❶ 【悬赏】检波电路的基本原理
“检波”有广义的和狭义的含义。
广义的检波就是将难以直接感知的、或混杂/混合在其他信号中的、有用的振动波或电信号还原出来,变为所需的信号。
狭义的检波就是解调连续调制波。常见的连续波调制方法有调幅和调频两种,对应的解调方法就叫检波和鉴频,这种电路统称解调电路或解调器。
一般讲的检波是指狭义的或说基本的调幅检波。
检波电路或检波器的作用是从高频调幅波中取出单向包络,即低频信号。检波要使用非线性元器件,常用的有二极管和三极管。
另外为了使低频有用信号纯净,还要用滤波电路滤除高频载波分量,所以检波电路通常包含非线性元器件和滤波器两部分。
调频是使载波频率随调制信号的幅度变化,而振幅则保持不变。鉴频则是从调频波中解调出原来的低频信号,有时也叫频率检波。鉴频的方法通常分二步,第一步先将等幅的调频波变成幅度随频率变化的 调频—调幅波,第二步再用一般的检波器检出幅度变化,还原低频信号。常用的鉴频器有相位鉴频器、比例鉴频器等。
在检波的基础上,还可以增加峰值检波电路,准峰值检波电路,平均值检波等用于测控。
网上这类资料很多了,这里提供些链接供参考:
http://www.56dz.com/Article/dzrm/jczs/200801/310_3.html
❷ 无线电通信为什么要进行调制常用的模拟调制方式有哪些
无线电通信将模拟或数字信号转换成特殊的模拟信号要进行调制。常用的模拟调制方式有模拟连续波调制(简称模拟调制)、数字连续波调制(简称数字调制)、模拟脉冲调制和数字脉冲调制等。
按调制信号的形式可分为模拟调制和数字调制。用模拟信号调制称为模拟调制;用数据或数字信号调制称为数字调制。
按被调信号的种类可分为脉冲调制、正弦波调制和强度调制(如对非相干光调制)等,调制的载波分别是脉冲、正弦波和光波等。
正弦波调制有幅度调制(调幅ASK)、频率调制(调频FSK)和相位调制(调相PSK)三种基本方式,后两者合称为角度调制。此外还有一些变异的调制,如单边带调幅、残留边带调幅等。
脉冲调制也可以按类似的方法分类。此外还有复合调制和多重调制等。
不同的调制方式有不同的特点和性能。
(2)单频连续波数字包络检波算法扩展阅读
AM调制的优点是接收设备简单,缺点是功率利用率低,抗干扰能力差,在传输中如果载波遇到信道的选择性衰落,则在包络检波时会出现过调失真,信号频带较宽,频带利用率不高,因此AM调制用于通信质量要求不高的场合。主要用在中波和短波的调幅广播中。
DSB调制的优点是功率利用率高,但带宽与AM相同,接收要求同步解调,设备较复杂。只用于点对点的专用通信,运用不太广泛。
SSB调制的优点是功率利用率和频带利用率都较高,抗干扰能力和选择性衰落能力均强于AM,而带宽只有AM的一半;缺点是发送和接收设备都很复杂。
鉴于这些特点,SSB调制普遍用在频带比较拥挤的场合,如短波无线电广播和频分多路复用系统中。
VSB调制的诀窍在于部分抑制了发送边带,同时又利用了平缓滚降滤波器补偿了被抑制的部分。VSB的性能与SSB相当。VSB解调原则上也需要同步解调,但在某些VSB系统中,附加了一个足够大的载波,就可以用包络检波法解调合成信号(VSB+C)。
❸ 模拟调制和数字调制的区别
模拟调制和数字调制有3点不同:
一、两者的分类不同:
1、模拟调制的分类:
(1)幅度调制:幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化的过程 ,常分为标准调幅(AM)、抑制载波双边带调制(DSB)、单边带调制(SSB)和残留边带调制(VSB)等。
(2)角度调制:幅度调制属于线性调制 ,它通过改变载波的幅度,以实现调制信号频谱的搬移,一个正弦载波有幅度、频率、相位3个参量,因此,不仅可以把调制信号的信息寄托在载波的幅度变化中,还可以寄托在载波的频率和相位变化中。
这种使高频载波的频率或相位按照调制信号规律的变化而振幅恒定的调制方式,称为频率调制(FM)和相位调制(PM),分别简称为调频和调相。因为频率或相位的变化都可以看成是载波角度的变化,故调频和调相又统称为角度调制。
2、数字调制的分类:
数字调制可以分为线性调制和非线性调制两大类。在线性调制技术中,传输信号的幅度随调制信号的变化而线性地变化。线性调制技术有较高的带宽效率,所以非常适用于在有限频带内要求容纳更多用户的无线通信系统。
二、两者的特点不同:
1、模拟调制的特点:接收设备简单,缺点是功率利用率低,抗干扰能力差,在传输中如果载波遇到信道的选择性衰落,则在包络检波时会出现过调失真,信号频带较宽,频带利用率不高,因此AM调制用于通信质量要求不高的场合。
2、数字调制的特点:可以在有限的信道条件下,尽量提高频谱资源的利用率,即在单位频道(赫兹)内有效地传输更多的比特信息。
三、两者的概述不同:
1、模拟调制的概述:在无线通信中和其他大多数场合,调制一般均指载波调制。调制信号是指来自信源的消息信号(基带信号),这些信号可以是模拟的,也可以是数字的。
调制方式有很多。根据调制信号是模拟信号还是数字信号,载波是连续波(通常是正弦波)还是脉冲序列,相应的调制方式有模拟连续波调制(简称模拟调制)、数字连续波调制(简称数字调制)、模拟脉冲调制和数字脉冲调制等。
2、数字调制的概述:数字调制是现代通信的重要方法,它与模拟调制相比有许多优点。数字调制具有更好的抗干扰性能,更强的抗信道损耗,以及更好的安全性;数字传输系统中可以使用差错控制技术,支持复杂信号条件和处理技术,如信源编码、加密技术以及均衡等。
❹ 简述检波电路工作原理
1)平均值检波:其最大特点是检波器的充放电时间常数相同,特别适用于对连续波的测量。
2)峰值检波:(快充慢放)它的充电时间常数很小,即使是很窄的脉冲也能很快充电到稳定值,当中频信号消失后,由于电路的放电时间常数很大,检波的输出电压可在很长一段时间内保持在峰值上。峰值检波的特点首先在军用设备的骚扰发射试验中被优先采用,因为好多军用装备只要单次脉冲的激励就可以造成爆炸或数字设备的误动作,而无需像音响设备那样讲究时间的积累
3)准峰值检波:这种检波器的冲放点时间常数介于平均值于峰值之间,在测量周期内的检波器输出既与脉冲幅度有关,又与脉冲重复频率有关,其输出与干扰对听觉造成的效果相一致。解释:将音频信号或视频信号从高频信号(无线电波)中分离出来叫解调,也叫检波。 幅度调制的解调简称检波,其作用是从幅度调制波中不失真的检出调制信号来。 根据是否需要同步信号,检波可分为同步检波和包络检波
4)检波(detection) 广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波 ,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。
5)狭义的检波是指从调幅波的包络提取调制信号的过程。有时把这种检波称为包络检波或幅度检波。这种检波的原理:先让调幅波经过检波器(通常是晶体二极管),从而得到依调幅波包络变化的脉动电流,再经过一个低通滤波器滤去高频成分,就得到反映调幅波包络的调制信号。
❺ 线性调制的线性调制理论概述
连续波调制CWM(Sine wave):是正弦波为载波的调制方法 有两大类:
线性调制 : Z out = ∑ ki Zin ( f -f oi )
非线性调制 :无上述线性关系。
模拟线性调制
1. 常规双边带调幅(DSB-AM)
2. 双边带调幅的调制(DSB)
3. 单边带调制(SSB)
4. 残留边带调制(VSB) S AM (t ) = [ A0 + f (t )] cos(ωc t + θc )
A 其中: 0 外加直流; f (t ) 调制信号; ωc 载波信号的角频率; θc 载波信号的起始相位。 这是简单和直观的调制方法, 可用包络检波的方法很容易恢复 原始的调制信号。 [
检波不失真的前提是:A0 + f (t )] ≥ 0 ; 否则,会出现过调幅,举例说明。
①调制信号为单频余弦 令 则有f (t ) = Am cos(Ω mt + θ m ) S AM (t ) = [ A0 + Am cos(Ω mt + θ m )] cos(ωc t + θ c ) = A0 [1 + β AM cos(Ω mt + θ m )] cos(ωc t + θ c )β 其中: AM Am = ;为调幅指数,其值应≤1。 A0
②调制信号为确定性信号时的已调信号频谱 令 S AM (t ) = [ A0 + f (t )] cos(ωc t + θ c ) 1 = [ A0 + f (t )][e j (ωct +θ c ) + e ? j (ωct +θ c ) ] 2若f(t)的频谱为 F(ω),由傅氏变换F [ A0 ] = 2πA0δ (ω )F [ f (t )e ± jωct ] = F (ω m ωc )可得1 S AM (ω ) = [2πA0δ (ω ? ωc ) + F (ω ? ωc )]e jθ c 2 1 + [2πA0δ (ω + ωc ) + F (ω + ωc )]e ? jθ c 2 为简化起见,令θ=0,则有1 S AM (ω ) = πA0δ (ω ? ωc ) + F (ω ? ωc ) 2 1 + πA0δ (ω + ωc ) + F (ω + ωc ) 2若用卷积表示,令θ=0,则有S AM (t ) = [ A0 + f (t )] cos(ωc t ) = m(t ) ? c(t ) 1 S AM (ω ) = [m(ω ) ? c(ω )] 2π
其中:m(t ) = A0 + f (t ), c(t ) = cos ωc t M (ω ) = F [m(t )] = 2πA0δ (ω ) + F (ω ) C (ω ) = F [cos ωc t ] = π [δ (ω ? ωc ) + δ (ω + ωc )]此结果与上述结果完全相同。
③功率分配(平均功率)2 S AM = S AM (t ) = [ A0 + f (t )]2 cos 2 ωc t由于 f (t ) = 0, cos 2ωc t = 0 S AM A02 f 2 (t ) = + = Sc + S f 2 2 Sc═ 载波功率 Sf ═ 边带功率 平均功率的结果包括载波功率和边带 功率两部分 由定义可知,只有边带功率才与调制 信号有关。 于是我们可以定义调制效率为η AM = Sf S AM = f 2 (t ) A02 + f 2 (t ) 2 当调制信号为单频余弦时,f (t ) 2 = Am / 2 ,此时η AM 2 2 Am β AM = = 2 2 2 2 A0 + Am 2 + β AM当处于临界点时,βAM=1,调制效率最大为ηAM=1/3 调制效率最大的调制信号是幅度为A0的方波,ηAM=0.5
结论: 载波分量C是不携带信息的,但是却占据了大量 功率,这部分功率被白白地浪费掉,如果能够抑 制载波分量,则可以节省这部分功率,于是演变 另一种调制方式:抑制载波双边带调制。
④调制信号为随机信号时已调信号的功率谱密度 信号为已知,可通过信号的自相关函数得到功率谱 密度来研究调制效率和特性。 对于各态历经的平稳随机过程/广义平稳随机过程, 功率谱密度与自相关函数之间是一对傅氏变换关 系。 信号波形的自相关特性→自相关函数; 功率谱密度→平均功率→调制效率。 单边带调制只传送双边带调制信号的 一个边带,节省频带的最佳方法。
1. 直观方法:滤波法形成H SSB (ω ) 的特性为?1 H SSB (ω ) = H USB (ω ) = ? ?0 ?1 = H LSB (ω ) = ? ?0ω > ωc ω ≤ ωc ω < ωc ω ≥ ωc单边带信号滤波法形成的频谱如图 单边带解调不能用简单的包络检波, 其信号包络不能反映调制信号的波形 单边带调制的解调应采用相干解调法 例:某边带信号 要求载频:10MHz, 带宽:300~3400Hz。 上下边带间隔:600Hz受滤波器归一化值限制 600Hz过渡带上升40dB 只有选择两级滤波器 第一级载频选:100kHz 第二级载频选:10MHz
2. 单边带调制移相法形成 希尔伯特变换/正交对/希尔伯特 滤波器/宽带移相网络 必须将信号宽带移相-π/2,而且 ?移相-π/2必须稳定和准确; ?对所有频率分量都要移相-π/2
3. 单边带调制维弗法形成 维弗法利用载频的正交分量,只需载波 移相-π/2,而不必将信号宽带移相-π/2 信号的频率范围为 第一载频为 实际载频为1 2ωL ? ωHωa = (ω L + ω H )ω c = ω a + ωb 1 滤波器截止频率为 (ω H ? ω L ) 2 残留边带调制是介于单边带与抑制载波 双边带调制的一种方法。除了传送一个 边带之外,还保留了另一个边带的一部 分,即过渡带。实现较容易。 残留边带调制同样可以用移相法,实际 上大都采用滤波法。 滤波法方法可分为: 残留部分上边带的方法 其频谱特性如中图所示。 残留部分下边带的方法 其频谱特性。 残留边带滤波器的传递函数在载 频附近必须具有互补对称特性 为了保证相干解调的结果不失真H VSB (ω ? ωc ) + H VSB (ω + ωc ) = 常数 残留边带滤波器衰减特性:可以 较陡峭→单边带,也可以较平缓 →双边带,合适选择。 滤波器的衰减滚降特性:直线滚 降和余弦滚降(电视信号)。
线性调制可以分为两种:广义的线性调制和狭义的线性调制。其中狭义的线性调制只改变频谱中各分量的频率,但不改变各分量振幅的相对比例,使上边带的频谱结构与调制信号的频谱相同,下边带的频谱结构则是调制信号频谱的镜像。狭义的线性调制有调幅(AM)、抑制载波的双边带调制(DSB-SC)和单边带调制(SSB)、残留边带调制(VSB)。
❻ (高分)用Matlab模拟ASK系统(数字信号处理实验)
[] - 本毕业设计用Matlab中的建模仿真工具SIMULINK对通信原理实验进行仿真。作为系列实验的第一部分,包括模拟信号的线性调制解调(AM、DSB、SSB)过程、扰码与解扰实验和低通信号的抽样定理实验。论文中讲述了Matlab的基础知识、Simulink仿真操作方法以及在通信系统中的应用,对被仿真实验
[2ASK.rar] - 2ASK调制与解调包含顶层文件,各模块文件和仿真波形
[blooPressure.rar] - 上臂袖带式电子血压计的单片机处理程序和设计说明
[ojishu.rar] - 此内容是对多址技术即cdma,fdma,tdma技术的原理详细介绍,然后利用matlab7.0仿真软件进行SIMULINK仿真框图设计,进行仿真实验,对教师教学和学生自学都非常有帮助哦 !
[ASKPSk.rar] - ASK,PSK,BASK,BPSK的产生程序。用MATLAB来实现的。
❼ 观察2ask调制仿真,对比调制前后信号的幅度和频率发生哪些变化
在模拟乘法器调幅实验中,对全载波调幅,当调制信号幅度一定而改变调制频率调幅系数不会变化。由调幅系数计算公式知道,调幅系数由调制信号的幅度唯一确定。与频率无关,频率的变化只是影响包络变化的快慢。
解调中分别采用了相干解调和包络检波。另外程序中,解调前加入了噪声,可以发现在大信噪比条件下,两个解调方式性能相似,而在小信噪比调剂下相干解调要好的多,包络检波则因为门限效应存在很多误差。
(7)单频连续波数字包络检波算法扩展阅读:
对于连续波调制,已调信号可表示为Sm(t)=A(t)cos [ωt +θ(t)]它由振幅A(t)、角频率ω 和相位θ(t)3反而参数构成。控制3个参数中的任何一个都会实现调制,使之成为携带信息的信号。
连续波调制分为幅度调制,频率调制和相位调制。频率调整和相位调制都是使载波的相角发生变化,因此两者又统称为角度调制。
调制在通信系统中具有十分重要的作用,通过调制,可对消息信号的频谱搬移,使已调信号适合信道传输的要求,同时也有利于实现信道复用。例如,将多路基带信号调制到不同的载频上进行并行传输,实现信道的频分复用。
❽ 当fsk载频分别为32k和16k时,fsk能准确解调的基带信号速率是多少为什么
分别为32和16。
FSK信号调制信号:单级性非归零的矩形脉冲序列。1码,输出载波Acosω0t;0码,输出载波为0。
fsk解调原理利用数字基带信号控制载波的频率来传送信息。例如,1码用ƒ1来传输,0码用ƒ;2来传输。可看作是两个交错的ASK信号之和。
由于FSK信号中提取相干载波相对比较困难,实际工程应用中多用非相干解调法,在相同误码率的条件下,非相干解调需要的信噪比只比相干解调高1~2dB。非相干解调的种类有很多,例如:基于自适应滤波的解调法、差分检波算法、AFC环解调法、过零检测法、包络检波法等。
(8)单频连续波数字包络检波算法扩展阅读:
在二进制频移键控中,幅度恒定不变的载波信号的频率随着输入码流的变化而切换(称为高音和低音,代表二进制的1 和0)。产生FSK 信号最简单的方法是根据输入的数据比特是0还是1,在两个独立的振荡器中切换。采用这种方法产生的波形在切换的时刻相位是不连续的,因此这种FSK 信号称为不连续FSK 信号。
❾ 急求一通信电子线路课程设计
通信单元电路设计
(AM调制)
引言
进入信息时代以来,随着通信技术、计算机技术和控制技术的不断发展与相互融合,极大的扩展了通信的功能,使得人们可以随时随地通过各种通信手段获取和交换各种各样的信息。通信渗入到社会生产和生活的各个领域,通信产品随处可见。通信已经成为现代文明的标志之一,对人们日常生活和社会活动的影响与越来越大。
现代通信从模拟通信方式开始,数字通信着后来居上,已经逐步取代了模拟通信,但数字调制理论是建立在模拟调制的基础上的。而且,在现有的各类通信系统中,仍然还有大量模拟通信设备承担着相当数量的通信任务,由于资金投入以及系统建设、设备更换所需时间等原因,这些模拟设备还将继续使用一段时间。
通信原理课程是一门理论性与实践性都很强的专业基础课。加强理论课程的学习,加深对本课程中的基本理论知识及基本概念的理解,提高理论联系实际的能力,培养实践动手能力和分析解决通信工程中实际问题的能力是通信原理教学的当务之急。而通信原理实验课程就是一种重要的教学手段和途径。通信原理实验系统将通信原理的基础知识灵活地运用在实验教学环节中。可独立也可组合、综合实施多项实验或示教。本实验系统力求电路原理清楚,重点突出,实验内容丰富。其电路设计构思新颖、技术先进、波形测量点选择准确,具有一定的代表性。同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力及动手能力,并通过有目的地选择并完成实验项目及二次开发,使学生进一步巩固理论基本知识,建立完整的通信系统的概念。
方案论证
通过自己和老师的帮助,自己得到了本实验的电路图。并且,又经过自己看课本和有关资料,对这次的实验理论和基本原理的加深体会,证明了本次电路的电路图是完全合理和准确的,是完全经得起考验的,如果本次实验不成功,只有可能是在画PCB的过程中有错误或电子元件不符合,焊接元件过程中不小心弄错造成的。
设低频信号uΩ和高频载波信号分别为
uΩ= UΩmcosΩt =UΩmcos2πFt (6.2.12)
uc=Ucmcosωct=U cmcos2πfct (6.2.13)
式中,F为低频频率,fc为高频载波频率。为了简化分析,设两者波形的初相角均为零,其波形如图 6.2.7(a)、(b)所示。将uc和uΩ分别输入模拟乘法器的X和Y输入端,如图6.2.8所示,图中,UYQ为一固定的直流电压,要求UYQ≥UΩm。由此可得输入端总的输入电压为
uY = UYQ+UΩmcosΩt
因此,模拟乘法器的输出电压uO为
式中,ma= 称为调幅系数,它表示载波受低频信号控制的程度。令
(6.2.15)
则式 (6.2.14) 可写成
uo=Um(t)cosωct (6.2.16)
由式(6.2.16)可见,模拟乘法器的输出电压是一个幅度Um(t)随低频信号而变化的高频信号,其波形如图6.2.7(c)所示。称它为普通调幅波(简称 AM 波)。将式(6.2.16)展开,并应用三角函数关系,则得
由式(6.2.17)可知,被单频信号调幅后的高频已调波,由幅度为Ucm′、角频率为ωc的载频和两个幅度一样、角频率分别为(ωc+ Ω)、(ωc-Ω)的边频所组成,其频谱分布如图6.2.9所示,(fc+F) 称上边频、(fc-F)称下边频,它们对称地排列在载频的两侧,相对于载频的位置仅取决于调制信号的频率。显然,载波分量并不包含信息,调制信号的信息只包含在上、下边频分量内,边频的幅度反映了调制信号幅度的大小,边频的频率虽属于高频的范畴,但反映了调制信号频率的高低。
由于载波本身并不包含信息,因此为了提高设备的功率利用率,可以不传送载波而只传送两个边带信号,这种调制方式称为抑制载波双边带调幅,简称双边带调幅,用DSB表示。将uc和uΩ分别输入模拟乘法器的X和Y输入端,如图6.2.10所示。由此可以得到输出电压uo′为
由式(6.2.18)可见,KUΩmUcmcosΩt是双边带调幅高频信号的幅度,它与调制信号UΩmcosΩt成正比。图6.2.10中带通滤波器调谐在载波频率上,用以滤除无用频率分量。
由于上、下边频带中的任何一个边频带已经包含调制信号的全部信息,因此为了节省占有的频带、提高波段利用率,也可以只传送两个边带信号中的任何一个,称为抑制载波的单边带调幅,简称单边带调幅,用SSB表示。将双边带调幅信号抑制掉一个边频带,就可以得到单边带调幅信号,即
从式(6.2.19)可以看出,单频调制的单边带信号仍是等幅波,但它与原载波不间,SSB信号的幅度与调制信号幅度UΩm成正比,它的频率随调制信号频率的不同而不同。
用MC1496构成的双边带调幅实用电路如图6.3.1所示。图中,接于电源电路的电阻R8、R9用来分压,以便提供模拟乘法器内部V1~V4管的基极偏置电压,接在5脚的电阻 R5 用来控制恒流电路的电流值IO/2。接在2、3脚的电阻 RY 用来扩大uΩ的线性动态范围,同时控制乘法器的增益。接于1、4脚的电阻R1、Rp、R2作为载波调零电阻。
根据图6.3.1中负电源电压值及 R5 的阻值,可得IO/2≈1mA, 这样不难得到模拟乘法器各管脚的直流电位分别为
U1=U4≈0V,U2=U3≈0.7V,U8≈U10=6V
U6=U12=VCC-RCIO/2=8.1V,U5= -R5IO/2=-6.8V
实际应用中,为了保证集成模拟乘法器MC1496能正常工作,各引脚的直流电位应满足下列要求:
(1)U1=U4,U8=U10,U6=U12;
(2)U6、12-U8、10 ≥2V,U8、10- U1、4≥2.7V,U1、4-U5 ≥2.7V。
载波信号 uc 通过电容C1、C3 及R7 加到乘法器的输入端8、10脚,低频信号uΩ 通过 C2、R4、R6 加到乘法器的输入端 1、4 脚,输出信号可由 C4 和 C5 单端或双端输出。调试过程中,由于示波器、毫伏表等测量仪器均为单端式,所以测量输出电压只能取单端输出,两边输出电压应相等。这时的调幅输出波形如图6.3.2(c)所示,应为一双边带调幅波形。
为了减小载波信号输出,可先令uΩ=0,即将uΩ输入端对地短路,只有载波uc输入时,调节 Rp 使乘法器输出电压为零。但实际模拟乘法器不可能完全对称,所以调节 Rp,输出电压不可能为零,故只需使输出载波信号为最小(一般为 mV 级 )就行。若载波输出电压过大,则说明该器件性能不好。
低频输入信号uΩ的幅度不能过大,其最大值由IO/2与 RY 的乘积所限定,图6.3.1所示电路uΩ的幅度必须小于1V。若低频幅度超过该值,输出调幅波形将会产生严重失真。
载波输入信号 uc 的幅度要求小于26mV, 这种情况常称为小信号状态,输出电压的大小可用式(6.1.6)来估算。在工程上,载波信号常采用大信号输入(Ucm>260mV),这时双差分对管在uc 的作用下,工作在开关状态,称为开关调幅。这时调幅电路输出幅度比较大,且幅度不受Ucm的影响
试验原理分析
所谓调制,就是在传送信号的一方(发送端)将所要传送的信号(它的频率一般是较低的)“附加”在高频振荡信号上。所谓将信号“附加”在高频振荡上,就是利用信号来控制高频振荡的某一参数,使这个参数随信号而变化,这里,高频振荡波就是携带信号的“运载工具”,所以也叫载波。在接收信号的一方(接收端)经过解调(反调制)的过程,把载波所携带的信号取出来,得到原有的信息,解调过程也叫检波。调制与解调都是频谱变换的过程,必须用非线性元件才能完成。调制的方式可分为连续波调制与脉冲波调制两大类,连续波调制是用信号来控制载波的振幅、频率或相位,因而分为调幅、调频和调相三种方式;脉冲波调制是先用信号来控制脉冲波的振幅、宽度、位置等,然后再用这已调脉冲对载波进行调制,脉冲调制有脉冲振幅、脉宽、脉位、脉冲编码调制等多种形式。
调幅波的数学表达式与频谱
我们已经知道,调幅波的特点是载波的振幅受调制信号的控制作周期性的变化,这变化的周期与调制信号的周期相同,振幅变化与调制信号的振幅成正比。为简化分析,假定调制信号是简谐振荡,即为单频信号,其表达式为:
如果用它来对载波()进行调幅,那么,在理想情况下,普通调幅信号为:
(5-1)
其中调幅指数为比例系数。图5-1给出了,和的波形图。
图5-1 普通调幅波形
从图中并结合式(5-1)可以看出,普通调幅信号的振幅由直流分量和交流分量迭加而成,其中交流分量与调制信号成正比,或者说,普通调幅信号的包络(信号振幅各峰值点的连线)完全反映了调制信号的变化。另外还可得到调幅指数Ma的表达式:
显然,当>1时,普通调幅波的包络变化与调制信号不再相同,产生了失真,称为过调制,如图5-2所示。所以,普通调
图5-2 过调制波形
幅要求必须不大于1。
式(5-1)又可以写成
(5-2)
可见,的频谱包括了三个频率分量:(载波)、(上边频)和(下边频)。原调制信号的频带宽度是(或),而普通调幅信号的频带宽度是2(或2F),是原调制信号的两倍。普通调幅将调制信号频谱搬移到了载频的左右两旁,如图5-3所示。
被传送的调制信息只存在于边频中而不在载频中,携带信息的边频分量最多只占总功率的三分之一(因为Ma≤1)。在实际系统中,平均调幅指数很小,所以边频功率占的比例更小,功率利用率更低。
为了提高功率利用率,可以只发送两个边频分量而不发送载频分量,或者进一步仅发送其中一个边频分量,同样可以将调制信息包含在调制信号中。这两种调制方式分别称为抑制载波的双边带调幅(简称双边带调幅)和抑制载波的单边带调幅(简称单边带调幅)。本实验模块介绍的是双边带的幅度调制与解调。
图5-3 普通调幅波的频谱
双边带调幅信号的特点
设载波为,单频调制信号为 ,则双边带调幅信号为:
(5-3)其中为比例系数。
可见双边带调幅信号中仅包含两个边频,无载频分量,其频带宽度仍为调制信号带宽的两倍。
双边带调幅信号的产生与解调方法
由式5-3可以看出,产生双边带调幅信号的最直接方法就是将调制信号与载波信号相乘。本实验模块的振幅调制电路的原理框图如图5-4所示:
图5-4 双边带调幅原理框图
图5-5 双边带调幅信号产生电路原理图
双边带调幅信号产生的具体电路原理图如图5-5所示。
图中MC1496是双平衡四象限模拟乘法器,其内部结构和主要性能参数见附录。MC1496可用于振幅调制、同步检波、鉴频。本实验就是采用MC1496作为振幅调制器的。高频载波信号从“载波输入”点输入,经高频耦合电容C105输入至U202(MC1496)的10脚。低频基带信号从“音频输入”点输入,经低频耦合电容C106输入至U202的1脚。C108为高频旁路电容,C104为低频旁路电容。调幅信号从MC1496的12脚输出。实际上,从此脚输出的调幅信号还要经过滤波,这样才能保证调幅信号的质量。滤波电路如图5-6所示。
第四章 电路分析、设计
集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。
模拟乘法器的电路符号如图6.1.1所示,它有两个输入端、一个输出端。若输入信号为uX、uY,则输出信号uO为
uO = kuXuY (6.1.1)
式中,K 称为乘法器的增益系数,单位为V-1 。
模拟乘法器电路符号
根据乘法运算的代数性质,乘法器有四个工作区域,由它的两个输入电压的极性来确定,并可用X-Y平面中的四个象限表示。能够适应两个输入电压四种极性组合的乘法器称为四象限乘法器;若只对一个输入电压能适应正、负极性,而对另一个输入电压只能适应一种极性,则称为二象限乘法器;若对两个输入电压都只能适应一种极性,则称为单象限乘法器。
式( 6.1.1 )表示,一个理想的乘法器中,其输出电压与在同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。
对于一个理想的乘法器,当 uX、uY中有一个或两个都为零时,输出均为零。但在实际乘法器中, 由于工作环境、制造工艺及元件特性的非理想性,当 uX =0,uY=0时,uO≠0,通常把这时的输出电压称为输出失调电压;当 uX=0,uY≠0(或 uY=0,uX≠0) 时,uO≠0,这是由于uY(或uX)信号直接流通到输出端而形成的,称这时的输出电压为uY(或uX)的输出馈通电压。输出失调电压和输出馈通电压越小越好。此外,实际乘法器中增益系数 K 并不能完全保持不变, 这将引起输出信号的非线性失真,在应用时需加注意。
双边带调幅
单片集成模拟乘法器
采用两个差分放大电路可构成较理想的模拟乘法器,称为双差分对模拟乘法器,也称为双平衡模拟乘法器。图6.1.3所示(虚线框内)是根据双差分对模拟乘法器基本原理制成的单片集成模拟乘法器MC1496的内部电路。图中,V1、V2、V5 和 V3、V4、V6 分别组成两个基本模拟乘法器,V7、V8、V9、R5等组成电流源电路。 R5、V7、R1为电流源的基准电路,V8、V9均提供恒值电流IO/2, 改变外接电阻R5的大小,可调节IO/2在的大小。图中2、3两脚,即V5、V6 两管发射极上所跨接的电阻 RY,除可调节乘法器的增益外,其主要作用是用来产生负反馈,以扩大输入电压 uY 的线性动态范围。该乘法器输出电压 uO 的表示式为
其增益系数为
K=Rc/RY UT
uX必须为小信号,其值应小于UT(≈ 26mV);因电路采用了负反馈电阻RY,uY的线性动态范围被扩大了,它的线性动态范围为
其增益系数
通过调节IO′的大小(由微调R3的阻值实现)可以改变增益系数,MC1595增益系数的典型值为0.1V-1。 RX、RY 为负反馈电阻,用以扩大uX、uY的线性动态范围,uX、uY的线性动态范围分别为
MC1496型集成模拟乘法器
第五章调试、测试分析及结果
制板成功后,按如下步骤进行调试:
将信号源模块、PAMAM模块、小心地固定在主机箱中,确保电源接触良好。
插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的开关POWER1、POWER2,对应的发光二极管LED001、LED002、D200、D201、发光,按一下信号源模块的复位键,两个模块均开始工作。
使信号源模块的信号输出点“模拟输出”的输出为频率2KHz、峰—峰值为0.5V左右的正弦波, 使“64K正弦波”处信号的峰—峰值为1V。
用连接线连接信号源模块的信号输出点“模拟输出”和AM调制电路板的信号输入点,以及信号源模块的信号输出点“64K正弦波”和AM调制电路板的信号输入点,调节AM调制电路板的电位器,同时用示波器观察波形,直到观察到普通双边带调幅波形。
虽然经过调试,最后的结果并不是非常的准确,波形并没有如实验箱上的那么标准,但是基本上还是成功的,经过分析,可能是由于制板或焊接过程中有一些微小的失误导致的,又或者是由于买的电子元件存在一些不符或问题等,但实验还算可以。
小结
通过这次通信单元电路设计AM调制的实验,不仅增强了自己的动手能力,而且也增强了自己对通信原理中的调制解调的理解。有了这次的自己动手的实验 使自己学会理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高了自己分析问题、解决问题的能力及动手能力,并通过有目的地选择并完成实验项目及二次开发,使自己进一步巩固理论基本知识,建立完整的通信系统的概念。
其次,通过这一次普通双边带调幅(AM调制),自己达到了如下的实验目的 :
掌握普通双边带调幅与解调原理及实现方法。
掌握二极管包络检波原理。
掌握调幅信号的频谱特性。
了解普通双边带调幅与解调的优缺点。
还有,这次的课程设计,再次使自己对动手能力的培养和努力有更深的体会,增强自己的实践操作能力是非常有必要的,也是根本要求,以后还要继续加强。
这次的实验给了自己很多的东西,使自己觉得在以后的课程上应该更加的努力和发奋,不使自己落后。
电路图及元件清单
双边带调制信号产生电路
元件清单:
电阻(14个) :
1K(3个) 3.3K(2个) 6.8K(1个)
10K(1个) 100(3个) 510(1个)
750(2个)
滑动变阻 47K(1个)
电容(5个) :
普通电容(3个) 104 100 0.1uF
极性电容(2个) 20uF/16V 20uF/16V
稳压二极管 8.2V(1个)
MC1464(1片)
❿ 什么是振幅调制
振幅调制(AM)调制信号m(t)叠加直流后再与载波相乘,则输出的信号就是常规双边带调幅(AM)信号。 AM调制器模型如下图所示。
AM信号的时域和频域表示式分别为:
式中,为外加的直流分量;m(t)可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。
AM信号的典型波形和频谱分别如下图:
可见,AM信号波形的包络与输入基带信号m(t)成正比,故用包络检波的方法很容易恢复原始调制信号。 但为了保证包络检波时不发生失真,必须满足 ,否则将出现过调幅现象而带来失真。
AM信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。显然,无论是上边带还是下边带,都含有原调制信号的完整信息。故AM信号是带有载波的双边带信号,它的带宽为基带信号带宽的两倍。
采用AM调制传输信息的好处是解调电路简单,可采用包络检波法。缺点是调制效率低,载波分量不携带信息,但却占据了大部分功率,白白浪费掉。