用贪心策略,即在每一次划分过程中寻求最优解,然后基于最优解进行迭代计算,逐步提高聚类结果的质量。虽然这种方式有可能得到局部最优结果,但是结合效率方面考虑,也是可以接受的。
算法:
举例:
有一个二维空间的一些点,我们要将它们分成3个类,即K=3。
我们首先随机选择3个初始质心,每一个质心为一类:
然后我们计算每一个不是质心的点到这三个质心的距离:
将这些点归类于距离最近的那个质心的一类:
重新计算这三个分类的质心:
不断重复上述两步,更新三个类:
当稳定以后,迭代停止,这时候的三个类就是我们得到的最后的三个:
最着名的是k-means聚类算法和K-medoids算法(中心点聚类)
处理“大海中的若干孤岛”,以密度来区分岛
大部分基于密度的方法(Density-based Method)采用距离度量来对数据集进行划分,在球状的数据集中能够正确划分,但是在非球状的数据集中则无法对样本进行正确聚类,并且受到数据集中的噪声数据影响较大。基于密度的方法可以克服这两个弱点。
基于密度的方法提出“密度”的思想,即给定邻域中样本点的数量,当邻域中密度达到或超过密度阈值时,将邻域内的样本包含到当前的簇中。若邻域的密度不满足阈值要求,则当前的簇划分完成,对下一个簇进行划分。基于密度的方法可以对数据集中的离群点进行检测和过滤。
算法 :
基于网格的方法(Grid-based Method)将数据集空间划分为有限个网格单元,形成一个网络结构,在后续的聚类过程中,以网格单元为基本单位进行聚类,而不是以样本为单位。由于算法处理时间与样本数量无关,只与网格单元数量有关,因此这种方法在处理大数据集时效率很高。基于网格的方法可以在网格单元划分的基础上,与基于密度的方法、基于层次的方法等结合使用。
基于模型的方法(Model-based Method)假定数据集满足一定的分布模型,找到这样的分布模型,就可以对数据集进行聚类。基于模型的方法主要包括基于统计和基于神经网络两大类,前者以高斯混合模型(Gaussian Mixture Models,GMM)为代表,后者以自组织映射网络(Self Organizing Map,SOM)为代表。目前以基于统计模型的方法为主。
以下内容后续补充:
数据示例:
数据示例:
为了有效利用聚类算法, 首先需要度量观测值见的距离,在R中常通过stats包里的dist函数来实现:
dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)
dist 函数计算对象(矩阵或数据框)中两两间的距离,返回的是距离矩阵(dist类对象)。dist函数的参数描述如下。
另一个计算点之间的距离的方法是cluster包里面的daisy函数:
daisy函数计算数据集中每对观测值的不相似度。daisy函数的参数描述如下:
k-means聚类是最简单的聚类算法之一。R中可以通过stats包里面的kmeans函数实现k-means聚类:
kmeans(x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), trace=FALSE)
kmeans函数的参数描述如下: