‘壹’ 最小二乘法的matlab程序
。。。。。从y里面把b和c的部分剪掉,然后就不要用二次拟合了,用1次,p=polyfit(x^2,y-bx-c,1),这样就行了!
‘贰’ 求一个最小二乘法C语言程序
#include <stdio.h>
#include <conio.h>
#include <math.h>
#include <process.h>
#define N 5//N个点
#define T 3 //T次拟合
#define W 1//权函数
#define PRECISION 0.00001
float pow_n(float a,int n)
{
int i;
if(n==0)
return(1);
float res=a;
for(i=1;i<n;i++)
{
res*=a;
}
return(res);
}
void mutiple(float a[][N],float b[][T+1],float c[][T+1])
{
float res=0;
int i,j,k;
for(i=0;i<T+1;i++)
for(j=0;j<T+1;j++)
{
res=0;
for(k=0;k<N;k++)
{
res+=a[i][k]*b[k][j];
c[i][j]=res;
}
}
}
void matrix_trans(float a[][T+1],float b[][N])
{
int i,j;
for(i=0;i<N;i++)
{
for(j=0;j<T+1;j++)
{
b[j][i]=a[i][j];
}
}
}
void init(float x_y[][2],int n)
{
int i;
printf("请输入%d个已知点:\n",N);
for(i=0;i<n;i++)
{
printf("(x%d y%d):",i,i);
scanf("%f %f",&x_y[i][0],&x_y[i][1]);
}
}
void get_A(float matrix_A[][T+1],float x_y[][2],int n)
{
int i,j;
for(i=0;i<N;i++)
{
for(j=0;j<T+1;j++)
{
matrix_A[i][j]=W*pow_n(x_y[i][0],j);
}
}
}
void print_array(float array[][T+1],int n)
{
int i,j;
for(i=0;i<n;i++)
{
for(j=0;j<T+1;j++)
{
printf("%-g",array[i][j]);
}
printf("\n");
}
}
void convert(float argu[][T+2],int n)
{
int i,j,k,p,t;
float rate,temp;
for(i=1;i<n;i++)
{
for(j=i;j<n;j++)
{
if(argu[i-1][i-1]==0)
{
for(p=i;p<n;p++)
{
if(argu[p][i-1]!=0)
break;
}
if(p==n)
{
printf("方程组无解!\n");
exit(0);
}
for(t=0;t<n+1;t++)
{
temp=argu[i-1][t];
argu[i-1][t]=argu[p][t];
argu[p][t]=temp;
}
}
rate=argu[j][i-1]/argu[i-1][i-1];
for(k=i-1;k<n+1;k++)
{
argu[j][k]-=argu[i-1][k]*rate;
if(fabs(argu[j][k])<=PRECISION)
argu[j][k]=0;
}
}
}
}
void compute(float argu[][T+2],int n,float root[])
{
int i,j;
float temp;
for(i=n-1;i>=0;i--)
{
temp=argu[i][n];
for(j=n-1;j>i;j--)
{
temp-=argu[i][j]*root[j];
}
root[i]=temp/argu[i][i];
}
}
void get_y(float trans_A[][N],float x_y[][2],float y[],int n)
{
int i,j;
float temp;
for(i=0;i<n;i++)
{
temp=0;
for(j=0;j<N;j++)
{
temp+=trans_A[i][j]*x_y[j][1];
}
y[i]=temp;
}
}
void cons_formula(float coef_A[][T+1],float y[],float coef_form[][T+2])
{
int i,j;
for(i=0;i<T+1;i++)
{
for(j=0;j<T+2;j++)
{
if(j==T+1)
coef_form[i][j]=y[i];
else
coef_form[i][j]=coef_A[i][j];
}
}
}
void print_root(float a[],int n)
{
int i,j;
printf("%d个点的%d次拟合的多项式系数为:\n",N,T);
for(i=0;i<n;i++)
{
printf("a[%d]=%g,",i+1,a[i]);
}
printf("\n");
printf("拟合曲线方程为:\ny(x)=%g",a[0]);
for(i=1;i<n;i++)
{
printf(" + %g",a[i]);
for(j=0;j<i;j++)
{
printf("*X");
}
}
printf("\n");
}
void process()
{
float x_y[N][2],matrix_A[N][T+1],trans_A[T+1][N],coef_A[T+1][T+1],coef_formu[T+1][T+2],y[T+1],a[T+1];
init(x_y,N);
get_A(matrix_A,x_y,N);
printf("矩阵A为:\n");
print_array(matrix_A,N);
matrix_trans(matrix_A,trans_A);
mutiple(trans_A,matrix_A,coef_A);
printf("法矩阵为:\n");
print_array(coef_A,T+1);
get_y(trans_A,x_y,y,T+1);
cons_formula(coef_A,y,coef_formu);
convert(coef_formu,T+1);
compute(coef_formu,T+1,a);
print_root(a,T+1);
}
void main()
{
process();
}
]]>
</Content>
<PostDateTime>2007-4-19 19:23:57</PostDateTime>
</Reply>
<Reply>
<PostUserNickName></PostUserNickName>
<rank>一级(初级)</rank>
<ranknum>user1</ranknum>
<credit>100</credit>
<ReplyID>40389872</ReplyID>
<TopicID>5478010</TopicID>
<PostUserId>1526752</PostUserId>
<PostUserName>jiangxc2004</PostUserName>
<Point>0</Point>
<Content>
<![CDATA[
你可以改一下
不从终端输入,直接在程序中给出参数
请输入5个已知点:
(x0 y0):-2 -0.1
(x1 y1):-1 0.1
(x2 y2):0 0.4
(x3 y3):1 0.9
(x4 y4):2 1.6
矩阵A为:
1 -2 4 -8
1 -1 1 -1
1 0 0 0
1 1 1 1
1 2 4 8
法矩阵为:
5 0 10 0
0 10 0 34
10 0 34 0
0 34 0 130
5个点的3次拟合的多项式系数为:
a[1]=0.408571, a[2]=0.391667, a[3]=0.0857143, a[4]=0.00833333,
拟合曲线方程为:
y(x)=0.408571 + 0.391667*X + 0.0857143*X*X + 0.00833333*X*X*X
]]>
</Content>
<PostDateTime>2007-4-19 19:26:11</PostDateTime>
</Reply>
<Reply>
<PostUserNickName></PostUserNickName>
<rank>一级(初级)</rank>
<ranknum>user1</ranknum>
<credit>100</credit>
<ReplyID>40390406</ReplyID>
<TopicID>5478010</TopicID>
<PostUserId>1526752</PostUserId>
<PostUserName>jiangxc2004</PostUserName>
<Point>0</Point>
<Content>
<![CDATA[
这样就可以直接调用process()函数了!
二次拟合的话就把宏 T 成2;
拟合点的数目 N 也可以修改!
也可以去到注释的部分进行返回值的调用!
‘叁’ matlab最小二乘法代码
求解线性方程组A*x=b直接用x=A\b就可以,如果方程组是超定的,则结果就是最小二乘意义的解。至于说求出的x是否为正,取决于数据自身。
以前回答过的一些问题供参考:
http://..com/question/511634790.html
http://..com/question/511634790.html
‘肆’ 关于最小二乘法的c语言程序
已经改正语法的错误,如果有问题
是你的算法有误
#include
int
main
()
{
int
num,i;
float
x,y,l,m,n,p,a,b;
i=1;
l=0.0;
m=0.0;
n=0.0;
p=0.0;
printf
("请输入你想计算的x,y的个数:");
scanf("%d",&num);
while
(i<=num)
//去掉分号
{
printf("请输入x的值:");
scanf
("%f",&x);
//加上取地址符
printf("请输入y的值:");
scanf
("%f",&y);
//加上取地址符
l+=x;
m+=y;
n+=x*y;
p+=x*x;
i++;
}
a=(num*n-l*m)/(num*p-l*l);
b=(p*m-n*l)/(num*p-l*l);
printf("最小二乘法所算得的斜率和截距分别为%f和%f\n",a,b);
}
‘伍’ 计算方法中最小二乘法如何用C语言编程
#include <stdio.h>
#include <math.h>
#define epsilon 1e-6
void nihe1(int n,int m,float sum_x,float sum_y,float sum_xy,float x2);
void nihe2(int n,int m,float sum_x,float sum_y,float sum_xy,float x2,float x2y,float x3,float x4);
int main(){
float x[100]={0.0};
float y[100]={0.0};
int n,i,flag=1;
float sum_y=0.0,sum_x=0,x2=0,sum_xy=0.0,x3=0,x4=0,x2y=0.0;
printf("请你输入需要测试的数据(先输入x[],后输入y[])的个数:");
scanf("%d",&n);
for(i = 0; i < n; i++){
scanf("%f",&x[i]);}
for(i = 0; i < n; i++){
scanf("%f",&y[i]);}
for(i = 0; i < n; i++){
sum_x += x[i];
sum_y += y[i];
sum_xy += x[i]*y[i];
x2 += x[i]*x[i];
x2y += x[i]*x[i]*y[i];
x3 += x[i]*x[i]*x[i];
x4 += x[i]*x[i]*x[i]*x[i];}
printf("---------------请你输入的要拟合的函数------------------\n");
printf(" 1、拟合一次函数\n");
printf(" 2、拟合二次函数\n");
scanf("%d",&flag);
switch(flag){
case 1:
nihe1(n,flag+1,sum_x,sum_y,sum_xy,x2); break;
case 2:
nihe2(n,flag+1,sum_x,sum_y,sum_xy,x2,x2y,x3,x4); break;
default:
printf("ERROR\n");}
return 0;}
void nihe1(int n,int m,float sum_x,float sum_y,float sum_xy,float x2){
int i,k,j;
float t,s=0;
float a[2][3] = {{(float)n,sum_x,sum_y},{sum_x,x2,sum_xy}};
n=m;
//if(m == 3)
// a[3][4] = {{n,sum_x,sum_y},{sum_x,x2,x3,sum_xy},{x2,x3,x4,x2y}};
for(k=0;k<n-1;k++) {
for(i=k+1;i<n;i++)
if( abs((int)a[i][k]) > abs((int)a[k][k]) )
for(j=k;j<n+1;j++) {
t=a[k][j];
a[k][j]=a[i][j];
a[i][j]=t; }
if( abs((int)a[k][k]) < epsilon) {
printf("\nError,主元消去法 cann't be rable,break at %d!\n",k+1);
return; }
for(i=k+1;i<n;i++){
a[i][k]=a[i][k] / a[k][k];
for(j=k+1;j<n+1;j++)
a[i][j]=a[i][j]-a[i][k] * a[k][j]; }}
a[n-1][n]=a[n-1][n] / a[n-1][n-1];
for(k=n-2;k>=0;k--) {
s=0;
for(j=k+1;j<n;j++)
s+=a[k][j]*a[j][n];
a[k][n]=( a[k][n]-s ) / a[k][k]; }
printf("\n*****The Result*****\n");
for(i=0;i<n;i++)
printf(" x[%d]=%.4f\n",i+1,a[i][n]);
printf("函数为:p(x) = %.4f + (%.4f)*x\n",a[0][n],a[1][n]);
getchar();}
void nihe2(int n,int m,float sum_x,float sum_y,float sum_xy,float x2,float x2y,float x3,float x4){
int i,k,j;
float t,s=0;
float a[3][4]=
{{(float)n,sum_x,x2,sum_y},{sum_x,x2,x3,sum_xy},{x2,x3,x4,x2y}};
n=m;
for(k=0;k<n-1;k++) {
for(i=k+1;i<n;i++)
if( abs((int)a[i][k]) > abs((int)a[k][k]) )
for(j=k;j<n+1;j++) {
t=a[k][j];
a[k][j]=a[i][j];
a[i][j]=t; }
if( abs((int)a[k][k]) < epsilon) {
printf("\nError,主元消去法 cann't be rable,break at %d!\n",k+1);
return; }
for(i=k+1;i<n;i++){
a[i][k]=a[i][k] / a[k][k];
for(j=k+1;j<n+1;j++)
a[i][j]=a[i][j]-a[i][k] * a[k][j]; } }
a[n-1][n]=a[n-1][n] / a[n-1][n-1];
for(k=n-2;k>=0;k--) {
s=0;
for(j=k+1;j<n;j++)
s+=a[k][j]*a[j][n];
a[k][n]=( a[k][n]-s ) / a[k][k]; }
printf("\n*****The Result*****\n");
for(i=0;i<n;i++)
printf(" x[%d]=%.4f\n",i+1,a[i][n]);
printf("函数为:p(x) = %.4f + (%.4f)*x + (%.4f)*x*x\n",a[0][n],a[1][n],a[2][n]);
getchar();}
‘陆’ 怎么用C语言实现最小二乘法
最小二乘法常用于根据实测数据求线性方程的最近似解。根据如图(图片引用于网络)的描述,利用C语言求,使用最小二乘法算法求线性方程的解,程序如下:
#include<stdio.h>
#defineN4//共有4个记录,根据需要增加记录
typedefstructData{//定义实验记录结构
intw;//实验次数
doublex;
doubley;
}DATA;
//根据d中的n个DATA记录,计算出线性方程的a,b两值
voidgetcs(DATA*d,intn,double&a,double&b){
doublefi11=0,fi12=0,fi21=0,fi22=0,f1=0,f2=0;
inti;
for(i=0;i<n;i++){
fi11+=d[i].w;
fi12+=d[i].w*d[i].x;
fi21=fi12;
fi22+=d[i].w*d[i].x*d[i].x;
f1+=d[i].w*d[i].y;
f2+=d[i].w*d[i].x*d[i].y;
}
//解一元一次方程
b=(f2*fi11/fi21-f1)/(fi22*fi11/fi21-fi12);
a=(f2*fi12/fi22-f1)/(fi21*fi12/fi22-fi11);
}
intmain(){
DATAd[N]={//定义时赋初值,共4个记录
{2,0.1,1.1},
{1,0.2,1.9},
{1,0.3,3.1},
{1,0.4,3.9}
};
doublea,b;
getcs(d,N,a,b);//计算线性方程参数a,b
printf("线性方程是:Y=%.4lf+%.4lfX
",a,b);
}
‘柒’ 最小二乘法用科学计算器计算
那个是编程解决的
下面是matlab程序
function [C,R2]=linefit(xin,yin)
if length(yin)~=length(xin),error('x and y are not compatible'); end;
xin=xin(:);yin=yin(:);
A=[xin ones(size(xin))];
C=(A'*A)\(A'*yin);
if nargout>1
r=yin-A*C;
R2=1-(norm(r)/norm(yin-mean(yin)))^2;
end;
C中第一元素为直线斜率,第二个为节距即y=c(1)*x+c(2)
原理仍是残差最小
注:在matlab的库函数中有一个polyfit(x,y,N)可以实现同样的功能,只需要将N设置为1即可。没有具体测试过这个函数与这里提供代码之间的会有否区别
‘捌’ 谁知道,用VB 编写的最小二乘法的源代码吗。
Dim j As Integer, t As Integer, m As Integer, n As Integer
Dim s As Integer, i As Integer, k As Integer
s = 1
m = InputBox("请输入m:")
n = InputBox("请输入n:")
Print "m="; m; "n="; n
If m > n Then
i = m: m = n: n = i
End If
If n Mod m = 0 Then
Print "最大公约数是"; m
Exit Sub
End If
k = m
t = n
Do While k <> 0
t = t Mod k
j = t: t = k: k = j
Loop
Print "最大公约数是"; t;
回答者: lxz1969 - 首席运营官 十三级 3-5 11:05
不懂 最小二乘法 不好意思
回答者: chenxfsoft - 同进士出身 六级 3-5 11:05
下面是用最小二乘法计算相关系数的。如果你要算系数的话,可以稍加修改。
Const 标题 = "相关系数的计算"
Private Function 计算相关系数(自变量数组() As Variant, 因变量数组() As Variant, 相关系数 As Variant) As Long
Dim 数组维数 As Integer, 数据数 As Long, 自变量下标下限 As Long, 自变量下标上限 As Long, 因变量下标下限 As Long
Dim i As Long, 变量类型 As Integer
计算相关系数 = 0
数组维数 = 数组维数(自变量数组)
If 数组维数 <> 1 Then
MsgBox "自变量数组不是一维的,不能求相关系数!", vbOKOnly + vbExclamation, 标题
计算相关系数 = 1
Exit Function
End If
数组维数 = 数组维数(因变量数组)
If 数组维数 <> 1 Then
MsgBox "因变量数组不是一维的,不能求相关系数!", vbOKOnly + vbExclamation, 标题
计算相关系数 = 2
Exit Function
End If
自变量下标下限 = LBound(自变量数组)
自变量下标上限 = UBound(自变量数组)
因变量下标下限 = LBound(因变量数组)
On Error GoTo 因变量用完
For i = 自变量下标下限 To 自变量下标上限
If Not IsNumeric(自变量数组(i)) Then
MsgBox "自变量数组下标为" & i & "的元素(即第" & i + 1 - 自变量下标下限 & "个)不是数值型,不能求相关系数!", vbOKOnly + vbExclamation, 标题
计算相关系数 = 3
Exit Function
End If
If Not IsNumeric(因变量数组(i - 自变量下标下限 + 因变量下标下限)) Then
MsgBox "因变量数组下标为" & i - 自变量下标下限 + 因变量下标下限 & "的元素(即第" & i + 1 - 自变量下标下限 & "个)不是数值型,不能求相关系数!", vbOKOnly + vbExclamation, 标题
计算相关系数 = 4
Exit Function
End If
Next i
If i - 1 <> UBound(因变量数组) Then
MsgBox "因变量数组元素个数多于自变量元素个数,不能求相关系数!", vbOKOnly + vbExclamation, 标题
计算相关系数 = 6
Exit Function
End If
On Error GoTo 溢出
Dim 积的和 As Double, 自变量的和 As Double, 因变量的和 As Double, 自变量平方和 As Double, 因变量平方和 As Double
Dim x As Double, y As Double
数据数 = 自变量下标上限 - 自变量下标下限
For i = 自变量下标下限 To 自变量下标上限
x = 自变量数组(i)
y = 因变量数组(i - 自变量下标下限 + 因变量下标下限)
积的和 = 积的和 + x * y
自变量的和 = 自变量和 + x
因变量的和 = 因变量和 + y
自变量平方和 = 自变量平方和 + x * x
因变量平方和 = 因变量平方和 + y * y
Next i
相关系数 = (数据数 * 积的和 - 自变量和 * 因变量和) / Sqr((数据数 * 自变量平方和 - 自变量的和 * 自变量的和) * (数据数 * 因变量平方和 - 因变量的和 * 因变量的和))
Exit Function
因变量用完:
MsgBox "因变量数组元素个数少于自变量元素个数,不能求相关系数!", vbOKOnly + vbExclamation, 标题
计算相关系数 = 5
End Function
Private Function 数组维数(数组() As Double) As Integer
Dim i As Integer
On Error GoTo 结束
For i = 1 To 30000
下标上限 = UBound(数组, i)
Next i
MsgBox "数组维数也太大了!!!!", okonly + vbExclamation, 标题
数组维数 = i
Exit Function
结束:
数组维数 = i
End Function
回答者: vlaoda - 总监 九级 3-5 11:29 分类上升达人排行榜
用户名 动态 上周上升
ljl88900 875
lxz1969 805
fengerezu 800
softbeam 755
AlphaBlend 745
更多>>
订阅该问题
msds首选阿克苏诺贝尔,工业油漆的..
阿克苏诺贝尔(AKZO NOBEL)武汉防护涂料有限公司,是工业防护油漆部门中国区专业的销售..
www.paint-earth.com
优联检测专业从事MSDS编写 特惠中
我们编写的MSDS可以符合下列国家的规范:ISO,中国,美国,欧洲等主要地区的要求,提供中..
www.uts.com.cn
水蒸气性质计算软件源代码下载
优易水和水蒸气性质计算程序WaterPro7.0采用国际公认的《工业用1967年IFC公式》和《..
www.uesoft.com
您想在自己的网站上展示网络“知道”上的问答吗?来获取免费代码吧!
--------------------------------------------------------------------------------
如要投诉或提出意见建议,请到
网络知道投诉吧反馈。
&;2009 Bai
‘玖’ 单片机c语言的最小二乘法怎么实现,求代码
#include <stdio.h>
void main ()
{
int num,i;
float x,y,l,m,n,p,a,b;
i=1;
l=0.0;
m=0.0;
n=0.0;
p=0.0;
printf ("请输入你想计算的x,y的个数:");
scanf("%d",&num);
if (num>=1)
{
while (i<=num);
{
printf("请输入x的值");
scanf ("%lf",&x);
printf("请输入y的值");
scanf ("%lf",&y);
l+=x;
m+=y;
n+=x*y;
p+=x*x;
i++;
}
a=(num*n-l*m)/(num*p-l*l);
b=(p*m-n*l)/(num*p-l*l);
printf("最小二乘法所算得的斜率和截距分别为%f和%f\n",a,b);
}
else printf("mun"输入有误!);
}
‘拾’ 用科学计算器怎么按最小二乘法
1、【shift】+【 mode】;
2、找到【STAT】;
3、【1.on】;
4、【AC】;
5、【shift】+【1(stat)】;
6、【5.reg】;
7、【1.A】——截距;
8、【2.B】——斜率,【3.R】——相关系数。
(10)最小二乘法计算器源码扩展阅读:
计算机有四种状态:Norm、Fix、Eng、Sci,功能分别是:指定指数记号范围、小数点位设置、工程计算、有效数位设置。如果计算器处于其它三种状态则可能会出现运算错误。
Deg是将计算器的角设定为度的状态,共有六种:
Deg—指定度作为预设单位。
Rad—指定弧度作为预设单位。
Gra—指定梯度作为预设单位。也称为“百分度”和“新度”。