① Redis RDB持久化和AOF持久化详细讲解
Redis支持RDB和AOF两种持久化机制,持久化功能有效地避免因进程退出造成的数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复。Redis支持两种方式的持久化,一种是RDB方式,一种是AOF方式。可以单独使用其中一种或将二者结合使用。
RDB持久化是把当前进程数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发。
手动触发分别对应save和bgsave命令:
自动触发
除了执行命令手动触发之外,Redis内部还存在自动触发RDB的持久化机制。如以下场景:
1)使用save相关配置,如“save m n”。表示m秒内数据集存在n次修改时,自动触发bgsave。
2)如果从节点执行全量复制操作,主节点自动执行bgsave生成RDB文件并发送给从节点
3)执行debug reload命令重新加载Redis时,也会自动触发save操作。
4)默认情况下执行shutdown命令时,如果没有开启AOF持久化功能则自动执行bgsave。
bgsave是主流的触发RDB持久化方式,它的运作流程如下图:
1)执行bgsave命令,Redis父进程判断当前是否存在正在执行的子进程,如RDB/AOF子进程,如果存在bgsave命令直接返回。
2)父进程执行fork操作创建子进程,fork操作过程中父进程会阻塞,通过info stats命令查看latest_fork_usec选项,可以获取最近一个fork操作的耗时,单位为微秒。
3)父进程fork完成后,bgsave命令返回“Background saving started”信息并不再阻塞父进程,可以继续响应其他命令。
4)子进程创建RDB文件,根据父进程内存生成临时快照文件,完成后对原有文件进行原子替换。执行lastsave命令可以获取最后一次生成RDB的时间,对应info统计的rdb_last_save_time选项。
5)进程发送信号给父进程表示完成,父进程更新统计信息。
保存:RDB文件保存在dir配置指定的目录下,文件名通过dbfilename配置指定。可以通过执行config set dir{newDir}和config setdbfilename{newFileName}运行期动态执行,当下次运行时RDB文件会保存到新目录。
压缩:Redis默认采用LZF算法对生成的RDB文件做压缩处理,压缩后的文件远远小于内存大小,默认开启,可以通过参数config set rdbcompression{yes|no}动态修改。
校验:如果Redis加载损坏的RDB文件时拒绝启动,并打印如下日志:
这时可以使用Redis提供的redis-check-mp工具检测RDB文件并获取对应的错误报告。
RDB的优点:
RDB的缺点:
AOF(append only file)持久化:以独立日志的方式记录每次写命令,重启时再重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式。
开启AOF功能需要设置配置:appendonly yes,默认不开启。AOF文件名通过appendfilename配置设置,默认文件名是appendonly.aof。保存路径同RDB持久化方式一致,通过dir配置指定。
AOF的工作流程操作:命令写入(append)、文件同步(sync)、文件重写(rewrite)、重启加载(load)。如下图所示:
流程如下:
1)所有的写入命令会追加到aof_buf(缓冲区)中。
2)AOF缓冲区根据对应的策略向硬盘做同步操作。
3)随着AOF文件越来越大,需要定期对AOF文件进行重写,达到压缩的目的。
4)当Redis服务器重启时,可以加载AOF文件进行数据恢复。
AOF命令写入的内容直接是文本协议格式,开启AOF后,所有写入命令都包含追加操作,直接采用文本协议格式,避免了二次处理开销。
Redis提供了多种AOF缓冲区同步文件策略,由参数appendfsync控制。
always:命令写入aof_buf后,调用系统ysnyc操作同步到AOF文件,ysnyc完成后线程返回。
everysec:命令写入aof_buf后,调用系统write操作,write完成后线程返回。ysnyc同步文件操作由专门线程每秒调用一次。
no:命令写入aof_buf后,调用系统write操作,不对AOF文件做ysnyc同步,同步硬盘操作由操作系统负责,通常同步周期最长30秒。
系统调用write和fsync说明:
Redis引入AOF重写机制压缩文件体积。AOF文件重写是把Redis进程内的数据转化为写命令同步到新AOF文件的过程。
AOF重写机制压缩文件体积的原因:
1)进程内已经超时的数据不再写入文件。
2)旧的AOF文件含有无效命令,重写使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令。
3)多条写命令可以合并为一个,为了防止单条命令过大造成客户端缓冲区溢出,对于list、set、hash、zset等类型操作,以64个元素为界拆分为多条。
AOF重写过程可以手动触发和自动触发:
auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认为64MB。auto-aof-rewrite-percentage:代表当前AOF文件空间(aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。
自动触发时机=aof_current_size>auto-aof-rewrite-min-size&&(aof_current_size-aof_base_size)/aof_base_size>=auto-aof-rewrite-percentage。其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。
AOF重写流程:如下图
流程说明:
1)执行AOF重写请求。如果当前进程正在执行AOF重写,请求不执行并返回如下响应:
如果当前进程正在执行bgsave操作,重写命令延迟到bgsave完成之后再执行,返回如下响应:
2)父进程执行fork创建子进程,开销等同于bgsave过程。
3.1)主进程fork操作完成后,继续响应其他命令。所有修改命令依然写入AOF缓冲区并根据appendfsync策略同步到硬盘,保证原有AOF机制正确性。
3.2)由于fork操作运用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然响应命令,Redis使用“AOF重写缓冲区”保存这部分新数据,防止新AOF文件生成期间丢失这部分数据。
4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。每次批量写入硬盘数据量由配置aof-rewrite-incremental-fsync控制,默认为32MB,防止单次刷盘数据过多造成硬盘阻塞。
5.1)新AOF文件写入完成后,子进程发送信号给父进程,父进程更新统计信息,具体见info persistence下的aof_*相关统计。
5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件。
5.3)使用新AOF文件替换老文件,完成AOF重写。
AOF和RDB文件都可以用于服务器重启时的数据恢复。Redis持久化文件加载流程如下图:
流程说明:
1)AOF持久化开启且存在AOF文件时,优先加载AOF文件,打印如下日志:
2)AOF关闭或者AOF文件不存在时,加载RDB文件,打印如下日志:
3)加载AOF/RDB文件成功后,Redis启动成功。
4)AOF/RDB文件存在错误时,Redis启动失败并打印错误信息。
加载损坏的AOF文件时会拒绝启动,并打印如下日志:
对于错误格式的AOF文件,先进行备份,然后采用redis-check-aof--fix命令进行修复,修复后使用diff-u对比数据的差异,找出丢失的数据,有些可以人工修改补全。
AOF文件可能存在结尾不完整的情况,Redis为我们提供了aof-load-truncated配置来兼容这种情况,默认开启。加载AOF时,当遇到此问题时会忽略并继续启动,同时打印如下警告日志:
② 如何将redis中的数据持久化到数据库中
1、
快照的方式持久化到磁盘
自动持久化规则配置
save
900
1
save
300
10
save
60
10000
上面的配置规则意思如下:
#
In
the
example
below
the
behaviour
will
be
to
save:
#
after
900
sec
(15
min)
if
at
least
1
key
changed
#
after
300
sec
(5
min)
if
at
least
10
keys
changed
#
after
60
sec
if
at
least
10000
keys
changed
redis也可以关闭自动持久化,注释掉这些save配置,或者save
“”
如果后台保存到磁盘发生错误,将停止写操作.
stop-writes-on-bgsave-error
yes
使用LZF压缩rdb文件,这会耗CPU,
但是可以减少磁盘占用.
rdbcompression
yes
保存rdb和加载rdb文件的时候检验,可以防止错误,但是要付出约10%的性能,可以关闭他,提高性能。
rdbchecksum
yes
导出的rdb文件名
dbfilename
mp.rdb
设置工作目录,
rdb文件会写到该目录,
append
only
file也会存储在该目录下.
dir
./
③ 如何在redis配置masterName
1. Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程
daemonize no
2. 当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定
pidfile /var/run/redis.pid
3. 指定Redis监听端口,默认端口为6379,作者在自己的一篇博文中解释了为什么选用6379作为默认端口,因为6379在手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字
port 6379
4. 绑定的主机地址
bind 127.0.0.1
5.当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能
timeout 300
6. 指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose
loglevel verbose
7. 日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null
logfile stdout
8. 设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id
databases 16
9. 指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合
save <seconds> <changes>
Redis默认配置文件中提供了三个条件:
save 900 1
save 300 10
save 60 10000
分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。
10. 指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大
rdbcompression yes
11. 指定本地数据库文件名,默认值为mp.rdb
dbfilename mp.rdb
12. 指定本地数据库存放目录
dir ./
13. 设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步
slaveof <masterip> <masterport>
14. 当master服务设置了密码保护时,slav服务连接master的密码
masterauth <master-password>
15. 设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH <password>命令提供密码,默认关闭
requirepass foobared
16. 设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,如果设置 maxclients 0,表示不作限制。当客户端连接数到达限制时,Redis会关闭新的连接并向客户端返回max number of clients reached错误信息
maxclients 128
17. 指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,Value会存放在swap区
maxmemory <bytes>
18. 指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no
appendonly no
19. 指定更新日志文件名,默认为appendonly.aof
appendfilename appendonly.aof
20. 指定更新日志条件,共有3个可选值:
no:表示等操作系统进行数据缓存同步到磁盘(快)
always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全)
everysec:表示每秒同步一次(折衷,默认值)
appendfsync everysec
21. 指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制)
vm-enabled no
22. 虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享
vm-swap-file /tmp/redis.swap
23. 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0
vm-max-memory 0
24. Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值
vm-page-size 32
25. 设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,在磁盘上每8个pages将消耗1byte的内存。
vm-pages 134217728
26. 设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4
vm-max-threads 4
27. 设置在向客户端应答时,是否把较小的包合并为一个包发送,默认为开启
glueoutputbuf yes
28. 指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法
hash-max-zipmap-entries 64
hash-max-zipmap-value 512
29. 指定是否激活重置哈希,默认为开启(后面在介绍Redis的哈希算法时具体介绍)
activerehashing yes
30. 指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件
include /path/to/local.conf
④ Redis持久化
Redis支持RDB和AOF两种持久化机制,持久化功能有效地避免因进程退出造成的数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复。理解掌握持久化机制对于Redis运维非常重要。本章内容如下:
·首先介绍RDB、AOF的配置和运行流程,以及控制持久化的相关命令,如bgsave和bgrewriteaof。
·其次对常见持久化问题进行分析定位和优化。
·最后结合Redis常见 的单机多实例部署场景进行优化。
5.1RDB
RDB持久化是把当前进程数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发。
5.1.1触发机制
手动触发分别对应save和bgsave命令:
·save命令:阻塞当前Redis服务器,直到RDB过程完成为止,对于内存比较大的实例会造成长时间阻塞,线上环境不建议使用。运行save命令对应
的Redis日志如下:
* DB saved on disk
·bgsave命令:Redis进程执行fork操作创建子进程,RDB持久化过程由子进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短。运行bgsave命令对应的Redis日志如下:
* Background saving started by pid 3151
* DB saved on disk
* RDB: 0 MB of memory used by -on-write
* Background saving terminated with success
显然bgsave命令是针对save阻塞问题做的优化。因此Redis内部所有的涉及RDB的操作都采用bgsave的方式,而save命令已经废弃。
除了执行命令手动触发之外,Redis内部还存在自动触发RDB的持久化机制,例如以下场景:
1)使用save相关配置,如“save m n”。表示m秒内数据集存在n次修改时,自动触发bgsave。
2)如果从节点执行全量复制操作,主节点自动执行bgsave生成RDB文件并发送给从节点,更多细节见6.3节介绍的复制原理。
3)执行debug reload命令重新加载Redis时,也会自动触发save操作。
4)默认情况下执行shutdown命令时,如果没有开启AOF持久化功能则自动执行bgsave。
5.1.2流程说明
bgsave是主流的触发RDB持久化方式,下面根据图5-1了解它的运作流程。
1)执行bgsave命令,Redis父进程判断当前是否存在正在执行的子进程,如RDB/AOF子进程,如果存在bgsave命令直接返回。
2)父进程执行fork操作创建子进程,fork操作过程中父进程会阻塞,通过info stats命令查看latest_fork_usec选项,可以获取最近一个fork操作的耗时,单位为微秒。
3)父进程fork完成后,bgsave命令返回“Background saving started”信息并不再阻塞父进程,可以继续响应其他命令。
4)子进程创建RDB文件,根据父进程内存生成临时快照文件,完成后对原有文件进行原子替换。执行lastsave命令可以获取最后一次生成RDB的时间,对应info统计的rdb_last_save_time选项。
5)进程发送信号给父进程表示完成,父进程更新统计信息,具体见info Persistence下的rdb_*相关选项。
5.1.3RDB文件的处理
保存:RDB文件保存在dir配置指定的目录下,文件名通过dbfilename配置指定。可以通过执行config set dir{newDir}和config setdbfilename{newFileName}运行期动态执行,当下次运行时RDB文件会保存到新目录。
运维提示
当遇到坏盘或磁盘写满等情况时,可以通过config set dir{newDir}在线修改文件路径到可用的磁盘路径,之后执行bgsave进行磁盘切换,同样适用于AOF持久化文件。
压缩:Redis默认采用LZF算法对生成的RDB文件做压缩处理,压缩后的文件远远小于内存大小,默认开启,可以通过参数config set rdbcompression{yes|no}动态修改。
运维提示
虽然压缩RDB会消耗CPU,但可大幅降低文件的体积,方便保存到硬盘或通过网络发送给从节点,因此线上建议开启。
校验:如果Redis加载损坏的RDB文件时拒绝启动,并打印如下日志:
# Short read or OOM loading DB. Unrecoverable error, aborting now.
这时可以使用Redis提供的redis-check-mp工具检测RDB文件并获取对应的错误报告。
5.1.4RDB的优缺点
RDB的优点:
·RDB是一个紧凑压缩的二进制文件,代表Redis在某个时间点上的数据快照。非常适用于备份,全量复制等场景。比如每6小时执行bgsave备份,并把RDB文件拷贝到远程机器或者文件系统中(如hdfs),用于灾难恢复。
·Redis加载RDB恢复数据远远快于AOF的方式。
RDB的缺点:
·RDB方式数据没办法做到实时持久化/秒级持久化。因为bgsave每次运行都要执行fork操作创建子进程,属于重量级操作,频繁执行成本过高。
·RDB文件使用特定二进制格式保存,Redis版本演进过程中有多个格式的RDB版本,存在老版本Redis服务无法兼容新版RDB格式的问题。针对RDB不适合实时持久化的问题,Redis提供了AOF持久化方式来解决。
5.2AOF
AOF(append only file)持久化:以独立日志的方式记录每次写命令,重启时再重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式。理解掌握好AOF持久化机制对我们兼顾数据安全性和性能非常有帮助。
5.2.1使用AOF
开启AOF功能需要设置配置:appendonly yes,默认不开启。AOF文件名通过appendfilename配置设置,默认文件名是appendonly.aof。保存路径同RDB持久化方式一致,通过dir配置指定。AOF的工作流程操作:命令写入(append)、文件同步(sync)、文件重写(rewrite)、重启加载(load),如图5-2所示。
1)所有的写入命令会追加到aof_buf(缓冲区)中。
2)AOF缓冲区根据对应的策略向硬盘做同步操作。
3)随着AOF文件越来越大,需要定期对AOF文件进行重写,达到压缩的目的。
4)当Redis服务器重启时,可以加载AOF文件进行数据恢复。了解AOF工作流程之后,下面针对每个步骤做详细介绍。
5.2.2命令写入
AOF命令写入的内容直接是文本协议格式。例如set hello world这条命令,在AOF缓冲区会追加如下文本:*3\r\n$3\r\nset\r\n$5\r\nhello\r\n$5\r\nworld\r\n
Redis协议格式具体说明见4.1客户端协议小节,这里不再赘述,下面介
绍关于AOF的两个疑惑:
1)AOF为什么直接采用文本协议格式?可能的理由如下:
·文本协议具有很好的兼容性。
·开启AOF后,所有写入命令都包含追加操作,直接采用协议格式,避免了二次处理开销。
·文本协议具有可读性,方便直接修改和处理。
2)AOF为什么把命令追加到aof_buf中?Redis使用单线程响应命令,如果每次写AOF文件命令都直接追加到硬盘,那么性能完全取决于当前硬盘负载。先写入缓冲区aof_buf中,还有另一个好处Redis可以提供多种缓冲区同步硬盘的策略,在性能和安全性方面做出平衡。
5.2.3文件同步
Redis提供了多种AOF缓冲区同步文件策略,由参数appendfsync控制,不同值的含义如表5-1所示。
表5-1AOF缓冲区同步文件策略
系统调用write和fsync说明:
·write操作会触发延迟写(delayed write)机制。linux在内核提供页缓冲区用来提高硬盘IO性能。write操作在写入系统缓冲区后直接返回。同步硬盘操作依赖于系统调度机制,例如:缓冲区页空间写满或达到特定时间周期。同步文件之前,如果此时系统故障宕机,缓冲区内数据将丢失。
·fsync针对单个文件操作(比如AOF文件),做强制硬盘同步,fsync将阻塞直到写入硬盘完成后返回,保证了数据持久化。除了write、fsync,Linux还提供了sync、fdatasync操作,具体API说明参
见:http://linux.die.net/man/2/write,http://linux.die.net/man/2/fsync,http://linux.die.net/man/2/sync
·配置为always时,每次写入都要同步AOF文件,在一般的SATA硬盘上,Redis只能支持大约几百TPS写入,显然跟Redis高性能特性背道而驰,不建议配置。
·配置为no,由于操作系统每次同步AOF文件的周期不可控,而且会加大每次同步硬盘的数据量,虽然提升了性能,但数据安全性无法保证。
·配置为everysec,是建议的同步策略,也是默认配置,做到兼顾性能和数据安全性。理论上只有在系统突然宕机的情况下丢失1秒的数据。(严格来说最多丢失1秒数据是不准确的,5.3节会做具体介绍到。)
5.2.4重写机制
随着命令不断写入AOF,文件会越来越大,为了解决这个问题,Redis引入AOF重写机制压缩文件体积。AOF文件重写是把Redis进程内的数据转化为写命令同步到新AOF文件的过程。
重写后的AOF文件为什么可以变小?有如下原因:
1)进程内已经超时的数据不再写入文件。
2)旧的AOF文件含有无效命令,如del key1、hdel key2、srem keys、set
a111、set a222等。重写使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令。
3)多条写命令可以合并为一个,如:lpush list a、lpush list b、lpush list c可以转化为:lpush list a b c。为了防止单条命令过大造成客户端缓冲区溢出,对于list、set、hash、zset等类型操作,以64个元素为界拆分为多条。
AOF重写降低了文件占用空间,除此之外,另一个目的是:更小的AOF文件可以更快地被Redis加载。AOF重写过程可以手动触发和自动触发:
·手动触发:直接调用bgrewriteaof命令。
·自动触发:根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数确定自动触发时机。
·auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认为64MB。
·auto-aof-rewrite-percentage:代表当前AOF文件空间(aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。自动触发时机=aof_current_size>auto-aof-rewrite-min-size&&(aof_current_size-aof_base_size)/aof_base_size>=auto-aof-rewrite-percentage其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。当触发AOF重写时,内部做了哪些事呢?下面结合图5-3介绍它的运行流程。
图5-3AOF重写运作流程
流程说明:
1)执行AOF重写请求。
如果当前进程正在执行AOF重写,请求不执行并返回如下响应:
ERR Background append only file rewriting already in progress
如果当前进程正在执行bgsave操作,重写命令延迟到bgsave完成之后再执行,返回如下响应:
Background append only file rewriting scheled
2)父进程执行fork创建子进程,开销等同于bgsave过程。
3.1)主进程fork操作完成后,继续响应其他命令。所有修改命令依然写入AOF缓冲区并根据appendfsync策略同步到硬盘,保证原有AOF机制正确性。
3.2)由于fork操作运用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然响应命令,Redis使用“AOF重写缓冲区”保存这部分新数据,防止新AOF文件生成期间丢失这部分数据。
4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。每次批量写入硬盘数据量由配置aof-rewrite-incremental-fsync控制,默认为32MB,防止单次刷盘数据过多造成硬盘阻塞。
5.1)新AOF文件写入完成后,子进程发送信号给父进程,父进程更新统计信息,具体见info persistence下的aof_*相关统计。
5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件。
5.3)使用新AOF文件替换老文件,完成AOF重写。
5.2.5重启加载
AOF和RDB文件都可以用于服务器重启时的数据恢复。如图5-4所示,表示Redis持久化文件加载流程。
流程说明:
1)AOF持久化开启且存在AOF文件时,优先加载AOF文件,打印如下日志:
* DB loaded from append only file: 5.841 seconds
2)AOF关闭或者AOF文件不存在时,加载RDB文件,打印如下日志:
* DB loaded from disk: 5.586 seconds
3)加载AOF/RDB文件成功后,Redis启动成功。
4)AOF/RDB文件存在错误时,Redis启动失败并打印错误信息。
5.2.6文件校验
加载损坏的AOF文件时会拒绝启动,并打印如下日志:
# Bad file format reading the append only file: make a backup of your AOF file,
then use ./redis-check-aof --fix <filename>
运维提示
对于错误格式的AOF文件,先进行备份,然后采用redis-check-aof--fix命令进行修复,修复后使用diff-u对比数据的差异,找出丢失的数据,有些可以人工修改补全。
AOF文件可能存在结尾不完整的情况,比如机器突然掉电导致AOF尾部文件命令写入不全。Redis为我们提供了aof-load-truncated配置来兼容这种情况,默认开启。加载AOF时,当遇到此问题时会忽略并继续启动,同时打印
如下警告日志:
# !!! Warning: short read while loading the AOF file !!!
# !!! Truncating the AOF at offset 397856725 !!!
# AOF loaded anyway because aof-load-truncated is enabled
5.3问题定位与优化
Redis持久化功能一直是影响Redis性能的高发地,本节我们结合常见的持久化问题进行分析定位和优化。
5.3.1fork操作
当Redis做RDB或AOF重写时,一个必不可少的操作就是执行fork操作创建子进程,对于大多数操作系统来说fork是个重量级错误。虽然fork创建的子进程不需要拷贝父进程的物理内存空间,但是会复制父进程的空间内存页表。例如对于10GB的Redis进程,需要复制大约20MB的内存页表,因此fork操作耗时跟进程总内存量息息相关,如果使用虚拟化技术,特别是Xen虚拟机,fork操作会更耗时。
fork耗时问题定位:对于高流量的Redis实例OPS可达5万以上,如果fork操作耗时在秒级别将拖Redis几万条命令执行,对线上应用延迟影响非常明显。正常情况下fork耗时应该是每GB消耗20毫秒左右。可以在info stats统计中查latest_fork_usec指标获取最近一次fork操作耗时,单位微秒。
如何改善fork操作的耗时:
1)优先使用物理机或者高效支持fork操作的虚拟化技术,避免使用Xen。
2)控制Redis实例最大可用内存,fork耗时跟内存量成正比,线上建议每个Redis实例内存控制在10GB以内。
3)合理配置Linux内存分配策略,避免物理内存不足导致fork失败,具体细节见12.1节“Linux配置优化”。
4)降低fork操作的频率,如适度放宽AOF自动触发时机,避免不必要的全量复制等。
5.3.2子进程开销监控和优化
子进程负责AOF或者RDB文件的重写,它的运行过程主要涉及CPU、内存、硬盘三部分的消耗。
1.CPU
·CPU开销分析。子进程负责把进程内的数据分批写入文件,这个过程属于CPU密集操作,通常子进程对单核CPU利用率接近90%.
·CPU消耗优化。Redis是CPU密集型服务,不要做绑定单核CPU操作。由于子进程非常消耗CPU,会和父进程产生单核资源竞争。不要和其他CPU密集型服务部署在一起,造成CPU过度竞争。如果部署多个Redis实例,尽量保证同一时刻只有一个子进程执行重写工作,具体细节见5.4节多实例部署”。
2.内存
·内存消耗分析。子进程通过fork操作产生,占用内存大小等同于父进程,理论上需要两倍的内存来完成持久化操作,但Linux有写时复制机制(-on-write)。父子进程会共享相同的物理内存页,当父进程处理写请求时会把要修改的页创建副本,而子进程在fork操作过程中共享整个父进程内存快照。
·内存消耗监控。RDB重写时,Redis日志输出容如下:
* Background saving started by pid 7692
* DB saved on disk
* RDB: 5 MB of memory used by -on-write
* Background saving terminated with success
如果重写过程中存在内存修改操作,父进程负责创建所修改内存页的副本,从日志中可以看出这部分内存消耗了5MB,可以等价认为RDB重写消耗了5MB的内存。
AOF重写时,Redis日志输出容如下:
* Background append only file rewriting started by pid 8937
* AOF rewrite child asks to stop sending diffs.
* Parent agreed to stop sending diffs. Finalizing AOF...
* Concatenating 0.00 MB of AOF diff received from parent.
* SYNC append only file rewrite performed
* AOF rewrite: 53 MB of memory used by -on-write
* Background AOF rewrite terminated with success
* Resial parent diff successfully flushed to the rewritten AOF (1.49 MB)
* Background AOF rewrite finished successfully
父进程维护页副本消耗同RDB重写过程类似,不同之处在于AOF重写需要AOF重写缓冲区,因此根据以上日志可以预估内存消耗为:53MB+1.49MB,也就是AOF重写时子进程消耗的内存量。
运维提示
编写shell脚本根据Redis日志可快速定位子进程重写期间内存过度消耗情况。
内存消耗优化:
1)同CPU优化一样,如果部署多个Redis实例,尽量保证同一时刻只有一个子进程在工作。
2)避免在大量写入时做子进程重写操作,这样将导致父进程维护大量页副本,造成内存消耗。Linux kernel在2.6.38内核增加了Transparent Huge Pages(THP),支持huge page(2MB)的页分配,默认开启。当开启时可以降低fork创建子进程的速度,但执行fork之后,如果开启THP,复制页单位从原来4KB变为2MB,会大幅增加重写期间父进程内存消耗。建议设置“sudo echo never>/sys/kernel/mm/transparent_hugepage/enabled”关闭THP。更多THP细节和配置见12.1Linux配置优化”。
3.硬盘
·硬盘开销分析。子进程主要职责是把AOF或者RDB文件写入硬盘持久化。势必造成硬盘写入压力。根据Redis重写AOF/RDB的数据量,结合系统工具如sar、iostat、iotop等,可分析出重写期间硬盘负载情况。·硬盘开销优化。优化方法如下:
a)不要和其他高硬盘负载的服务部署在一起。如:存储服务、消息队列服务等。
b)AOF重写时会消耗大量硬盘IO,可以开启配置no-appendfsync-on-rewrite,默认关闭。表示在AOF重写期间不做fsync操作。
c)当开启AOF功能的Redis用于高流量写入场景时,如果使用普通机械磁盘,写入吞吐一般在100MB/s左右,这时Redis实例的瓶颈主要在AOF同步硬盘上。
d)对于单机配置多个Redis实例的情况,可以配置不同实例分盘存储AOF文件,分摊硬盘写入压力。运维提示
配置no-appendfsync-on-rewrite=yes时,在极端情况下可能丢失整个AOF重写期间的数据,需要根据数据安全性决定是否配置。
5.3.3AOF追加阻塞
当开启AOF持久化时,常用的同步硬盘的策略是everysec,用于平衡性能和数据安全性。对于这种方式,Redis使用另一条线程每秒执行fsync同步硬盘。当系统硬盘资源繁忙时,会造成Redis主线程阻塞,如图5-5所示。
阻塞流程分析:
1)主线程负责写入AOF缓冲区。
2)AOF线程负责每秒执行一次同步磁盘操作,并记录最近一次同步时间。
3)主线程负责对比上次AOF同步时间:
·如果距上次同步成功时间在2秒内,主线程直接返回。
·如果距上次同步成功时间超过2秒,主线程将会阻塞,直到同步操作完成。
通过对AOF阻塞流程可以发现两个问题:
1)everysec配置最多可能丢失2秒数据,不是1秒。
2)如果系统fsync缓慢,将会导致Redis主线程阻塞影响效率。
AOF阻塞问题定位:
1)发生AOF阻塞时,Redis输出如下日志,用于记录AOF fsync阻塞导致拖慢Redis服务的行为:
Asynchronous AOF fsync is taking too long (disk is busy). Writing the AOF buffer
without waiting for fsync to complete, this may slow down Redis
2)每当发生AOF追加阻塞事件发生时,在info Persistence统计中,aof_delayed_fsync指标会累加,查看这个指标方便定位AOF阻塞问题。
3)AOF同步最多允许2秒的延迟,当延迟发生时说明硬盘存在高负载问题,可以通过监控工具如iotop,定位消耗硬盘IO资源的进程。优化AOF追加阻塞问题主要是优化系统硬盘负载,优化方式见上一节。
5.4多实例部署
Redis单线程架构导致无法充分利用CPU多核特性,通常的做法是在一台机器上部署多个Redis实例。当多个实例开启AOF重写后,彼此之间会产生对CPU和IO的竞争。本节主要介绍针对这种场景的分析和优化。上一节介绍了持久化相关的子进程开销。对于单机多Redis部署,如果同一时刻运行多个子进程,对当前系统影响将非常明显,因此需要采用一种措施,把子进程工作进行隔离。Redis在info Persistence中为我们提供了监控子进程运行状况的度量指标,如表5-2所示。
我们基于以上指标,可以通过外部程序轮询控制AOF重写操作的执行,整个过程如图5-6所示。
流程说明:
1)外部程序定时轮询监控机器(machine)上所有Redis实例。
2)对于开启AOF的实例,查看(aof_current_size-aof_base_size)/aof_base_size确认增长率。
3)当增长率超过特定阈值(如100%),执行bgrewriteaof命令手动触发当前实例的AOF重写。
4)运行期间循环检查aof_rewrite_in_progress和aof_current_rewrite_time_sec指标,直到AOF重写结束。
5)确认实例AOF重写完成后,再检查其他实例并重复2)~4)步操作。从而保证机器内每个Redis实例AOF重写串行化执行。
5.5本章重点回顾
1)Redis提供了两种持久化方式:RDB和AOF。
2)RDB使用一次性生成内存快照的方式,产生的文件紧凑压缩比更高,因此读取RDB恢复速度更快。由于每次生成RDB开销较大,无法做到实时持久化,一般用于数据冷备和复制传输。
3)save命令会阻塞主线程不建议使用,bgsave命令通过fork操作创建子进程生成RDB避免阻塞。
4)AOF通过追加写命令到文件实现持久化,通过appendfsync参数可以控制实时/秒级持久化。因为需要不断追加写命令,所以AOF文件体积逐渐变大,需要定期执行重写操作来降低文件体积。
5)AOF重写可以通过auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数控制自动触发,也可以使用bgrewriteaof命令手动触发。
6)子进程执行期间使用-on-write机制与父进程共享内存,避免内存消耗翻倍。AOF重写期间还需要维护重写缓冲区,保存新的写入命令避免数据丢失。
7)持久化阻塞主线程场景有:fork阻塞和AOF追加阻塞。fork阻塞时间跟内存量和系统有关,AOF追加阻塞说明硬盘资源紧张。
8)单机下部署多个实例时,为了防止出现多个子进程执行重写操作,建议做隔离控制,避免CPU和IO资源竞争。
⑤ redis在Windows下配置除了问题
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.
# By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
daemonize no
Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
# default. You can specify a custom pid file location here.
pidfile /var/run/redis.pid
当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定
# Accept connections on the specified port, default is 6379.
# If port 0 is specified Redis will not listen on a TCP socket.
port 6379
指定Redis监听端口,默认端口为6379
# If you want you can bind a single interface, if the bind option is not
# specified all the interfaces will listen for incoming connections.
#
# bind 127.0.0.1
绑定的主机地址
# Specify the path for the unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /tmp/redis.sock
# unixsocketperm 755
# Close the connection after a client is idle for N seconds (0 to disable)
timeout 0
当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能
# Set server verbosity to 'debug'
# it can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in proction probably)
# warning (only very important / critical messages are logged)
loglevel verbose
指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose
# Specify the log file name. Also 'stdout' can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
logfile stdout
日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null
# To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# syslog-enabled no
# Specify the syslog identity.
# syslog-ident redis
# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
# syslog-facility local0
# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
databases 16
设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id
################################ SNAPSHOTTING #################################
#
# Save the DB on disk:
#
# save <seconds> <changes>
#
# Will save the DB if both the given number of seconds and the given
# number of write operations against the DB occurred.
#
# In the example below the behaviour will be to save:
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
#
# Note: you can disable saving at all commenting all the "save" lines.
save 900 1
save 300 10
save 60 10000
分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。
指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合
# Compress string objects using LZF when mp .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes
指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大
# The filename where to mp the DB
dbfilename mp.rdb
指定本地数据库文件名,默认值为mp.rdb
# The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# Also the Append Only File will be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
dir ./
指定本地数据库存放目录
################################# REPLICATION #################################
# Master-Slave replication. Use slaveof to make a Redis instance a of
# another Redis server. Note that the configuration is local to the slave
# so for example it is possible to configure the slave to save the DB with a
# different interval, or to listen to another port, and so on.
#
# slaveof <masterip> <masterport>
slaveof <masterip> <masterport> 设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步
# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#
# masterauth <master-password>
masterauth <master-password> 当master服务设置了密码保护时,slav服务连接
⑥ Redis-port导出文件很小
Redis-port导出文件很小该现象是一个正常的行为,在导出后应该注意的是Keys数量是否相同,而不是文件Size大小。
只要确认两个Redis库之间Keys数量基本一致。那就表明,没有数据丢失。可以在AzureRedis门户Overview页面,通过Console数据infokeyspace来查看当前库中所含Keys的数量。
关于压缩比的问题,因为导出功能是把Redis中的Key/Value生成RDB文件,这是Redis本身的行为,并不是Azure平台的特性功能。通过查看Redis的官方文档默认使用的是LZF压缩算法。
⑦ linux redis 怎么设置集群
redis.conf 配置文件说明
daemonize no --是否把redis-server启动在后台,默认是“否”。若改成yes
pidfile /var/run/redis.pid --当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定
prot 6379 --指定Redis监听端口,默认端口为6379
bind 10.252.1.14 ---绑定的主机地址
timeout 0 ---当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能
loglevel notice ---指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose
logfile /mnt/redis/log/redis.log --日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null
databases 16 设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id
save 900 1 指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合
Redis默认配置文件中提供了三个条件:
save 900 1
save 300 10
save 60 10000
分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改
rdbcompression yes --指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大
dbfilename mp.rdb --指定本地数据库文件名,默认值为mp.rdb
dir /mnt/redis/data/ --指定本地数据库存放目录
slaveof <masterip> <masterport> -- 设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步
masterauth <master-password> --当master服务设置了密码保护时,slav服务连接master的密码
requirepass foobared --设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH <password>命令提供密码,默认关闭
maxclients 128 --- 设置同一时间最大客户端连接数,默认无限制
maxmemory <bytes> ---指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,Value会存放在swap区
appendonly no --指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no
appendfilename appendonly.aof ---指定更新日志文件名,默认为appendonly.aof
appendfsync everysec ---指定更新日志条件,共有3个可选值: no:表示等操作系统进行数据缓存同步到磁盘(快) . always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全). everysec:表示每秒同步一次(折衷,默认值)
vm-enabled no ---指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制)
vm-swap-file /tmp/redis.swap ---虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享
vm-max-memory 0 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0
vm-page-size 32 ---Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值
vm-pages 134217728 ---设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,,在磁盘上每8个pages将消耗1byte的内存。
vm-max-threads 4 ---设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4
glueoutputbuf yes ---设置在向客户端应答时,是否把较小的包合并为一个包发送,默认为开启
hash-max-zipmap-entries 64 ---指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法
hash-max-zipmap-value 512 ---指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法
activerehashing yes ---指定是否激活重置哈希,默认为开启(后面在介绍Redis的哈希算法时具体介绍)
include /path/to/local.conf ---指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件
主服务器配置
mkdir /mnt/redis/redisDB
mkdir /mnt/redis/redisLog
vi /etc/redis/redis.conf
dbfilename /mnt/redisDB/mp.rdb --修改磁盘上保存数据库文件的位置
loglevel warning --修改日志级别
logfile /mnt/redis/redisLog/redis.log --修改日志文件的位置
从机配置
cp redis.conf /etc/redis_slave.conf
vim redis_slave.conf
修改其中的一行
配置master的ip地址和redis-server的端口。
slaveof <10.45.39.39> <6379> --设置主从服务器的主服务器的地址和端口
daemonize no --是否把redis-server启动在后台,默认是“否”。若改成yes,会生成一个pid文件。
主从测试
主机: redis-server /etc/redis.conf
从机: redis-server /etc/redis_slave.conf
3.1 测试
在主机上启动redis客户端:
ssh 192.168.1.1
redis-cli
>set k1 v1
>get k1
"v1"
.登陆从机,并在从机上启动客户端:
ssh 192.168.1.2
redis-cli
>get k1
"v1"
可以看到redis已经把数据同步过来了。
⑧ 怎么在Linux下安装配置Redis服务器
1、安装编译工具
yum install wget make gcc gcc-c++ zlib-devel openssl openssl-devel pcre-devel kernel keyutils patch perl
2、安装tcl组件包(安装Redis需要tcl支持)
下载: tcl8.6.1-src.tar.gz
上传tcl8.6.1-src.tar.gz到/usr/local/src目录
cd /usr/local/src #进入软件包存放目录
tar zxvf tcl8.6.1-src.tar.gz #解压
cd tcl8.6.1 #进入安装目录
cd unix
./configure --prefix=/usr --without-tzdata --mandir=/usr/share/man $([ $(uname -m) = x86_64 ] && echo --enable-64bit) #配置
make #编译
sed -e "s@^(TCL_SRC_DIR=').*@1/usr/include'@" -e "/TCL_B/s@='(-L)?.*unix@='1/usr/lib@" -i tclConfig.sh
make install #安装
make install-private-headers
ln -v -sf tclsh8.6 /usr/bin/tclsh
chmod -v 755 /usr/lib/libtcl8.6.so
3、安装Redis
下载:http://download.redis.io/redis-stable.tar.gz
上传redis-stable到/usr/local/src目录
cd /usr/local/src
tar -zxvf redis-stable.tar.gz #解压
mv redis-stable /usr/local/redis #移动文件到安装目录
cd /usr/local/redis #进入安装目录
make #编译
make install #安装
cd /usr/local/bin #查看是否有下面文件,如果没有,拷贝下面文件到/usr/local/bin目录
cd /usr/local/redis
mkdir -p /usr/local/bin
cp -p redis-server /usr/local/bin
cp -p redis-benchmark /usr/local/bin
cp -p redis-cli /usr/local/bin
cp -p redis-check-mp /usr/local/bin
cp -p redis-check-aof /usr/local/bin
ln -s /usr/local/redis/redis.conf /etc/redis.conf #添加配置文件软连接
vi /etc/redis.conf #编辑
daemonize yes #设置后台启动redis
:wq! #保存退出
redis-server /etc/redis.conf #启动redis服务
redis-cli shutdown #关闭redis
vi /etc/sysctl.conf #编辑,在最后一行添加下面代码
vm.overcommit_memory = 1
:wq! #保存退出
sysctl -p #使设置立即生效
4、设置redis开机启动
vi /etc/init.d/redis #编辑,添加以下代码
#!/bin/sh
# chkconfig: 2345 90 10
# description: Redis is a persistent key-value database
# redis Startup script for redis processes
# processname: redis
redis_path="/usr/local/bin/redis-server"
redis_conf="/etc/redis.conf"
redis_pid="/var/run/redis.pid"
# Source function library.
. /etc/rc.d/init.d/functions
[ -x $redis_path ] || exit 0
RETVAL=0
prog="redis"
# Start daemons.
start() {
if [ -e $redis_pid -a ! -z $redis_pid ];then
echo $prog" already running...."
exit 1
fi
echo -n $"Starting $prog "
# Single instance for all caches
$redis_path $redis_conf
RETVAL=$?
[ $RETVAL -eq 0 ] && {
touch /var/lock/subsys/$prog
success $"$prog"
}
echo
return $RETVAL
}
# Stop daemons.
stop() {
echo -n $"Stopping $prog "
killproc -d 10 $redis_path
echo
[ $RETVAL = 0 ] && rm -f $redis_pid /var/lock/subsys/$prog
RETVAL=$?
return $RETVAL
}
# See how we were called.
case "$1" in
start)
start
;;
stop)
stop
;;
status)
status $prog
RETVAL=$?
;;
restart)
stop
start
;;
condrestart)
if test "x`pidof redis`" != x; then
stop
start
fi
;;
*)
echo $"Usage: $0 {start|stop|status|restart|condrestart}"
exit 1
esac
exit $RETVAL
:wq! #保存退出
chmod 755 /etc/init.d/redis #添加脚本执行权限
chkconfig --add redis #添加开启启动
chkconfig --level 2345 redis on #设置启动级别
chkconfig --list redis #查看启动级别
service redis restart #重新启动redis
5、设置redis配置文件参数
mkdir -p /usr/local/redis/var #创建redis数据库存放目录
vi /etc/redis.conf #编辑
daemonize yes #以后台daemon方式运行redis
pidfile "/var/run/redis.pid" #redis以后台运行,默认pid文件路径/var/run/redis.pid
port 6379 #默认端口
bind 127.0.0.1 #默认绑定本机所有ip地址,为了安全,可以只监听内网ip
timeout 300 #客户端超时设置,单位为秒
loglevel verbose #设置日志级别,支持四个级别:debug、notice、verbose、warning
logfile stdout #日志记录方式,默认为标准输出,logs不写文件,输出到空设备/deb/null
logfile "/usr/local/redis/var/redis.log" #可以指定日志文件路径
databases 16 #开启数据库的数量
save 900 1
save 300 10
save 60 10000
创建本地数据库快照,格式:save * *
900秒内,执行1次写操作
300秒内,执行10次写操作
60秒内,执行10000次写操作
rdbcompression yes #启用数据库lzf压缩,也可以设置为no
dbfilename mp.rdb #本地快照数据库名称
dir "/usr/local/redis/var/" #本地快照数据库存放目录
requirepass 123456 #设置redis数据库连接密码
maxclients 10000 #同一时间最大客户端连接数,0为无限制
maxmemory 1024MB #设定redis最大使用内存,值要小于物理内存,必须设置
appendonly yes #开启日志记录,相当于MySQL的binlog
appendfilename "appendonly.aof" #日志文件名,注意:不是目录路径
appendfsync everysec #每秒执行同步,还有两个参数always、no一般设置为everysec,相当于MySQL事物日志的写方式
:wq! #保存退出
service redis restart #重启
6、测试redis数据库
redis-cli -a 123456 #连接redis数据库,注意:-a后面跟redis数据库密码
set name 111cn.net #写数据
get name #读取数据
exit #退出redis数据库控制台
redis-benchmark -h 127.0.0.1 -p 6379 -c 1000 -n 100000 #1000个并发连接,100000个请求,测试127.0.0.1端口为6379的redis服务器性能
⑨ Redis 持久化 ★
1、RDB
2、AOF
3、两种的使用场景
在指定的时间间隔内将内存中的数据集快照写入磁盘, 也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里
Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到 一个临时文件中,待持久化过程都结束了,再用这个临时文件替换上次持久化好的文件。 整个过程中,主进程是不进行任何IO操作的,这就确保了极高的性能 如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。
(1)Fork的作用是复制一个与当前进程一样的进程。新进程的所有数据(变量、环境变量、程序计数器等) 数值都和原进程一致,但是是一个全新的进程,并作为原进程的子进程
(2)在Linux程序中,fork()会产生一个和父进程完全相同的子进程,但子进程在此后多会exec系统调用,出于效率考虑,Linux中引入了“写时复制技术”
(3)一般情况父进程和子进程会共用同一段物理内存,只有进程空间的各段的内容要发生变化时,才会将父进程的内容复制一份给子进程。
在redis.conf中配置文件名称,默认为mp.rdb
rdb文件的保存路径,也可以修改。默认为Redis启动时命令行所在的目录下
dir "/myredis/"
dir ./ 表示在当前配置文件的文件夹下生成 .rdb文件
(1)配置文件中默认的快照配置
(2)命令save VS bgsave
save :save时只管保存,其它不管,全部阻塞。手动保存。不建议。
bgsave:Redis会在后台异步进行快照操作, 快照同时还可以响应客户端请求。
可以通过lastsave 命令获取最后一次成功执行快照的时间
(3)save(禁用)
格式:save 秒钟 写操作次数
RDB是整个内存的压缩过的Snapshot,RDB的数据结构,可以配置复合的快照触发条件,
默认是1分钟内改了1万次,或5分钟内改了10次,或15分钟内改了1次。(短时间内越多越快)
不设置save指令,或者给save传入空字符串
(4)stop-writes-on-bgsave-error
如果配置成no,表示你不在乎数据不一致或者有其他的手段发现和控制
(5)rdbcompression 压缩文件
对于存储到磁盘中的快照,可以设置是否进行压缩存储。如果是的话,redis会采用LZF算法进行压缩。如果你不想消耗CPU来进行压缩的话,可以设置为关闭此功能:
(6)rdbchecksum
在存储快照后,还可以让redis使用CRC64算法来进行数据校验,但是这样做会增加大约10%的性能消耗,如果希望获取到最大的性能提升,可以关闭此功能:
(7)rdb的备份
1)将备份文件 (mp.rdb) 移动到 redis 安装目录并启动服务即可
2)CONFIG GET dir获取目录
(1)优点:
适合大规模的数据恢复
对数据完整性和一致性要求不高更适合使用
节省磁盘空间
恢复速度快
(2)缺点:
Fork的时候,内存中的数据被克隆了一份,大致2倍的膨胀性需要考虑
虽然Redis在fork时使用了写时拷贝技术,但是如果数据庞大时还是比较消耗性能。
在备份周期在一定间隔时间做一次备份,所以如果Redis意外down掉的话,就会丢失最后一次快照后的所有修改。
以日志的形式来记录每个写操作(增量保存),将Redis执行过的所有写指令记录下来(读操作不记录), 只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis 重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作
(1)客户端的请求写命令会被append追加到AOF缓冲区内;
(2)AOF缓冲区根据AOF持久化策略[always,everysec,no]将操作sync同步到磁盘的AOF文件中;
(3)AOF文件大小超过重写策略或手动重写时,会对AOF文件rewrite重写,压缩AOF文件容量;
(4)Redis服务重启时,会重新load加载AOF文件中的写操作达到数据恢复的目的
可以在redis.conf中配置文件名称,默认为 appendonly.aof
AOF文件的保存路径,同RDB的路径一致。
AOF和RDB同时开启,系统默认取AOF的数据(数据不会存在丢失)
AOF的备份机制和性能虽然和RDB不同, 但是备份和恢复的操作同RDB一样,都是拷贝备份文件,需要恢复时再拷贝到Redis工作目录下,启动系统即加载。
正常恢复:
修改默认的appendonly no,改为yes
将有数据的aof文件复制一份保存到对应目录(查看目录:config get dir)
恢复:重启redis然后重新加载
异常恢复:
修改默认的appendonly no,改为yes
如遇到AOF文件损坏,通过/usr/local/bin/redis-check-aof--fix appendonly.aof进行恢复
备份被写坏的AOF文件
恢复:重启redis,然后重新加载
appendfsync always
始终同步,每次Redis的写入都会立刻记入日志;性能较差但数据完整性比较好
appendfsync everysec
每秒同步,每秒记入日志一次,如果宕机,本秒的数据可能丢失。
appendfsync no
redis不主动进行同步,把同步时机交给操作系统。
(1)是什么
AOF采用文件追加方式,文件会越来越大为避免出现此种情况,新增了重写机制, 当AOF文件的大小超过所设定的阈值时,Redis就会启动AOF文件的内容压缩, 只保留可以恢复数据的最小指令集.可以使用命令bgrewriteaof
(2)重写原理,如何实现重写
AOF文件持续增长而过大时,会fork出一条新进程来将文件重写(也是先写临时文件最后再rename),redis4.0版本后的重写,是指上就是把rdb 的快照,以二级制的形式附在新的aof头部,作为已有的历史数据,替换掉原来的流水账操作。
no-appendfsync-on-rewrite:
如果 no-appendfsync-on-rewrite=yes ,不写入aof文件只写入缓存,用户请求不会阻塞,但是在这段时间如果宕机会丢失这段时间的缓存数据。(降低数据安全性,提高性能)
重写虽然可以节约大量磁盘空间,减少恢复时间。但是每次重写还是有一定的负担的,因此设定Redis要满足一定条件才会进行重写。
(3)重写流程
(1)bgrewriteaof触发重写,判断是否当前有bgsave或bgrewriteaof在运行,如果有,则等待该命令结束后再继续执行。
(2)主进程fork出子进程执行重写操作,保证主进程不会阻塞。
(3)子进程遍历redis内存中数据到临时文件,客户端的写请求同时写入aof_buf缓冲区和aof_rewrite_buf重写缓冲区保证原AOF文件完整以及新AOF文件生成期间的新的数据修改动作不会丢失。
(4)
1).子进程写完新的AOF文件后,向主进程发信号,父进程更新统计信息。
2).主进程把aof_rewrite_buf中的数据写入到新的AOF文件。
(5)使用新的AOF文件覆盖旧的AOF文件,完成AOF重写。
备份机制更稳健,丢失数据概率更低。
可读的日志文本,通过操作AOF稳健,可以处理误操作。
比起RDB占用更多的磁盘空间。
恢复备份速度要慢。
每次读写都同步的话,有一定的性能压力。
存在个别Bug,造成恢复不能。
官方推荐两个都启用。
如果对数据不敏感,可以选单独用RDB。
不建议单独用 AOF,因为可能会出现Bug。
如果只是做纯内存缓存,可以都不用。
https://blog.csdn.net/xm393392625/article/details/89053171
⑩ 刚刚问我,redis持久化数据到数据库是怎么操作的
1、 快照的方式持久化到磁盘
自动持久化规则配置
save 900 1
save 300 10
save 60 10000
上面的配置规则意思如下:
# In the example below the behaviour will be to save:
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
redis也可以关闭自动持久化,注释掉这些save配置,或者save “”
如果后台保存到磁盘发生错误,将停止写操作.
stop-writes-on-bgsave-error yes
使用LZF压缩rdb文件,这会耗CPU, 但是可以减少磁盘占用.
rdbcompression yes
保存rdb和加载rdb文件的时候检验,可以防止错误,但是要付出约10%的性能,可以关闭他,提高性能。
rdbchecksum yes
导出的rdb文件名
dbfilename mp.rdb
设置工作目录, rdb文件会写到该目录, append only file也会存储在该目录下.
dir ./
Redis自动快照保存到磁盘或者调用bgsave,是后台进程完成的,其他客户端仍然和可以读写redis服务器,后台保存快照到磁盘会占用大量内存。调用save保存内存中的数据到磁盘,将阻塞客户端请求,直到保存完毕。
调用shutdown命令,Redis服务器会先调用save,所有数据持久化到磁盘之后才会真正退出。
对于数据丢失的问题:
如果服务器crash,从上一次快照之后的数据将全部丢失。所以在设置保存规则的时候,要根据实际业务设置允许的范围。
如果对于数据敏感的业务,在程序中要使用恰当的日志,在服务器crash之后,通过日志恢复数据。
2、 Append-only file 的方式持久化
另外一种方式为递增的方式,将会引起数据变化的操作, 持久化到文件中, 重启redis的时候,通过操作命令,恢复数据.
每次执行写操作命令之后,都会将数据写到server.aofbuf中。
# appendfsync always
appendfsync everysec
# appendfsync no
当配置为always的时候,每次server.aofbuf中的数据写入到文件之后,才会返回给客户端,这样可以保证数据不丢,但是频繁的IO操作,会降低性能。
everysec每秒写一次,这可能会丢失一秒内的操作。
aof最大的问题就是随着时间append file会变的很大,所以我们需要bgrewriteaof命令重新整理文件,只保留最新的kv数据。