导航:首页 > 源码编译 > astar算法流程图

astar算法流程图

发布时间:2022-11-03 17:23:38

Ⅰ 求八数码问题算法,并说明下该算法优缺点,要算法,不是源代码(可以没有)。

八数码问题

一.八数码问题
八数码问题也称为九宫问题。在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。所谓问题的一个状态就是棋子在棋盘上的一种摆法。棋子移动后,状态就会发生改变。解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。
八数码问题一般使用搜索法来解。搜索法有广度优先搜索法、深度优先搜索法、A*算法等。这里通过用不同方法解八数码问题来比较一下不同搜索法的效果。

二.搜索算法基类
1.八数码问题的状态表示
八数码问题的一个状态就是八个数字在棋盘上的一种放法。每个棋子用它上面所标的数字表示,并用0表示空格,这样就可以将棋盘上棋子的一个状态存储在一个一维数组p[9]中,存储的顺序是从左上角开始,自左至右,从上到下。也可以用一个二维数组来存放。
2.结点
搜索算法中,问题的状态用结点描述。结点中除了描述状态的数组p[9]外,还有一个父结点指针last,它记录了当前结点的父结点编号,如果一个结点v是从结点u经状态变化而产生的,则结点u就是结点v的父结点,结点v的last记录的就是结点u的编号。在到达目标结点后,通过last 可以找出搜索的路径。
3.类的结构
在C++中用类来表示结点,类将结点有关的数据操作封装在一起。
不同的搜索算法具有一定共性,也有各自的个性,因此这里将不同搜索算法的共有的数据和功能封装在一个基类中,再通过继承方式实现不同的搜索算法。
4.结点扩展规则
搜索就是按照一定规则扩展已知结点,直到找到目标结点或所有结点都不能扩展为止。
八数码问题的结点扩展应当遵守棋子的移动规则。按照棋子移动的规则,每一次可以将一个与空格相邻棋子移动到空格中,实际上可以看作是空格作相反移动。空格移动的方向可以是右、下、左、上,当然不能移出边界。棋子的位置,也就是保存状态的数组元素的下标。空格移动后,它的位置发生变化,在不移出界时,空格向右、下、左和上移动后,新位置是原位置分别加上1、3、-1、-3,如果将空格向右、下、左和上移动分别用0、1、2、3表示,并将-3、3、-1、1放在静态数组d[4]中,空格位置用spac表示,那么空格向方向i移动后,它的位置变为spac+d[i]。空格移动所产生的状态变化,反映出来则是将数组p[]中,0的新位置处的数与0交换位置。
5.八数码问题的基类

八数码问题的基类及其成员函数的实现如下:
#define Num 9
class TEight
{
public:
TEight(){}
TEight(char *fname); //用文件数据构造节点
virtual void Search()=0; //搜索
protected:
int p[Num];
int last,spac;
static int q[Num],d[],total;
void Printf();
bool operator==(const TEight &T);
bool Extend(int i);
};
int TEight::q[Num];//储存目标节点
int TEight::d[]={1,3,-1,-3};//方向
int TEight::total=0;//步数

TEight::TEight(char *fname)
{
ifstream fin;
fin.open(fname,ios::in);
if(!fin)
{
cout<<"不能打开数据文件!"<<endl;
return;
}
int i;
for(i=0;i<Num;)//得到源节点
fin>>p[i++];
fin>>spac;
for(i=0;i<Num;)//得到目标节点
fin>>q[i++];
fin.close();
last=-1;
total=0;
}

void TEight::Printf()//把路径打印到结果文件
{
ofstream fout;
fout.open("eight_result.txt",ios::ate|ios::app);
fout<<total++<<"t";
for(int i=0;i<Num;)
fout<<" "<<p[i++];
fout<<endl;
fout.close();
}

bool TEight::operator==(const TEight &T)//判断两个状态是否相同
{
for(int i=0;i<Num;)
if(T.p[i]!=p[i++])
return 0;
return 1;
}

bool TEight::Extend(int i)//扩展
{
if(i==0 && spac%3==2 || i==1 && spac>5
|| i==2 && spac%3==0 || i==3 && spac<3)
return 0;
int temp=spac;
spac+=d[i];
p[temp]=p[spac];
p[spac]=0;
return 1;
}

数据文件的结构:
一共三行,第一行是用空格隔开的九个数字0~8,这是初始状态。第二行是一个数字,空格(数字0)的位置,第三行也是用空格隔开的九个数字0~8,这是目标状态。

三.线性表
搜索法在搜索过程中,需要使用一个队列存储搜索的中间结点,为了在找到目标结点后,能够找到从初始结点到目标结点的路径,需要保留所有搜索过的结点。另一方面,不同问题甚至同一问题的不同搜索方法中,需要存储的结点数量相差很大,所以这里采用链式线性表作为存储结构,同时,为适应不同问题,线性表设计成类模板形式。
template<class Type> class TList; //线性表前视定义

template<class Type> class TNode //线性表结点类模板
{
friend class TList<Type>;
public:
TNode(){}
TNode(const Type& dat);
private:
TNode<Type>* Next;
Type Data;
};

template<class Type> class TList
{
public:
TList(){Last=First=0;Length=0;} //构造函数
int Getlen()const{return Length;} //成员函数,返回线性表长度
int Append(const Type& T); //成员函数,从表尾加入结点
int Insert(const Type& T,int k); //成员函数,插入结点
Type GetData(int i); //成员函数,返回结点数据成员
void SetData(const Type& T,int k); //成员函数,设置结点数据成员
private:
TNode<Type> *First,*Last; //数据成员,线性表首、尾指针
int Length; //数据成员,线性表长度
};

template<class Type> int TList<Type>::Append(const Type& T)
{
Insert(T,Length);
return 1;
}

template<class Type> int TList<Type>::Insert(const Type& T,int k)
{
TNode<Type> *p=new TNode<Type>;
p->Data=T;
if(First)
{
if(k<=0)
{
p->Next=First;
First=p;
}
if(k>Length-1)
{
Last->Next=p;
Last=Last->Next;
Last->Next=0;
}
if(k>0 && k<Length)
{
k--;
TNode<Type> *q=First;
while(k-->0)
q=q->Next;
p->Next=q->Next;
q->Next=p;
}
}
else
{
First=Last=p;
First->Next=Last->Next=0;
}
Length++;
return 1;
}

template<class Type> Type TList<Type>::GetData(int k)
{
TNode<Type> *p=First;
while(k-->0)
p=p->Next;
return p->Data;
}

template<class Type> void TList<Type>::SetData(const Type& T,int k)
{
TNode<Type> *p=First;
while(k-->0)
p=p->Next;
p->Data=T;
}
线性表单独以头文件形式存放。

四.广度优先搜索法
在搜索法中,广度优先搜索法是寻找最短路经的首选。
1.广度优先搜索算法的基本步骤
1)建立一个队列,将初始结点入队,并设置队列头和尾指针
2)取出队列头(头指针所指)的结点进行扩展,从它扩展出子结点,并将这些结点按扩展的顺序加入队列。
3)如果扩展出的新结点与队列中的结点重复,则抛弃新结点,跳至第六步。
4)如果扩展出的新结点与队列中的结点不重复,则记录其父结点,并将它加入队列,更新队列尾指针。
5)如果扩展出的结点是目标结点,则输出路径,程序结束。否则继续下一步。
6)如果队列头的结点还可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步。
2.搜索路径的输出
搜索到目标结点后,需要输出搜索的路径。每个结点有一个数据域last,它记录了结点的父结点,因此输出搜索路径时,就是从目标结点Q出发,根据last找到它的父结点,再根据这个结点的last找到它的父结点,....,最后找到初始结点。搜索的路径就是从初始结点循相反方向到达目标结点的路径。
3.广度优先搜索法TBFS类的结构
广度优先搜索法TBFS类是作为TEight类的一个子类。其类的结构和成员函数的实现如下:
class TBFS:public TEight
{
public:
TBFS(){}
TBFS(char *fname):TEight(fname){}
virtual void Search();
private:
void Printl(TList<TBFS> &L);
int Repeat(TList<TBFS> &L);
int Find();
};

void TBFS::Printl(TList<TBFS> &L)
{
TBFS T=*this;
if(T.last==-1)
return;
else
{
T=L.GetData(T.last);
T.Printl(L);
T.Printf();
}
}

int TBFS::Repeat(TList<TBFS> &L)
{
int n=L.Getlen();
int i;
for(i=0;i<n;i++)
if(L.GetData(i)==*this)
break;
return i;
}

int TBFS::Find()
{
for(int i=0;i<Num;)
if(p[i]!=q[i++])
return 0;
return 1;
}

void TBFS::Search()
{
TBFS T=*this;
TList<TBFS> L;
L.Append(T);
int head=0,tail=0;
while(head<=tail)
{
for(int i=0;i<4;i++)
{
T=L.GetData(head);
if(T.Extend(i) && T.Repeat(L)>tail)
{
T.last=head;
L.Append(T);
tail++;
}
if(T.Find())
{
T.Printl(L);
T.Printf();
return;
}
}
head++;
}
}
4.广度优先搜索法的缺点
广度优先搜索法在有解的情形总能保证搜索到最短路经,也就是移动最少步数的路径。但广度优先搜索法的最大问题在于搜索的结点数量太多,因为在广度优先搜索法中,每一个可能扩展出的结点都是搜索的对象。随着结点在搜索树上的深度增大,搜索的结点数会很快增长,并以指数形式扩张,从而所需的存储空间和搜索花费的时间也会成倍增长。

五、A*算法
1.启发式搜索
广度优先搜索和双向广度优先搜索都属于盲目搜索,这在状态空间不大的情况下是很合适的算法,可是当状态空间十分庞大时,它们的效率实在太低,往往都是在搜索了大量无关的状态结点后才碰到解答,甚至更本不能碰到解答。
搜索是一种试探性的查寻过程,为了减少搜索的盲目性引,增加试探的准确性,就要采用启发式搜索了。所谓启发式搜索就是在搜索中要对每一个搜索的位置进行评估,从中选择最好、可能容易到达目标的位置,再从这个位置向前进行搜索,这样就可以在搜索中省略大量无关的结点,提高了效率。
2.A*算法
A*算法是一种常用的启发式搜索算法。
在A*算法中,一个结点位置的好坏用估价函数来对它进行评估。A*算法的估价函数可表示为:
f'(n) = g'(n) + h'(n)
这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值(也称为最小耗费或最小代价),h'(n)是n到目标的最短路经的启发值。由于这个f'(n)其实是无法预先知道的,所以实际上使用的是下面的估价函数:
f(n) = g(n) + h(n)
其中g(n)是从初始结点到节点n的实际代价,h(n)是从结点n到目标结点的最佳路径的估计代价。在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。用f(n)作为f'(n)的近似,也就是用g(n)代替g'(n),h(n)代替h'(n)。这样必须满足两个条件:(1)g(n)>=g'(n)(大多数情况下都是满足的,可以不用考虑),且f必须保持单调递增。(2)h必须小于等于实际的从当前节点到达目标节点的最小耗费h(n)<=h'(n)。第二点特别的重要。可以证明应用这样的估价函数是可以找到最短路径的。
3.A*算法的步骤
A*算法基本上与广度优先算法相同,但是在扩展出一个结点后,要计算它的估价函数,并根据估价函数对待扩展的结点排序,从而保证每次扩展的结点都是估价函数最小的结点。
A*算法的步骤如下:
1)建立一个队列,计算初始结点的估价函数f,并将初始结点入队,设置队列头和尾指针。
2)取出队列头(队列头指针所指)的结点,如果该结点是目标结点,则输出路径,程序结束。否则对结点进行扩展。
3)检查扩展出的新结点是否与队列中的结点重复,若与不能再扩展的结点重复(位于队列头指针之前),则将它抛弃;若新结点与待扩展的结点重复(位于队列头指针之后),则比较两个结点的估价函数中g的大小,保留较小g值的结点。跳至第五步。
4)如果扩展出的新结点与队列中的结点不重复,则按照它的估价函数f大小将它插入队列中的头结点后待扩展结点的适当位置,使它们按从小到大的顺序排列,最后更新队列尾指针。
5)如果队列头的结点还可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步。
4.八数码问题的A*算法的估价函数
估价函数中,主要是计算h,对于不同的问题,h有不同的含义。那么在八数码问题中,h的含意是各什么?八数码问题的一个状态实际上是数字0~8的一个排列,用一个数组p[9]来存储它,数组中每个元素的下标,就是该数在排列中的位置。例如,在一个状态中,p[3]=7,则数字7的位置是3。如果目标状态数字3的位置是8,那么数字7对目标状态的偏移距离就是3,因为它要移动3步才可以回到目标状态的位置。
八数码问题中,每个数字可以有9个不同的位置,因此,在任意状态中的每个数字和目标状态中同一数字的相对距离就有9*9种,可以先将这些相对距离算出来,用一个矩阵存储,这样只要知道两个状态中同一个数字的位置,就可查出它们的相对距离,也就是该数字的偏移距离:
0 1 2 3 4 5 6 7 8
0 0 1 2 1 2 3 2 3 4
1 1 0 1 2 1 2 3 2 3
2 2 1 0 3 2 1 4 3 2
3 1 2 3 0 1 2 1 2 3
4 2 1 2 1 0 1 2 1 2
5 3 2 1 2 1 0 3 2 1
6 2 3 4 1 2 3 0 1 2
7 3 2 3 2 1 2 1 0 1
8 4 3 2 3 2 1 2 1 0
例如在一个状态中,数字8的位置是3,在另一状态中位置是7,那么从矩阵的3行7列可找到2,它就是8在两个状态中的偏移距离。
估价函数中的h就是全体数字偏移距离之和。显然,要计算两个不同状态中同一数字的偏移距离,需要知道该数字在每个状态中的位置,这就要对数组p[9]进行扫描。由于状态发生变化,个数字的位置也要变化,所以每次计算h都沿线扫描数组,以确定每个数字在数组中的位置。为了简化计算,这里用一个数组存储状态中各个数字的位置,并让它在状态改变时随着变化,这样就不必在每次计算h时,再去扫描状态数组。
例如,某个状态中,数字5的位置是8,如果用数组r[9]存储位置,那么就有r[5]=8。
现在用数组r[9]存储当前状态的数字位置,而用s[9]存储目标状态的数字位置,那么当前状态数字i对目标状态的偏移距离就是矩阵中r[i]行s[i]列对应的值。
5.A*算法的类结构
A*算法的类声明如下:
class TAstar:public TEight
{
public:
TAstar(){} //构造函数
TAstar(char *fname); //带参数构造函数
virtual void Search(); //A*搜索法
private:
int f,g,h; //估价函数
int r[Num]; //存储状态中各个数字位置的辅助数组
static int s[Num]; //存储目标状态中各个数字位置的辅助数组
static int e[]; //存储各个数字相对距离的辅助数组
void Printl(TList<TAstar> L); //成员函数,输出搜索路径
int Expend(int i); //成员函数,A*算法的状态扩展函数
int Calcuf(); //成员函数,计算估价函数
void Sort(TList<TAstar>& L,int k); //成员函数,将新扩展结点按f从小到大顺序插入待扩展结点队列
int Repeat(TList<TAstar> &L); //成员函数,检查结点是否重复
};

int TAstar::s[Num],TAstar::e[Num*Num];

TAstar::TAstar(char *fname):TEight(fname)
{
for(int i=0;i<Num;)
{
r[p[i]]=i; //存储初始状态个个数字的位置
s[q[i]]=i++; //存储目标状态个个数字的位置
}
ifstream fin;
fin.open("eight_dis.txt",ios::in); //打开数据文件
if(!fin)
{
cout<<"不能打开数据文件!"<<endl;
return;
}
for(int i=0;i<Num*Num;i++) //读入各个数字相对距离值
fin>>e[i];
fin.close();
f=g=h=0; //估价函数初始值
}

void TAstar::Printl(TList<TAstar> L)
{
TAstar T=*this;
if(T.last==-1) return;
else
{
T=L.GetData(T.last);
T.Printl(L);
T.Printf();
}
}

int TAstar::Expend(int i)
{
if(Extend(i)) //结点可扩展
{
int temp=r[p[r[0]]]; //改变状态后数字位置变化,存储改变后的位置
r[p[r[0]]]=r[0];
r[0]=temp;
return 1;
}
return 0;
}

int TAstar::Calcuf()
{
h=0;
for(int i=0;i<Num;i++) //计算估价函数的 h
h+=e[Num*r[i]+s[i]];
return ++g+h;
}

void TAstar::Sort(TList<TAstar>& L,int k)
{
int n=L.Getlen();
int i;
for(i=k+1;i<n;i++)
{
TAstar T=L.GetData(i);
if(this->f<=T.f)
break;
}
L.Insert(*this,i);
}

int TAstar::Repeat(TList<TAstar> &L)
{
int n=L.Getlen();
int i;
for(i=0;i<n;i++)
if(L.GetData(i)==*this)
break;
return i;
}

void TAstar::Search()
{
TAstar T=*this; //初始结点
T.f=T.Calcuf(); //初始结点的估价函数
TList<TAstar> L; //建立队列
L.Append(T); //初始结点入队
int head=0,tail=0; //队列头和尾指针
while(head<=tail) //队列不空则循环
{
for(int i=0;i<4;i++) //空格可能移动方向
{
T=L.GetData(head); //去队列头结点
if(T.h==0) //是目标结点
{
T.Printl(L);//输出搜索路径
T.Printf(); //输出目标状态
return; //结束
}
if(T.Expend(i)) //若结点可扩展
{
int k=T.Repeat(L); //返回与已扩展结点重复的序号
if(k<head) //如果是不能扩展的结点
continue; //丢弃
T.last=head; //不是不能扩展的结点,记录父结点
T.f=T.Calcuf(); //计算f
if(k<=tail) //新结点与可扩展结点重复
{
TAstar Temp=L.GetData(k);
if(Temp.g>T.g) //比较两结点g值
L.SetData(T,k); //保留g值小的
continue;
}
T.Sort(L,head) ; //新结点插入可扩展结点队列
tail++; //队列尾指针后移
}
}
head++; //一个结点不能再扩展,队列头指针指向下一结点
}
}

六、测试程序
A*算法的测试:
int main()
{
TAstar aStar("eight.txt");
aStar.Search();
system("pauze");
return 0;
}
eight.txt文件中的数据(初始态和目标态):
一共三行,第一行是用空格隔开的九个数字0~8,这是初始状态。第二行是一个数字,空格(数字0)的位置,第三行也是用空格隔开的九个数字0~8,这是目标状态。

8 3 5 1 2 7 4 6 0
8
1 2 3 4 5 6 7 8 0

eight_dis.txt中的数据(估计函数使用)
0 1 2 1 2 3 2 3 4
1 0 1 2 1 2 3 2 3
2 1 0 3 2 1 4 3 2
1 2 3 0 1 2 1 2 3
2 1 2 1 0 1 2 1 2
3 2 1 2 1 0 3 2 1
2 3 4 1 2 3 0 1 2
3 2 3 2 1 2 1 0 1
4 3 2 3 2 1 2 1 0

eight_Result.txt中的结果(运行后得到的结果)

七、算法运行结果
1.BFS算法只能适用于到达目标结点步数较少的情况,如果步数超过15步,运行时间太长,实际上不再起作用。
2.对于随机生成的同一个可解状态,BFS算法最慢,DBFS算法较慢,A*算法较快。但在15步以内,DBFS算法与A*算法相差时间不大,超过15步后,随步数增加,A*算法的优势就逐渐明显,A*算法要比DBFS算法快5倍以上,并随步数增大而增大。到25步以上,DBFS同样因运行时间过长而失去价值。
3.一般来说,解答的移动步数每增加1,程序运行时间就要增加5倍以上。由于八数码问题本身的特点,需要检查的节点随步数增大呈指数形式增加,即使用A*算法,也难解决移动步数更多的问题。

八、问题可解性
八数码问题的一个状态实际上是0~9的一个排列,对于任意给定的初始状态和目标,不一定有解,也就是说从初始状态不一定能到达目标状态。因为排列有奇排列和偶排列两类,从奇排列不能转化成偶排列或相反。
如果一个数字0~8的随机排列871526340,用F(X)表示数字X前面比它小的数的个数,全部数字的F(X)之和为Y=∑(F(X)),如果Y为奇数则称原数字的排列是奇排列,如果Y为偶数则称原数字的排列是偶排列。
例如871526340这个排列的
Y=0+0+0+1+1+3+2+3+0=10
10是偶数,所以他偶排列。871625340
Y=0+0+0+1+1+2+2+3+0=9
9是奇数,所以他奇排列。
因此,可以在运行程序前检查初始状态和目标状态的窘是否相同,相同则问题可解,应当能搜索到路径。否则无解。

PS:整理自网络

Ⅱ 广度优先算法的优化——A*算法问题

英文叫 a-star 中文叫a星
我以前见过用astar算法求解这类问题的论文
你在上搜索一下 “A星算法”有这方面的解释

Ⅲ A*算法的实际运用

估价值与实际值越接近,估价函数取得就越好
例如对于几何路网来说,可以取两节点间曼哈顿距离做为估价值,即f=g(n) + (abs(dx - nx) + abs(dy - ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijkstra算法的毫无方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
详细内容:
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
算起点的估价值;
将起点放入OPEN表; while(OPEN!=NULL){从OPEN表中取估价值f(n)最小的节点n;if(n节点==目标节点)break;for(当前节点n的每个子节点X){算X的估价值;if(XinOPEN)if(X的估价值小于OPEN表的估价值){把n设置为X的父亲;更新OPEN表中的估价值;//取最小路径的估价值}if(XinCLOSE)continue;if(Xnotinboth){把n设置为X的父亲;求X的估价值;并将X插入OPEN表中;//还没有排序}}//endfor将n节点插入CLOSE表中;按照估价值将OPEN表中的节点排序;//实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。}//endwhile(OPEN!=NULL)保存路径,即从终点开始,每个节点沿着父节点移动直至起点,这就是你的路径;
用C语言实现A*最短路径搜索算法 ,作者 Tittup frog(跳跳蛙)。 #include<stdio.h>#include<math.h>#defineMaxLength100//用于优先队列(Open表)的数组#defineHeight15//地图高度#defineWidth20//地图宽度#defineReachable0//可以到达的结点#defineBar1//障碍物#definePass2//需要走的步数#defineSource3//起点#defineDestination4//终点#defineSequential0//顺序遍历#defineNoSolution2//无解决方案#defineInfinity0xfffffff#defineEast(1<<0)#defineSouth_East(1<<1)#defineSouth(1<<2)#defineSouth_West(1<<3)#defineWest(1<<4)#defineNorth_West(1<<5)#defineNorth(1<<6)#defineNorth_East(1<<7)typedefstruct{signedcharx,y;}Point;constPointdir[8]={{0,1},//East{1,1},//South_East{1,0},//South{1,-1},//South_West{0,-1},//West{-1,-1},//North_West{-1,0},//North{-1,1}//North_East};unsignedcharwithin(intx,inty){return(x>=0&&y>=0&&x<Height&&y<Width);}typedefstruct{intx,y;unsignedcharreachable,sur,value;}MapNode;typedefstructClose{MapNode*cur;charvis;structClose*from;floatF,G;intH;}Close;typedefstruct//优先队列(Open表){intlength;//当前队列的长度Close*Array[MaxLength];//评价结点的指针}Open;staticMapNodegraph[Height][Width];staticintsrcX,srcY,dstX,dstY;//起始点、终点staticCloseclose[Height][Width];//优先队列基本操作voidinitOpen(Open*q)//优先队列初始化{q->length=0;//队内元素数初始为0}voidpush(Open*q,Closecls[Height][Width],intx,inty,floatg){//向优先队列(Open表)中添加元素Close*t;inti,mintag;cls[x][y].G=g;//所添加节点的坐标cls[x][y].F=cls[x][y].G+cls[x][y].H;q->Array[q->length++]=&(cls[x][y]);mintag=q->length-1;for(i=0;i<q->length-1;i++){if(q->Array[i]->F<q->Array[mintag]->F){mintag=i;}}t=q->Array[q->length-1];q->Array[q->length-1]=q->Array[mintag];q->Array[mintag]=t;//将评价函数值最小节点置于队头}Close*shift(Open*q){returnq->Array[--q->length];}//地图初始化操作voidinitClose(Closecls[Height][Width],intsx,intsy,intdx,intdy){//地图Close表初始化配置inti,j;for(i=0;i<Height;i++){for(j=0;j<Width;j++){cls[i][j].cur=&graph[i][j];//Close表所指节点cls[i][j].vis=!graph[i][j].reachable;//是否被访问cls[i][j].from=NULL;//所来节点cls[i][j].G=cls[i][j].F=0;cls[i][j].H=abs(dx-i)+abs(dy-j);//评价函数值}}cls[sx][sy].F=cls[sx][sy].H;//起始点评价初始值//cls[sy][sy].G=0;//移步花费代价值cls[dx][dy].G=Infinity;}voidinitGraph(constintmap[Height][Width],intsx,intsy,intdx,intdy){//地图发生变化时重新构造地inti,j;srcX=sx;//起点X坐标srcY=sy;//起点Y坐标dstX=dx;//终点X坐标dstY=dy;//终点Y坐标for(i=0;i<Height;i++){for(j=0;j<Width;j++){graph[i][j].x=i;//地图坐标Xgraph[i][j].y=j;//地图坐标Ygraph[i][j].value=map[i][j];graph[i][j].reachable=(graph[i][j].value==Reachable);//节点可到达性graph[i][j].sur=0;//邻接节点个数if(!graph[i][j].reachable){continue;}if(j>0){if(graph[i][j-1].reachable)//left节点可以到达{graph[i][j].sur|=West;graph[i][j-1].sur|=East;}if(i>0){if(graph[i-1][j-1].reachable&&graph[i-1][j].reachable&&graph[i][j-1].reachable)//up-left节点可以到达{graph[i][j].sur|=North_West;graph[i-1][j-1].sur|=South_East;}}}if(i>0){if(graph[i-1][j].reachable)//up节点可以到达{graph[i][j].sur|=North;graph[i-1][j].sur|=South;}if(j<Width-1){if(graph[i-1][j+1].reachable&&graph[i-1][j].reachable&&map[i][j+1]==Reachable)//up-right节点可以到达{graph[i][j].sur|=North_East;graph[i-1][j+1].sur|=South_West;}}}}}}intbfs(){inttimes=0;inti,curX,curY,surX,surY;unsignedcharf=0,r=1;Close*p;Close*q[MaxLength]={&close[srcX][srcY]};initClose(close,srcX,srcY,dstX,dstY);close[srcX][srcY].vis=1;while(r!=f){p=q[f];f=(f+1)%MaxLength;curX=p->cur->x;curY=p->cur->y;for(i=0;i<8;i++){if(!(p->cur->sur&(1<<i))){continue;}surX=curX+dir[i].x;surY=curY+dir[i].y;if(!close[surX][surY].vis){close[surX][surY].from=p;close[surX][surY].vis=1;close[surX][surY].G=p->G+1;q[r]=&close[surX][surY];r=(r+1)%MaxLength;}}times++;}returntimes;}intastar(){//A*算法遍历//inttimes=0;inti,curX,curY,surX,surY;floatsurG;Openq;//Open表Close*p;initOpen(&q);initClose(close,srcX,srcY,dstX,dstY);close[srcX][srcY].vis=1;push(&q,close,srcX,srcY,0);while(q.length){//times++;p=shift(&q);curX=p->cur->x;curY=p->cur->y;if(!p->H){returnSequential;}for(i=0;i<8;i++){if(!(p->cur->sur&(1<<i))){continue;}surX=curX+dir[i].x;surY=curY+dir[i].y;if(!close[surX][surY].vis){close[surX][surY].vis=1;close[surX][surY].from=p;surG=p->G+sqrt((curX-surX)*(curX-surX)+(curY-surY)*(curY-surY));push(&q,close,surX,surY,surG);}}}//printf(times:%d ,times);returnNoSolution;//无结果}constintmap[Height][Width]={{0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1},{0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,1},{0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1},{0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0},{0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,1},{0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0}};constcharSymbol[5][3]={□,▓,▽,☆,◎};voidprintMap(){inti,j;for(i=0;i<Height;i++){for(j=0;j<Width;j++){printf(%s,Symbol[graph[i][j].value]);}puts();}puts();}Close*getShortest(){//获取最短路径intresult=astar();Close*p,*t,*q=NULL;switch(result){caseSequential://顺序最近p=&(close[dstX][dstY]);while(p)//转置路径{t=p->from;p->from=q;q=p;p=t;}close[srcX][srcY].from=q->from;return&(close[srcX][srcY]);caseNoSolution:returnNULL;}returnNULL;}staticClose*start;staticintshortestep;intprintShortest(){Close*p;intstep=0;p=getShortest();start=p;if(!p){return0;}else{while(p->from){graph[p->cur->x][p->cur->y].value=Pass;printf((%d,%d)→ ,p->cur->x,p->cur->y);p=p->from;step++;}printf((%d,%d) ,p->cur->x,p->cur->y);graph[srcX][srcY].value=Source;graph[dstX][dstY].value=Destination;returnstep;}}voidclearMap(){//ClearMapMarksofStepsClose*p=start;while(p){graph[p->cur->x][p->cur->y].value=Reachable;p=p->from;}graph[srcX][srcY].value=map[srcX][srcY];graph[dstX][dstY].value=map[dstX][dstY];}voidprintDepth(){inti,j;for(i=0;i<Height;i++){for(j=0;j<Width;j++){if(map[i][j]){printf(%s,Symbol[graph[i][j].value]);}else{printf(%2.0lf,close[i][j].G);}}puts();}puts();}voidprintSur(){inti,j;for(i=0;i<Height;i++){for(j=0;j<Width;j++){printf(%02x,graph[i][j].sur);}puts();}puts();}voidprintH(){inti,j;for(i=0;i<Height;i++){for(j=0;j<Width;j++){printf(%02d,close[i][j].H);}puts();}puts();}intmain(intargc,constchar**argv){initGraph(map,0,0,0,0);printMap();while(scanf(%d%d%d%d,&srcX,&srcY,&dstX,&dstY)!=EOF){if(within(srcX,srcY)&&within(dstX,dstY)){if(shortestep=printShortest()){printf(从(%d,%d)到(%d,%d)的最短步数是:%d ,srcX,srcY,dstX,dstY,shortestep);printMap();clearMap();bfs();//printDepth();puts((shortestep==close[dstX][dstY].G)?正确:错误);clearMap();}else{printf(从(%d,%d)不可到达(%d,%d) ,srcX,srcY,dstX,dstY);}}else{puts(输入错误!);}}return(0);}

java 链表节点值问题

包com.link;公共类节点 {

/ /前一个节点

私营节点上一页;/ /后一个节点

私营节点未来;

/ /值

私人的T值;公共节点(){

超();

}公共节点(节点预防和控制,节点接下来,T值){

超();

this.prev =上一页;

this.next =未来;

THIS.VALUE =值;

}公共节点的GetNext(){

未来的回报;

}公共无效setNext(节点旁边){

this.next =未来;

}公共节点 getPrev(){

返回上级;

}公共无效setPrev(节点先前){

this.prev =上一页;

}公共牛逼的getValue(){

返回值;

}公共无效的setValue(T值){

THIS.VALUE =值;

/ /如果有一个节点或下一个节点

公共布尔的hasNext(){

如果(!this.next = NULL)返回true;

返回false;

公共布尔hasPrev(){

如果(this.prev = NULL!)返回true;

返回false;

------------------------------------ ----包com.link;公共类链表 {

/ /头节点

私营节点头;

/ /构造函数

公众链表(){

头=新的Node (NULL,NULL,NULL);

公共无效添加(T T){

节点温度=头;

而{

温度= temp.getNext()(温度的hasNext());

temp.setNext(新节点(温度,空,T));

私营节点发现(T T){

如果(T == NULL)返回NULL; (!head.hasNext())

如果返回NULL; 节点温度=头;

而(temp.hasNext()){

温度= temp.getNext();

如果(t.equals(temp.getValue())){

返回温度;

返回NULL;

公共布尔hasValue的(T T){如果(发现(T)=空!)返回true;

返回false;

公共布尔删除(T T){

节点温度=发现(T);

如果(temp! = NULL){

temp.getNext()setPrev(temp.getPrev());。

temp.getPrev()。 setNext(temp.getNext());

温度= NULL;

返回true;

返回false;

/ /取一个节点通过索引

公众吨得到(INT指数){

如果返回空值(head.hasNext()!);

节点温度=头;

INT I = 0;

为(我“=指数&& temp.hasNext(); i + +){

温度= temp.getNext();

}

如(i ==指数+1)返回temp.getValue();

返回NULL;

}公共静态无效的主要(字串[] args){

LINKLIST 列表=新LINKLIST ();

为(int i = 0; I <20; i + +){

将对List.Add(“字符串”+ I);

/ /以下只打印显示的结果,所以一般情况下不会打印

节点温度= list.head;

INT I = 0;

而(temp.hasNext()){

温度= temp.getNext();

System.out.println(“值”+ I +“:”+ temp.getValue());

i + +;

如果(list.remove(“String10”)){

System.out.println(“成功”);

}其他{

系统。通过out.println(“否”);

温度= list.head;

I = 0;

而(temp.hasNext()){

温度= temp.getNext();

System.out.println(“值”+ I +“:”+ temp.getValue()); i + +;
}

Ⅳ 会一点java,有面向对象编程基础,选择入门unity有很大难度吗应如何有效的入门

你可以对照着我们的课程大纲看一下自己的能力

C#语言

数据类型,常量,变量,运算符和表达式及命名规则
输入输出方法,数据类型转换
分支结构,循环,关系运算符,逻辑运算符
一维数组与foreach循环,冒泡排序与二维数组
枚举与结构体定义、结构体成员及访问

面向对象编程 类和面向对象概念,对象的字段成员
对象中的方法成员,方法类型详解
对象中的属性和方法参数
string字符串对象、装箱和拆箱、方法的重载和递归
构造和析构函数
抽象方法、虚方法,多态实现
静抽象类,静态类和单例设计模式

接口和泛型
集合、委托 接口介绍,接口实现多态
泛型方法、泛型类、泛型约束
ArrayList、List、Queue(队列)
Stack(堆栈)、Hashtable (哈希表)、Dictionary(字典)
委托与事件、C#反射类、实现范例的Observer设计模式

实战项目及阶段考核 2048、随机抽奖系统、图书管理系统、乒乓球大对决
题库中随机抽题,包含笔试题、上机题,学生需在规定时间内作答

Unity引擎
开发基础 Unity面板及基本操作
游戏对象的操作
预制体的创建和使用
3D基础理论

面向组件开发 Unity工程结构
Unity开发框架
面向组件的开发思想
脚本组件及生命周期、回调方法的概念
常用类(Transform、GameObject、Vector3、
Quaternion、Time、Mathf、Resources资源加载)

物理系统 输入控制、Input类,输入配置
碰撞器--Collider组件家族
刚体组件与力--Rigidbody组件
刚体组件与力--Rigidbody组件、碰撞条件及回调方法
物理材质、射线、发射方法及重载、角色控制器

实战项目 打飞机、坦克大战、HelixJump、运转银河系、打砖块、接金币

2D精灵和UI Sprite精灵,图集的切割、打包,计算机2D图形学基础
2D物理组件(刚体、碰撞器)
2D动画创建--初识Animation
2D开发常用类,碰撞、触发回调
TimeLine制作剧情

UGUI初级 画布Canvas初识
UV坐标,UI坐标
基本控件、复合控件
UGUI的布局和适配方案

UGUI高级 Canvas的渲染模式、适配模式介绍
水平布局、垂直布局、网格布局组件
ScrollView效果制作、Toggle分页、QQ聊天窗口
UI多种交互方式、事件回调

UGUI案例 MVC设计模式,小地图制作、方位坐标、背包、关卡选择案例

实战项目 捕鱼达人、梦幻西游、超级玛丽、消消乐

动画系统 模型资源分析
动画类型,Avatar系统
动画节点、动画状态机
原画UV展开;人形动画代码控制,角色控制器综合应用

动画系统高级 动画遮罩;
IK动画;
动画事件;
动画曲线

unity高级

数据持久化 PlayerPrefs、Sqlite
XML、JSON、CSV文档读取、Excel加密存取

WWW类和协程 协程、线程和进程的概念
协程的设计思想及使用
WWW类,封装请求工具类
Http协议简介(Get、Post)

资源加载 AssetBundle资源打包及依赖分析
基于WWW类远程资源获取
使用AssetBundle进行资源加载及内存管理

性能优化 针对CPU、GPU、内存、美术资源的优化方案
对象池技术

FSM 设计模式
FSM案例人物控制
FSM案例-Buffer系统
FSM案例-AI系统

行为树 游戏AI方案对比,最优解问题分析;
BehaviorDesigner插件,代码控制

我这有一个Unity学习交流,里面有大神也有小白,可以在群里甩问题啊,而且不定期分享学习资料 q.u.n.[887.207.898]q.u.n.备注:小白

A*算法 理解AStar算法原理;
代码实现AStar算法

Shader 图形学初探,基础知识;
固定管线着色器;
顶面着色器和表面着色器;
Shader案例

网络 Unet、HLAPI详解,网络版CS射击;
基于ASP.net的web站点搭建;
SqlServer数据库的接入和访问;
基于Post请求的数据通信;
Socket编程基础、制定协议、Socket通信、数据安全

实战项目
及阶段考核 阴阳师、镇魔曲、荒野行动、泡泡堂
题库中随机抽题,包含笔试题、上机题,学生需在规定时间内作答

VR、AR

VR-HTC Vive SteamVR SDK接入及分析
SteamVR 预制体和案例分析
手柄、头部Transform获取,点击事件获取
3D UI交互
射箭、魔法阵绘制、钓线瞬移
性能优化,降低眩晕策略

AR--高通SDK AAR介绍及AR项目展示、常用SDK介绍
Vuforia账号注册、识别图的上传与制作、数据包的下载及使用
手机触屏、陀螺仪与发布的讲解

项目架构与
项目管理 模块封装原理与规范,通用框架搭建,模块封装,消息中心、模块管理器、通信模块、编辑器扩展工具编写
热更新模块(资源热更、逻辑热更)、LuaUI架构、LuaSocket架构、Lua数据库架构、AssetBundle管理规则、AssetBundle自动打包
团队合作工具--SVN

综合项目 学生以小组为单位,组员分工,合作完成至少一个项目,包含但不限于:
RPG角色扮演游戏、ACT动作游戏、AVG冒险游戏、SLG策略游戏、FPS第一人称射击游戏、PZL益智类游戏、MSC音乐游戏、虚拟仿真、VR展示、AR游戏; 项目答辩:学员对本团队的项目进行讲解,讲师进行考核,模拟企业中技术面试环节对项目进行答辩

项目答辩
及评审 对于完成的项目分组进行答辩,按照功能实现、代码规范、以及完成度等进行打分

Ⅵ A*搜寻算法的代码实现(C语言实现)

用C语言实现A*最短路径搜索算法,作者 Tittup frog(跳跳蛙)。 #include<stdio.h>#include<math.h>#defineMaxLength100 //用于优先队列(Open表)的数组#defineHeight15 //地图高度#defineWidth20 //地图宽度#defineReachable0 //可以到达的结点#defineBar1 //障碍物#definePass2 //需要走的步数#defineSource3 //起点#defineDestination4 //终点#defineSequential0 //顺序遍历#defineNoSolution2 //无解决方案#defineInfinity0xfffffff#defineEast(1<<0)#defineSouth_East(1<<1)#defineSouth(1<<2)#defineSouth_West(1<<3)#defineWest(1<<4)#defineNorth_West(1<<5)#defineNorth(1<<6)#defineNorth_East(1<<7)typedefstruct{ signedcharx,y;}Point;constPointdir[8]={ {0,1},//East {1,1},//South_East {1,0},//South {1,-1},//South_West {0,-1},//West {-1,-1},//North_West {-1,0},//North {-1,1}//North_East};unsignedcharwithin(intx,inty){ return(x>=0&&y>=0 &&x<Height&&y<Width);}typedefstruct{ intx,y; unsignedcharreachable,sur,value;}MapNode;typedefstructClose{ MapNode*cur; charvis; structClose*from; floatF,G; intH;}Close;typedefstruct//优先队列(Open表){ intlength; //当前队列的长度 Close*Array[MaxLength]; //评价结点的指针}Open;staticMapNodegraph[Height][Width];staticintsrcX,srcY,dstX,dstY; //起始点、终点staticCloseclose[Height][Width];//优先队列基本操作voidinitOpen(Open*q) //优先队列初始化{ q->length=0; //队内元素数初始为0}voidpush(Open*q,Closecls[Height][Width],intx,inty,floatg){ //向优先队列(Open表)中添加元素 Close*t; inti,mintag; cls[x][y].G=g; //所添加节点的坐标 cls[x][y].F=cls[x][y].G+cls[x][y].H; q->Array[q->length++]=&(cls[x][y]); mintag=q->length-1; for(i=0;i<q->length-1;i++) { if(q->Array[i]->F<q->Array[mintag]->F) { mintag=i; } } t=q->Array[q->length-1]; q->Array[q->length-1]=q->Array[mintag]; q->Array[mintag]=t; //将评价函数值最小节点置于队头}Close*shift(Open*q){ returnq->Array[--q->length];}//地图初始化操作voidinitClose(Closecls[Height][Width],intsx,intsy,intdx,intdy){ //地图Close表初始化配置 inti,j; for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { cls[i][j].cur=&graph[i][j]; //Close表所指节点 cls[i][j].vis=!graph[i][j].reachable; //是否被访问 cls[i][j].from=NULL; //所来节点 cls[i][j].G=cls[i][j].F=0; cls[i][j].H=abs(dx-i)+abs(dy-j); //评价函数值 } } cls[sx][sy].F=cls[sx][sy].H; //起始点评价初始值 // cls[sy][sy].G=0; //移步花费代价值 cls[dx][dy].G=Infinity;}voidinitGraph(constintmap[Height][Width],intsx,intsy,intdx,intdy){ //地图发生变化时重新构造地 inti,j; srcX=sx; //起点X坐标 srcY=sy; //起点Y坐标 dstX=dx; //终点X坐标 dstY=dy; //终点Y坐标 for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { graph[i][j].x=i;//地图坐标X graph[i][j].y=j;//地图坐标Y graph[i][j].value=map[i][j]; graph[i][j].reachable=(graph[i][j].value==Reachable); //节点可到达性 graph[i][j].sur=0;//邻接节点个数 if(!graph[i][j].reachable) { continue; } if(j>0) { if(graph[i][j-1].reachable) //left节点可以到达 { graph[i][j].sur|=West; graph[i][j-1].sur|=East; } if(i>0) { if(graph[i-1][j-1].reachable &&graph[i-1][j].reachable &&graph[i][j-1].reachable) //up-left节点可以到达 { graph[i][j].sur|=North_West; graph[i-1][j-1].sur|=South_East; } } } if(i>0) { if(graph[i-1][j].reachable) //up节点可以到达 { graph[i][j].sur|=North; graph[i-1][j].sur|=South; } if(j<Width-1) { if(graph[i-1][j+1].reachable &&graph[i-1][j].reachable &&map[i][j+1]==Reachable)//up-right节点可以到达 { graph[i][j].sur|=North_East; graph[i-1][j+1].sur|=South_West; } } } } }}intbfs(){ inttimes=0; inti,curX,curY,surX,surY; unsignedcharf=0,r=1; Close*p; Close*q[MaxLength]={&close[srcX][srcY]}; initClose(close,srcX,srcY,dstX,dstY); close[srcX][srcY].vis=1; while(r!=f) { p=q[f]; f=(f+1)%MaxLength; curX=p->cur->x; curY=p->cur->y; for(i=0;i<8;i++) { if(!(p->cur->sur&(1<<i))) { continue; } surX=curX+dir[i].x; surY=curY+dir[i].y; if(!close[surX][surY].vis) { close[surX][surY].from=p; close[surX][surY].vis=1; close[surX][surY].G=p->G+1; q[r]=&close[surX][surY]; r=(r+1)%MaxLength; } } times++; } returntimes;}intastar(){ //A*算法遍历 //inttimes=0; inti,curX,curY,surX,surY; floatsurG; Openq;//Open表 Close*p; initOpen(&q); initClose(close,srcX,srcY,dstX,dstY); close[srcX][srcY].vis=1; push(&q,close,srcX,srcY,0); while(q.length) { //times++; p=shift(&q); curX=p->cur->x; curY=p->cur->y; if(!p->H) { returnSequential; } for(i=0;i<8;i++) { if(!(p->cur->sur&(1<<i))) { continue; } surX=curX+dir[i].x; surY=curY+dir[i].y; if(!close[surX][surY].vis) { close[surX][surY].vis=1; close[surX][surY].from=p; surG=p->G+sqrt((curX-surX)*(curX-surX)+(curY-surY)*(curY-surY)); push(&q,close,surX,surY,surG); } } } //printf("times:%d ",times); returnNoSolution;//无结果}constintmap[Height][Width]={ {0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1}, {0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}, {0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,1}, {0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1}, {0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0}, {0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0}, {0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0}, {0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,1}, {0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0}};constcharSymbol[5][3]={"□","▓","▽","☆","◎"};voidprintMap(){ inti,j; for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { printf("%s",Symbol[graph[i][j].value]); } puts(""); } puts("");}Close*getShortest(){ //获取最短路径 intresult=astar(); Close*p,*t,*q=NULL; switch(result) { caseSequential: //顺序最近 p=&(close[dstX][dstY]); while(p) //转置路径 { t=p->from; p->from=q; q=p; p=t; } close[srcX][srcY].from=q->from; return&(close[srcX][srcY]); caseNoSolution: returnNULL; } returnNULL;}staticClose*start;staticintshortestep;intprintShortest(){ Close*p; intstep=0; p=getShortest(); start=p; if(!p) { return0; } else { while(p->from) { graph[p->cur->x][p->cur->y].value=Pass; printf("(%d,%d)→ ",p->cur->x,p->cur->y); p=p->from; step++; } printf("(%d,%d) ",p->cur->x,p->cur->y); graph[srcX][srcY].value=Source; graph[dstX][dstY].value=Destination; returnstep; }}voidclearMap(){ //ClearMapMarksofSteps Close*p=start; while(p) { graph[p->cur->x][p->cur->y].value=Reachable; p=p->from; } graph[srcX][srcY].value=map[srcX][srcY]; graph[dstX][dstY].value=map[dstX][dstY];}voidprintDepth(){ inti,j; for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { if(map[i][j]) { printf("%s",Symbol[graph[i][j].value]); } else { printf("%2.0lf",close[i][j].G); } } puts(""); } puts("");}voidprintSur(){ inti,j; for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { printf("%02x",graph[i][j].sur); } puts(""); } puts("");}voidprintH(){ inti,j; for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { printf("%02d",close[i][j].H); } puts(""); } puts("");}intmain(intargc,constchar**argv){ initGraph(map,0,0,0,0); printMap(); while(scanf("%d%d%d%d",&srcX,&srcY,&dstX,&dstY)!=EOF) { if(within(srcX,srcY)&&within(dstX,dstY)) { if(shortestep=printShortest()) { printf("从(%d,%d)到(%d,%d)的最短步数是:%d ", srcX,srcY,dstX,dstY,shortestep); printMap(); clearMap(); bfs(); //printDepth(); puts((shortestep==close[dstX][dstY].G)?"正确":"错误"); clearMap(); } else { printf("从(%d,%d)不可到达(%d,%d) ", srcX,srcY,dstX,dstY); } } else { puts("输入错误!"); } } return(0);}

Ⅶ 机器人避障问题: astar算法与神经网络有关吗

不一样的 a星方法是利用两段评价进行路径寻找 对于障碍的处理 需要进行改进 所以有人用人工势场处理障碍问题

Ⅷ 问: 40 人工智能及其应用期末作业 用A*算法解决下面的八数码难题。试定义估价函数,启发函数,

#pragma warning(disable:4786)
#include <algorithm>
#include <cstdio>
#include <set>
#include <utility>
#include <ctime>
#include <cassert>
#include <cstring>
#include <iostream>
using namespace std;

/*item记录搜索空间中一个结点
state 记录用整数形式表示的8数码格局
blank 记录当前空格位置,主要用于程序优化,
扩展时可不必在寻找空格位置
g, h 对应g(n), h(n)
pre 记录当前结点由哪个结点扩展而来 */
struct item
{
int state;
int blank;
int g;
int h;
int pre;
};

const int MAXSTEPS = 100000;
const int MAXCHAR = 100;
char buf[MAXCHAR][MAXCHAR]; //open表
item open[MAXSTEPS];
//vector<item> open;
int steps = 0;

//closed表,已查询状态只要知道该状态以及它由哪个结点扩展而来即可,用于输出路径
//每次只需得到对应f值最小的待扩展结点,用堆实现提高效率
pair<int, int> closed[MAXSTEPS];
//读入,将8数码矩阵格局转换为整数表示

bool read(pair<int,int> &state)
{
if (!gets(buf[0]))
return false;
if (!gets(buf[1]))
return false;
if (!gets(buf[2]))
return false;

//cout << strlen(buf[0]) << ' ' << strlen(buf[1]) << ' ' << strlen(buf[2]) << endl;
assert(strlen(buf[0]) == 5 && strlen(buf[1]) == 5 && strlen(buf[2]) == 5);
// astar.in中的每行数据长度必须为5
state.first = 0;
for (int i = 0, p = 1; i < 3; ++i)
{
for (int j = 0; j < 6; j += 2)
{
if (buf[i][j] == '0')
state.second = i * 3 + j / 2; // state.second为0(空格)在节点中的位置
else
state.first += p * (buf[i][j] - '0');
p *= 10;
}
}

/* 若初试节点为:
1 2 3
8 0 4
7 6 5
则state.first为567408321,state.second为4
*/
return true;
}

//计算当前结点距目标的距离
int calculate(int current, int target) // return h=the sum of distances each block have to move to the right position,这里的each block不包括空格
{
int c[9], t[9];
int i, cnt = 0;
for (i = 0; i < 9; ++i)
{
c[current % 10] = t[target % 10] = i;
current /= 10;
target /= 10;
}

for (i = 1; i < 9; ++i)
cnt += abs(c[i] / 3 - t[i] / 3) + abs(c[i] % 3 - t[i] % 3);

return cnt;
}

//open表中结点间选择时的规则 f(n) = g(n) + h(n)

class cmp
{
public: inline bool operator()(item a, item b)
{
return a.g + a.h > b.g + b.h;
}
};

//将整数形式表示转换为矩阵表示输出
void pr(int state)
{
memset(buf, ' ', sizeof(buf));
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 6; j += 2)
{
if (state % 10)
buf[i][j] = state % 10 + '0';
state /= 10;
}

buf[i][5] = '\0';
puts(buf[i]);
}
}

//用于判断当前空格是否可以向对应方向移动
inline bool suit(int a, int b) //空格移动后的坐标为(a,b)
{
return (a >= 0 && a < 3 && b >= 0 && b < 3);
}

//递归输出搜索路径
void path(int index)
{
if (index == 0)
{
pr(closed[index].first);
puts("");
return;
}
path(closed[index].second);
pr(closed[index].first); //将整数形式表示转换为矩阵表示输出
puts("");
++steps;
}

int getNixuNum( int state ) //求节点的逆序对数
{
int sum = 0;
int result[9];
memset( result, 0, sizeof(result) );
//cout << result[8] << result[7] << endl;

char buf[10];
itoa( state, buf, 10 );
//cout << buf << endl;
int k = 0;
while( buf[k] != '\0' )
{
result[9-k-1] = buf[k] - '0';
k++;
}

for( int i = 0; i < 9; i++ )
{
for( int j = i + 1; j < 9; j++ )
{
if( result[i] && result[j] && result[i] > result[j] )
{
sum++;
}
}
}
return sum; //返回3*3方格数组的逆序对数
}

int main()
{
//cout << getNixuNum(87654321);
//open.resize(MAXSTEPS);
unsigned int t1 = clock();
//cout << open.size() << endl;
if( freopen("astar.in", "r", stdin) == NULL )
{
cout << "file not find\n";
exit(0);
};

freopen("astar2.out", "w", stdout);
set<int>states;
char tmp[100];
int i, x, y, a, b, nx, ny, end, next, index, kase = 0;
pair<int,int> start, target;
item head; //4个方向移动时的偏移量
const int xtran[4] = {-1, 0, 1, 0};
const int ytran[4] = {0, 1, 0, -1};
const int p[] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};

while (read(start)) // 读取初试状态节点
{
unsigned int t2 = clock();
printf("Case %d:\n\n", ++kase);
gets(tmp);
read(target); // 读取目标状态节点
gets(tmp);

int targetNixuNum = getNixuNum(target.first);
//若两者的逆序对数不是同为奇数或同为偶数,则无解
if( !(getNixuNum(start.first)&1 && targetNixuNum&1 || !(getNixuNum(start.first)&1) && !(targetNixuNum&1)) )
{
cout << "无法从初始节点到终态节点\n";
exit(0);
}
//初始化open表,将初始状态加入
open[0].state = start.first;
open[0].h = calculate(start.first, target.first); // 计算当前节点到目标节点的估计距离
open[0].blank = start.second;
open[0].pre = -1; // 初始节点无父节点
open[0].g = 0; // 初始节点的g为0
index = 0;
states.insert(start.first); // 扩展过节点保存在states中,即出现过的状态保存在states中,states为set<int>类型,其中的states中的元素唯一

//提取open表中f值最小元素放入closed表,并对该结点进行扩展
for (end = 1; end > 0; ++index) // end为open表中的元素个数,一直循环到open表为空
{
assert(index < MAXSTEPS);
//临时存储
head = open[0]; // 由于使用pop_heap函数和push_heap函数,所以open[0]为g+h最小的元素

//放入closed表记录当前格局和由哪个结点扩展而来(该结点肯定已在closed表中)
closed[index].first = open[0].state; //放入close表中,表示已经扩展完的节点,下面的for循环会扩展其节点
closed[index].second = open[0].pre; // index表示当前close表中当前扩展节点的下标
//从open表中删除该结点
pop_heap(open, open + end, cmp());//为algorithm文件中的函数,第一个参数指定开始位置,第二个指定结束,第三个指定比较函数
--end;

//得到结果,递归输出路径
if (head.state == target.first)
{
path(index);
break;
}

x = head.blank / 3;
y = head.blank % 3; //空格在3*3方格中的x,y坐标
/*
|2 0 3|
A = |1 8 4|
|7 6 5| // 看成3*3的数组
则head.blank=1
x=0,y=1,即空格的在3*3的数组中下标为(0,1)
*/
for (i = 0; i < 4; ++i)
{
nx = x + xtran[i];
ny = y + ytran[i];
/*
i=0时:(nx,ny)为当前空格向上移动一格后的坐标
i=1时:(nx,ny)为当前空格向右移动一格后的坐标
i=2时:(nx,ny)为当前空格向下移动一格后的坐标
i=3时:(nx,ny)为当前空格向左移动一格后的坐标
*/
if (suit(nx, ny)) // 判断是否能够移动
{
a = head.blank; // 空格当前位置,以上面矩阵A为例,a=1
b = nx * 3 + ny; // 空格移动后的新位置,开始是能够向右边移动,故b=0*3+2=2
//调换十进制表示整数对应两个数字位
next = head.state + ((head.state % p[a + 1]) / p[a] - (head.state % p[b + 1]) / p[b]) * p[b] + ((head.state % p[b + 1]) / p[b] - (head.state % p[a + 1]) / p[a]) * p[a];
// 如head.state=567481302,空格向右移动一次后,next=567481032,即为移动后的节点

// 判断能否由当前节点到达目标节点
if( ( getNixuNum(next)&1 && targetNixuNum&1 ) || ( !(getNixuNum(next)&1) && !(targetNixuNum&1) ) )
{
//判断是否已经扩展过,即已经出现过
if (states.find(next) == states.end()) //没出现就保存一下,也存入open表
{
states.insert(next);
open[end].pre = index; //扩展后的子节点,其父节点为当前扩展节点
open[end].blank = b;
open[end].state = next;
open[end].h = calculate(next,target.first);
open[end].g = head.g + 1;
++end; //open表中元素加1
push_heap(open, open + end, cmp()); //压入堆中
}
}

}
}
}

if (end <= 0)
puts("No solution");
else
{
printf("Num of steps: %d\n", steps);
printf("Num of expanded: %d\n", index);
printf("Num of generated: %d\n", index + end);
printf("Time consumed: %d\n\n", clock() - t2);
}

states.clear();
steps = 0;
}
printf("Total time consumed: %d\n", clock() - t1);
return 0;
}

Ⅸ astar安卓版怎么用

最近因为跨国问题中国大陆版禁用中也就是无法使用。
如果你想要使用,你可以从官网上下载的插件解压后打开Chrome的扩展管理(我用的是Chrome,打开上方一个打开已解压的扩展程序”然后点你的解压的astar就ok了。
AStar算法是一种静态路网中求解最短路径最有效的直接搜索方法。在包含各种障碍物的地图中,为游戏角色的移动,寻找一条到目标地点最短路径。

阅读全文

与astar算法流程图相关的资料

热点内容
android上下拉刷新 浏览:876
centos可执行文件反编译 浏览:834
林清玄pdf 浏览:268
黑马程序员java基础 浏览:283
awss3命令 浏览:358
百度店铺客户订单手机加密 浏览:500
钉钉班群文件夹怎么上传文件 浏览:749
人社app怎么解绑手机 浏览:101
caj文件夹打不开 浏览:475
什么app可以将电量变色 浏览:692
解放出你的解压抖音小游戏 浏览:346
什么方式解压比较好 浏览:267
erp是什么服务器 浏览:186
python中tmp 浏览:25
说明wpf加密过程 浏览:146
java读取list 浏览:704
iis7gzip压缩 浏览:40
有什么安卓机打吃鸡好 浏览:598
三星u盘加密狗 浏览:476
php函数的返回值吗 浏览:589