导航:首页 > 源码编译 > 解决以下哪个问题的常规算法

解决以下哪个问题的常规算法

发布时间:2022-11-04 17:55:50

⑴ 解决问题的步骤 算法

1、分析问题。

用电脑来解决问题时,首先电脑要对问题进行定性、定量的分析,然后才能设计算法。定性分析法是对问题进行“质”的方面的分析,确定问题的性质,定量分析法,是对要解决的问题的数量特征、数量关系与数量变化进行分析的方法。

2、设计算法。

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。

不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

3、编写程序。

设计完算法后,就要使用某种程序设计语言编写程序代码,并最终得到相应结果。编程的语言包括汇编语言、机器语言和高级语言。高级语言中最简单、最常用的是Visual Basic语言和Pascal语言。

⑵ 我自学C程序设计,第二章习题 4.用传统流程图表示求解以下问题的算法

不是打击你的信心,其实学习C语言还是有老师教的好,因为有一些内容需要老师的讲解才能够理解,当然,兴趣是最好的老师。不过我冒昧问你一下你学习C是为了什么呢?是单纯的兴趣还是以后想深入研究的?如果是后者的话还是需要进入具体的学习才行,光靠自己的话可能不是很顺利,不过建议你可以在网上找一些有关的大学的讲座视频,对你的学习有帮助;最后再提醒一下,其实我老师并没有要求我们一定要严格地画好流程图,只要你把解决问题的思路编出来就行了,流程图只是你解决问题的步骤而已;

⑶ 在解决下列各问题的算法中,一定用到循环结构的是( )A、求函数当时的值...

利用算法规则解决问题,如果一个问题出现了重复执行的步骤,则须用到循环结构,由此规则对四个选项进行探究得出正确结论即可.
解:由循环结构的特征对四界上选项进行判断
选项用不到循环结构,代入求值,用顺序结构就可解决;
选项一定用到循环结构,用二分法求最值,取中点验证函数值的符号等步骤要重复执行;
选项用不到循环结构,用顺序结构即可解决问题;
选项用不到循环结构,将给定的三个实数按从小到大排列,用判断结构就可解决问题;
故选.
本题考查设计程序框图解决实际问题,解题的关键是对所面对的问题的算法进行分析,探讨其解决的方式以确定用那种结构将其表达出来.

⑷ 看下面的四段话,其中是解决问题的算法的是()A.把高一5班的同学分成两组,高个子参加篮球赛,矮个

算法是一系列解决问题的清晰指令.所以:
A选项:身高没有明确,所以A错误;
B选项:学生的身高明确,解决了学生打球问题,所以B正确;
C选项:做饭不一定用米,所以C不正确;
D选项:从2开始写起,后一个数为前一个数与2的和,不断地写,写出所有偶数,这是不可能进行的,所以D不正确;
故选:B.

⑸ lIG算法解决了apriori算法的什么问题

关联分析是一种在大规模数据集中寻找有趣关系的任务。Apriori是解决这一问题的基本算法。这个算法也是数据挖掘的入门算法。
Apriori算法的功能是寻找所有支持度不小于minsup的项集。项集的支持度是指包含该项集的事务所占所有事务的比例。
频繁项集就是指满足给定的最小支持度的项集。Apriori的关键在于它使用了一种分层的完备搜索算法。

⑹ 解决某问题有三种算法,复杂性分别为……问在同样时间内可处理问题的大小,结果怎么来的求步骤。如图

S1速度和规模成正比例线性关系,很好理解
S2换个说法:当计算规模增大到多少时计算时间变为原来的10倍,那么对于时间复杂度是N²的算法来说,时间的增长幅度是计算规模增长幅度的平方,假设规模到K的时候,时间增长10倍,那么就有(K平方/S2平方)=10 得 k/s2=√10 的k=3.16*S2
S3: 对于₂ⁿ的时间复杂度来说,同样假设规模到K的时候,时间增长10倍,那么就有(2的K次方/2的S3次方)=10 得k=s3+log₂10=S3+3.32

⑺ 大数据最常用的算法有哪些

奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutschan博士在自己的页面上发布了一篇文章,提到他做了一个调查,参与者大多数是计算机科学家,他请这些科学家投票选出最重要的算法,以下是这次调查的结果,按照英文名称字母顺序排序。

大数据等最核心的关键技术:32个算法

1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。

2、集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。

3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。

5、Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。

7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。

9、离散微分算法(Discrete differentiation)。

10、动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法

11、欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。

12、期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值。

13、快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。

14、梯度下降(Gradient descent)——一种数学上的最优化算法。

15、哈希算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。

18、LLL算法(Lenstra-Lenstra-Lovasz lattice rection)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。

19、最大流量算法(Maximum flow)——该算法试图从一个流量网络中找到最大的流。它优势被定义为找到这样一个流的值。最大流问题可以看作更复杂的网络流问题的特定情况。最大流与网络中的界面有关,这就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一个流网络中的最大流。

20、合并排序(Merge Sort)。

21、牛顿法(Newton’s method)——求非线性方程(组)零点的一种重要的迭代法。

22、Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。

23、两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。

24、RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。

25、RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。

26、Sch?nhage-Strassen算法——在数学中,Sch?nhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。

27、单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待最大化(或最小化)的固定线性函数。

28、奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。

29、求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。

31、合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:

查找:判断某特定元素属于哪个组。

合并:联合或合并两个组为一个组。

32、维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。

以上就是Christoph博士对于最重要的算法的调查结果。你们熟悉哪些算法?又有哪些算法是你们经常使用的?

⑻ 谁知到高精度算法(加减乘除)pascal的常规方法啊

所谓的高精度运算,是指参与运算的数(加数,减数,因子……)范围大大超出了标准数据类型(整型,实型)能表示的范围的运算。例如,求两个200位的数的和。这时,就要用到高精度算法了。在这里,我们先讨论高精度加法。高精度运算主要解决以下三个问题:
一、加数、减数、运算结果的输入和存储
运算因子超出了整型、实型能表示的范围,肯定不能直接用一个数的形式来表示。在Pascal中,能表示多个数的数据类型有两种:数组和字符串。
数组:每个数组元素存储1位(在优化时,这里是一个重点!),有多少位就需要多少个数组元素;用数组表示数的优点:每一位都是数的形式,可以直接加减;运算时非常方便。用数组表示数的缺点:数组不能直接输入;输入时每两位数之间必须有分隔符,不符合数值的输入习惯;
字符串:字符串的最大长度是255,可以表示255位。用字符串表示数的优点:能直接输入输出,输入时,每两位数之间不必分隔符,符合数值的输入习惯;用字符串表示数的缺点:字符串中的每一位是一个字符,不能直接进行运算,必须先将它转化为数值再进行运算;运算时非常不方便;
综合以上所述,对上面两种数据结构取长补短:用字符串读入数据,用数组存储数据:
var s1,s2:string;
a,b,c:array [1..260] of integer;
i,l,k1,k2:integer;
begin
write('input s1:');readln(s1);
write('input s2:');readln(s2);
{————读入两个数s1,s2,都是字符串类型}
l:=length(s1);{求出s1的长度,也即s1的位数;有关字符串的知识。}
k1:=260;
for i:=l downto 1 do
begin
a[k1]:=ord(s1)-48;{将字符转成数值}
k1:=k1-1;
end;
k1:=k1+1;
{————以上将s1中的字符一位一位地转成数值并存在数组a中;低位在后(从第260位开始),高位在前(每存完一位,k1减1),完后,k1指向最高位}
对s2的转化过程和上面一模一样。
二、运算过程
在往下看之前,大家先列竖式计算35+86。
注意的问题:
(1)运算顺序:两个数靠右对齐;从低位向高位运算;先计算低位再计算高位;
(2)运算规则:同一位的两个数相加再加上从低位来的进位,成为该位的和;这个和去掉向高位的进位就成为该位的值;如上例:3+8+1=12,向前一位进1,本位的值是2;可借助MOD、DIV运算完成这一步;
(3)最后一位的进位:如果完成两个数的相加后,进位位值不为0,则应添加一位;
(4)如果两个加数位数不一样多,则按位数多的一个进行计算;
if k1>k2 then k:=k1 else k:=k2;
y:=0;
for i:=260 downto k do
begin
x:=a+b+y;
c:=x mod 10;
y:=x div 10;
end;
if y<>0 then begin k:=k-1;c[k]:=y; end;
三、结果的输出(这也是优化的一个重点)
按运算结果的实际位数输出
for i:=k to 260 do write(c);
writeln;
例子:求两个数的加法
program sum;
var s,s1,s2:string;
a,b,c:array [1..260] of integer;
i,l,k1,k2:integer;
begin
write('input s1:');readln(s1);
write('input s2:');readln(s2);
l:=length(s1);
k1:=260;
for i:=l downto 1 do
begin
a[k1]:=ord(s1)-48;
k1:=k1-1;
end;
k1:=k1+1;
l:=length(s2);
k2:=260;
for I+:=l downto 1 do
begin
b[k2]:=ord(s2)-48;
k2:=k2-1;
end;
k2:=k2+1;
if k1>k2 then k:=k2 else k:=k1;
y:=0;
for i:=260 downto k do
begin
x:=a+b+y;
c:=x mod 10;
y:=x div 10;
end;
if y<>0 then begin k:=k-1;c[k]:=y;
end;
for i:=k to 260 do write(c);
writeln;
end.
四、优化:
以上的方法的有明显的缺点:
(1)浪费空间:一个整型变量(-32768~32767)只存放一位(0~9);
(2)浪费时间:一次加减只处理一位;
针对以上问题,我们做如下优化:一个数组元素存放四位数;(integer的最大范围是32767,5位的话可能导致出界)。具体方法:
l:=length(s1);
k1:=260;
repeat {————有关字符串的知识}
s:=(s1,l-3,4);
val(s,a[k1],code);
k1:=k1-1;
s1:=(s1,1,l-4);
l:=l-4;
until l<=0;
k1:=k1+1;
而因为这个改进,算法要相应改变:
(1)运算时:不再逢十进位,而是逢万进位(mod 10000; div 10000);
(2)输出时:最高位直接输出,其余各位,要判断是否足够4位,不足部分要补0;例如:1,23,2345这样三段的数,输出时,应该是100232345而不是1234567。
改进后的算法:
program sum;
var s1,s2,s:string;
a,b,c:array [1..260] of integer;
i,l,k1,k2,code:integer;
begin
write('input s1:');readln(s1);
write('input s2:');readln(s2);
l:=length(s1);
k1:=260;
repeat {————有关字符串的知识}
s:=(s1,l-3,4);
val(s,a[k1],code);
k1:=k1-1;
s1:=(s1,1,l-4);
l:=l-4;
until l<=0;
k1:=k1+1;
l:=length(s2);
k2:=260;
repeat
s:=(s2,l-3,4);
val(s,b[k2],code);
k2:=k2-1;
s2:=(s2,1,l-4);
l:=l-4;
until l<=0;
k2:=k2+1;
if k1<k2 then k:=k1 else k:=k2;
y:=0;
for i:=260 downto k do
begin
x:=a+b+y;
c:=x mod 10000;
y:=x div 10000;
end;
if y<>0 then begin k:=k-1;c[k]:=y;end;
write(c[k]);
for i:=k+1 to 260 do
begin
if c<1000 then write('0');
if c<100 then write('0');
if c<10 then write('0');
write(c);
end;
writeln;
end.
减法:和高精度加法相比,减法在差为负数时处理的细节更多一点:当被减数小于减数时,差为负数,差的绝对值是减数减去被减数;在程序实现上用一个变量来存储符号位,用另一个数组存差的绝对值。
2、算法流程:
(1)读入被减数S1,S2(字符串);
(2)置符号位:判断被减数是否大于减数:大则将符号位置为空;小则将符号位置为“-”,交换减数与被减数;
(3)被减数与减数处理成数值,放在数组中;
(4)运算:
A、取数;
B、判断是否需要借位;
C、减,将运算结果放到差数组相应位中;
D、判断是否运算完成:是,转5;不是,转A;
(5)打印结果:符号位,第1位,循环处理第2到最后一位;
3、细节:
▲如何判断被减数与减数的大小:字符串知识
(1)首先将两个字符串的位数补成一样(因为字符串的比较是从左边对齐的;两个字符串一样长才能真正地比较出大小):短的在左边补0
k1:=length(s1);
k2:=length(s2);
if k1>k2 then for i:=1 to k1-k2 do s2:='0'+s2
else for i:=1 to k2-k1 do s1:='0'+s1;
(2)接着比较大小:直接比较字符串大小
fh:='';
if s1<s2 then begin fh:='-';s:=s1; s1:=s2; s2:=s; end;
{————s1存被减数,fh存符号}
▲将字符串处理成数值:
l:=length(s1);{求出s1的长度,也即s1的位数;有关字符串的知识。}
k1:=260;
for i:=l downto 1 do
begin
a[k1]:=ord(s1)-48;{将字符转成数值}
k1:=k1-1;
end;
k1:=k1+1;
▲运算(减法跟加法比较,减法退位处理跟加法进位处理不一样):
a.处理退位;
跟加法一样,在for语句外面先将退位清零,
用被减数再减去退位,
{注意:由于每一个数位不一定都得向前一位借位,所以这里退位得清零。例如,234-25,个位需借位,而十位不用}
接着,再判断,当被减数某一位不够减时,则需加上前一位退位过来的数。
{注意:由于这里采用优化方法,所以退一位,就等于后一位加上10000。)
最后,再拿一个数组来存储两个减数的差。
jw:=0;
for i:=260 downto k1 do
begin
a:=a-jw; {此处jw为下一位从I位的借位}
jw:=0; {此处jw为I 位准备向上一位的借位}
if a<b then
begin
jw:=1;
a:=a+10000;
end;
c:=a-b;
end;
▲打印结果:
先找到差的第一个非零数,如果差的所有位数都为零,就直接输出零。
如果不是,就输出符号位和差的第一位。
剩下部分,打印补足零:
因为优化后的高精度减法,是把每四个数位分成一段,而每一段则必须有四个
数,当有一段不足四个数时,就得用"0"补足.(如:第一位是'1',第二位是'34',第三位是'345',第四位是'8', 则应写为'1003403450008').注意:第一位不用补零,(如:第一位为'3',则写成'3').
while (c[k]=0) and (k<=260) do k:=k+1;
if k>260 then write('0')
else begin
write(fh,c[k]);{k是差的第1位;}
for i:=k+1 to 260 do
begin
if c<1000 then write('0');
if c<100 then write('0');
if c<10 then write('0');
write(c);
end;
end;
参考程序:
program Zfjianfa;
const n=25;
var s1,s2,s3,s4,s:string;
a,b,c:array[1..n] of integer;
i,k1,k2,l,code,jw:integer;
cq:char;
begin
readln(s1);
readln(s2);
k1:=length(s1);
k2:=length(s2);
if k1>k2 then for i:=1 to k1-k2 do s2:='0'+s2
else for i:=1 to k2-k1 do s1:='0'+s1;
cq:=' ';
if s1<s2 then begin cq:='-'; s:=s1; s1:=s2; s2:=s; end;
l:=length(s1);
k1:=n;
repeat
s3:=(s1,l-3,4);
val(s3,a[k1],code);
k1:=k1-1;
delete(s1,l-3,4);
l:=l-4;
until l<=0;
k1:=k1+1;
i:=length(s2);
k2:=n;
repeat
s4:=(s2,i-3,4);
val(s4,b[k2],code);
k2:=k2-1;
delete(s2,i-3,4);
i:=i-4;
until i<=0;
k2:=k2+1;
jw:=0;
for i:=n downto k1 do
begin
a:=a-jw;
jw:=0;
if a<b then begin
jw:=1;
a:=a+10000;
end;
c:=a-b;
end;
while (c[k1]=0) and (k1<=n) do
k1:=k1+1;
if k1>n then writeln('0')
else begin
write(cq,c[k1]);
for i:=k1+1 to n do
begin
if c<1000 then write('0');
if c<100 then write('0');
if c<10 then write('0');
write(c);
end;
end;
writeln;
end.
高精度乘法基本思想和加法一样。其基本流程如下:
①读入被乘数s1,乘数s2
②把s1、s2分成4位一段,转成数值存在数组a,b中;记下a,b的长度k1,k2;
③i赋为b中的最低位;
④从b中取出第i位与a相乘,累加到另一数组c中;(注意:累加时错开的位数应是多少位?)
⑤i:=i-1;检测i值:小于k2则转⑥,否则转④
⑥打印结果
参考程序:
program chengfa;
const n=100;
type ar=array [1..n] of integer;
var a,b:ar; k1,k2,k:integer;
c:array [1..200] of integer;
s1,s2:string;
procere fenge(s:string;var d:ar; var kk:integer); {将s分割成四位一组存放在d中,返回的kk值指向d的最高位}
var ss:string;
i,code:integer;
begin
i:=length(s);
kk:=n;
repeat
ss:=(s,i-3,4);
val(ss,d[kk],code);
kk:=kk-1;
s:=(s,1,i-4);
i:=i-4;
until i<0;
kk:=kk+1;
end;
procere init;
var i:integer;
begin
for i:=1 to n do begin a:=0; b:=0; end;
for i:=1 to 2*n do c:=0;
write('input 2 numbers:');
readln(s1);
readln(s2);
fenge(s1,a,k1);
fenge(s2,b,k2);
end;
procere jisuan;
var i,j,m:integer; x,y,z,jw:longint;
begin
i:=n; k:=2*n;
repeat
x:=b; z:=0; m:=k; jw:=0;
for j:=n downto k1 do
begin
y:=a[j];
z:=c[m];
x:=x*y+z+jw;
jw:=x div 10000;
c[m]:=x mod 10000;
m:=m-1;
x:=b;
end;
if jw<>0 then c[m]:=jw else m:=m+1;
i:=i-1;
k:=k-1;
until i<k2;
k:=m;
end;
procere daying;
var i:integer;
begin
write(c[k]);
for i:=k+1 to 2*n do
begin
if c<1000 then write('0');
if c<100 then write('0');
if c<10 then write('0');
write(c);
end;
writeln;
end;
begin
init;
jisuan;
daying;
end.
教材“基础编”P87高精乘法参考程序:
program ex3_1;
var
a,b,c:array[0..1000] of word;
procere init;
var
s:string;
ok,i,j:integer;
begin
readln(s);
a[0]:=length(s);
for i:=1 to a[0] do
val(s[a[0]-i+1],a,ok);
readln(s);
b[0]:=length(s);
b[0]:=length(s);
for i:=1 to b[0] do
val(s[b[0]-i+1],b,ok);
end;
procere highmul;
var i,j,k:integer;
begin
c[0]:=a[0]+b[0];
for i:=1 to b[0] do
for j:=1 to a[0]+1 do
begin
inc(c[i+j-1],a[j]*b mod 10);
c[i+j]:=c[i+j]+(a[j]*b div 10)+(c[i+j-1] div 10);
c[i+j-1]:=c[i+j-1] mod 10;
end;
end;
procere print;
var i:integer;
begin
while c[c[0]]=0 do dec(c[0]);
for i:=c[0] downto 1 do
write(c);
writeln;
end;
begin
init;
highmul;
print;
end.
高精度除法:
1).高精度除以整型数据(integer);
程序如下:
program HighPrecision3_Multiply1;
const
fn_inp='hp5.inp';
fn_out='hp5.out';
maxlen=100; { max length of the number }
type
hp=record
len:integer; { length of the number }
s:array[1..maxlen] of integer
{ s[1] is the lowest position
s[len] is the highest position }
end;
var
x,y:hp;
z,w:integer;
procere PrintHP(const p:hp);
var i:integer;
begin
for i:=p.len downto 1 do write(p.s);
end;
procere init;
var
st:string;
i:integer;
begin
assign(input,fn_inp);
reset(input);
readln(st);
x.len:=length(st);
for i:=1 to x.len do { change string to HP }
x.s:=ord(st[x.len+1-i])-ord('0');
readln(z);
close(input);
end;
procere Divide(a:hp;b:integer;var c:hp;var d:integer);
{ c:=a div b ; d:=a mod b }
var i,len:integer;
begin
fillchar(c,sizeof(c),0);
len:=a.len;
d:=0;
for i:=len downto 1 do { from high to low }
begin
d:=d*10+a.s;
c.s:=d div b;
d:=d mod b;
end;
while(len>1) and (c.s[len]=0) do dec(len);
c.len:=len;
end;
procere main;
begin
Divide(x,z,y,w);
end;
procere out;
begin
assign(output,fn_out);
rewrite(output);
PrintHP(y);
writeln;
writeln(w);
close(output);
end;
begin
init;
main;
out;
end.
2).高精度除以高精度
程序如下:
program HighPrecision4_Multiply2;
const
fn_inp='hp6.inp';
fn_out='hp6.out';
maxlen=100; { max length of the number }
type
hp=record
len:integer; { length of the number }
s:array[1..maxlen] of integer
{ s[1] is the lowest position
s[len] is the highest position }
end;
var
x:array[1..2] of hp;
y,w:hp; { x:input ; y:output }
procere PrintHP(const p:hp);
var i:integer;
begin
for i:=p.len downto 1 do write(p.s);
end;
procere init;
var
st:string;
j,i:integer;
begin
assign(input,fn_inp);
reset(input);
for j:=1 to 2 do
begin
readln(st);
x[j].len:=length(st);
for i:=1 to x[j].len do { change string to HP }
x[j].s:=ord(st[x[j].len+1-i])-ord('0');
end;
close(input);
end;
procere Subtract(a,b:hp;var c:hp); { c:=a-b, suppose a>=b }
var i,len:integer;
begin
fillchar(c,sizeof(c),0);
if a.len>b.len then len:=a.len { get the bigger length of a,b }
else len:=b.len;
for i:=1 to len do { subtract from low to high }
begin
inc(c.s,a.s-b.s);
if c.s<0 then
begin
inc(c.s,10);
dec(c.s[i+1]); { add 1 to a higher position }
end;
end;
while(len>1) and (c.s[len]=0) do dec(len);
c.len:=len;
end;
function Compare(const a,b:hp):integer;
{
1 if a>b
0 if a=b
-1 if a < b
}
var len:integer;
begin
if a.len>b.len then len:=a.len { get the bigger length of a,b }
else len:=b.len;
while(len>0) and (a.s[len]=b.s[len]) do dec(len);
{ find a position which have a different digit }
if len=0 then compare:=0 { no difference }
else compare:=a.s[len]-b.s[len];
end;
procere Multiply10(var a:hp); { a:=a*10 }
var i:Integer;
begin
for i:=a.len downto 1 do
a.s[i+1]:=a.s;
a.s[1]:=0;
inc(a.len);
while(a.len>1) and (a.s[a.len]=0) do dec(a.len);
end;
procere Divide(a,b:hp;var c,d:hp); { c:=a div b ; d:=a mod b }
var i,j,len:integer;
begin
fillchar(c,sizeof(c),0);
len:=a.len;
fillchar(d,sizeof(d),0);
d.len:=1;
for i:=len downto 1 do
begin
Multiply10(d);
d.s[1]:=a.s; { d:=d*10+a.s }
{ c.s:=d div b ; d:=d mod b; }
{ while(d>=b) do begin d:=d-b;inc(c.s) end }
while(compare(d,b)>=0) do
begin
Subtract(d,b,d);
inc(c.s);
end;
end;
while(len>1)and(c.s[len]=0) do dec(len);
c.len:=len;
end;
procere main;
begin
Divide(x[1],x[2],y,w);
end;
procere out;
begin
assign(output,fn_out);
rewrite(output);
PrintHP(y);
writeln;
PrintHP(w);
writeln;
close(output);
end;
begin
init;
main;
out;
end.

⑼ 机器学习一般常用的算法有哪些

机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。

一、线性回归

一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。

二、Logistic 回归

它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。

三、线性判别分析(LDA)

在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。

四、决策树

决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。

五、朴素贝叶斯

其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。

六、K近邻算法

K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。

七、Boosting 和 AdaBoost

首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显着的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。

八、学习向量量化算法(简称 LVQ)

学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求

⑽ 计算机解决问题的算法有哪三种

应该是定点运算,浮点运算和逻辑运算吧。

阅读全文

与解决以下哪个问题的常规算法相关的资料

热点内容
拆解汽车解压视频 浏览:593
新版百度云解压缩 浏览:588
android上下拉刷新 浏览:876
centos可执行文件反编译 浏览:836
林清玄pdf 浏览:270
黑马程序员java基础 浏览:283
awss3命令 浏览:358
百度店铺客户订单手机加密 浏览:500
钉钉班群文件夹怎么上传文件 浏览:749
人社app怎么解绑手机 浏览:101
caj文件夹打不开 浏览:475
什么app可以将电量变色 浏览:692
解放出你的解压抖音小游戏 浏览:346
什么方式解压比较好 浏览:267
erp是什么服务器 浏览:186
python中tmp 浏览:25
说明wpf加密过程 浏览:146
java读取list 浏览:704
iis7gzip压缩 浏览:41
有什么安卓机打吃鸡好 浏览:599