密钥是一种参数(它是在明文转换为密文或将密文转换为明文的算法中输入的数据),加密算法是明文转换成密文的变换函数,同样的密钥可以用不同的加密算法,得到的密文就不一样了。
举一个示例,例如凯撒密码,该字母向后旋转n位,该n是密钥, 向后移动的方法称为算法。 尽管使用相同的算法,但是对明文用不同的密钥加密的结果不一样。
例如,Run使用Key = 1(密钥)的凯撒密码,即Svo,而Key = 2(密钥)的加密,则成为Twp,因此密钥和算法存在很大差异。
现在大多数公钥密码系统都使用RSA算法,但是每个人的密钥的密文不同。 通常,该算法是公共的,密钥不是公共的。 加密算法恰好包含两个输入参数,一个是明文,另一个是密钥。
(1)密码和密码算法有啥关系扩展阅读:
1、密钥算法
使用极其复杂的加密算法,即使解密者可以加密他选择的任意数量的明文,也无法找出破译密文的方法。 秘密密钥的一个弱点是解密密钥必须与加密密码相同,这引发了如何安全分配密钥的问题。
2、公钥算法
满足三个条件:第一个条件是指在对密文应用解密算法后可以获得明文。 第二个条件是指不可能从密文中得出解密算法。 第三个条件是指即使任何明文形式的选择都无法解密密码,解密程序也可以加密。 如果满足上述条件,则可以公开加密算法。
② 常见密码算法原理
PBKDF2(Password-Based Key Derivation Function)是一个用来导出密钥的函数,用来生成加密的密码,增加破解的难度,类似bcrypt/scrypt等,可以用来进行密码或者口令的加密存储。主要是盐值+pwd,经过多轮HMAC算法的计算,产生的密文。
PBKDF2函数的定义
DK = PBKDF2(PRF, Password, Salt, c, dkLen)
• PRF是一个伪随机函数,例如HASH_HMAC函数,它会输出长度为hLen的结果。
• Password是用来生成密钥的原文密码。
• Salt是一个加密用的盐值。
• c是进行重复计算的次数。
• dkLen是期望得到的密钥的长度。
• DK是最后产生的密钥。
https://segmentfault.com/a/1190000004261009
下面我们以Alice和Bob为例叙述Diffie-Hellman密钥交换的原理。
1,Diffie-Hellman交换过程中涉及到的所有参与者定义一个组,在这个组中定义一个大质数p,底数g。
2,Diffie-Hellman密钥交换是一个两部分的过程,Alice和Bob都需要一个私有的数字a,b。
下面是DH交换的过程图:
本图片来自wiki
下面我们进行一个实例
1.爱丽丝与鲍伯协定使用p=23以及g=5.
2.爱丽丝选择一个秘密整数a=6, 计算A = g^a mod p并发送给鲍伯。
A = 5^6 mod 23 = 8.
3.鲍伯选择一个秘密整数b=15, 计算B = g^b mod p并发送给爱丽丝。
B = 5^15 mod 23 = 19.
4.爱丽丝计算s = B a mod p
19^6 mod 23 = 2.
5.鲍伯计算s = A b mod p
8^15 mod 23 = 2.
ECDH:
ECC算法和DH结合使用,用于密钥磋商,这个密钥交换算法称为ECDH。交换双方可以在不共享任何秘密的情况下协商出一个密钥。ECC是建立在基于椭圆曲线的离散对数问题上的密码体制,给定椭圆曲线上的一个点P,一个整数k,求解Q=kP很容易;给定一个点P、Q,知道Q=kP,求整数k确是一个难题。ECDH即建立在此数学难题之上。密钥磋商过程:
假设密钥交换双方为Alice、Bob,其有共享曲线参数(椭圆曲线E、阶N、基点G)。
来自 http://www.cnblogs.com/fishou/p/4206451.html
https://zh.wikipedia.org/wiki/SHA%E5%AE%B6%E6%97%8F
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL
}
-----END RSA PRIVATE KEY-----
while a RSA public key contains only the following data:
-----BEGIN RSA PUBLIC KEY-----
RSAPublicKey ::= SEQUENCE {
molus INTEGER, -- n
publicExponent INTEGER -- e
}
-----END RSA PUBLIC KEY-----
and this explains why the private key block is larger.
Note that a more standard format for non-RSA public keys is
-----BEGIN PUBLIC KEY-----
PublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
PublicKey BIT STRING
}
AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL
}
-----END PUBLIC KEY-----
More info here.
BTW, since you just posted a screenshot of the private key I strongly hope it was just for tests :)
密钥的长度
C:\herong>java RsaKeyGenerator 128
p: 17902136406704537069
q: 17902136406704537077
m:
Molus:
Key size: 128
Public key:
Private key:
C:\herong>java RsaKeyGenerator 256
p:
q:
m: ...
Molus: ...
Key size: 256
Public key: ...
Private key: ...
https://security.stackexchange.com/questions/90169/rsa-public-key-and-private-key-lengths
https://stackoverflow.com/questions/2921508/trying-to-understand-java-rsa-key-size >
http://www.herongyang.com/Cryptography/RSA-BigInteger-Keys-Generated-by-RsaKeyGenerator-java.html
update() adds data to the Cipher’s internal buffer, then returns all currently completely encoded blocks. If there are any encoded blocks left over, they remain in the Cipher’s buffer until the next call, or a call to doFinal(). This means that if you call update() with a four byte array to encrypt, and the buffer size is eight bytes, you will not receive encoded data on the return (you’ll get a null instead). If your next call to update() passes five bytes of data in, you will get an 8 byte (the block size) array back, containing the four bytes passed in on the previous call, the first four bytes from the current call – the remaining byte from the current call is left in the Cipher’s buffer.
doFinal() on the other hand is much simpler: it encrypts the passed data, pads it out to the necessary length, and then returns it. The Cipher is essentially stateless.
来自 https://segmentfault.com/a/1190000006931511
DH算法的中间人攻击
在最初的描述中,迪菲-赫尔曼密钥交换本身并没有提供通讯双方的身份验证服务,因此它很容易受到中间人攻击。 一个中间人在信道的中央进行两次迪菲-赫尔曼密钥交换,一次和Alice另一次和Bob,就能够成功的向Alice假装自己是Bob,反之亦然。而攻击者可以解密(读取和存储)任何一个人的信息并重新加密信息,然后传递给另一个人。因此通常都需要一个能够验证通讯双方身份的机制来防止这类攻击。
优缺点:
1、 仅当需要时才生成密钥,减小了将密钥存储很长一段时间而致使遭受攻击的机会。
2、 除对全局参数的约定外,密钥交换不需要事先存在的基础结构。
然而,该技术也存在许多不足:
1、 没有提供双方身份的任何信息。
2、 它是计算密集性的,因此容易遭受阻塞性攻击,即对手请求大量的密钥。受攻击者花费了相对多的计算资源来求解无用的幂系数而不是在做真正的工作。
3、 没办法防止重演攻击。
4、 容易遭受中间人的攻击。第三方C在和A通信时扮演B;和B通信时扮演A。A和B都与C协商了一个密钥,然后C就可以监听和传递通信量。中间人的攻击按如下进行:
(1) B在给A的报文中发送他的公开密钥。
(2) C截获并解析该报文。C将B的公开密钥保存下来并给A发送报文,该报文具有B的用户ID但使用C的公开密钥YC,仍按照好像是来自B的样子被发送出去。A收到C的报文后,将YC和B的用户ID存储在一块。类似地,C使用YC向B发送好像来自A的报文。
(3) B基于私有密钥XB和YC计算秘密密钥K1。A基于私有密钥XA和YC计算秘密密钥K2。C使用私有密钥XC和YB计算K1,并使用XC和YA计算K2。
(4) 从现在开始,C就可以转发A发给B的报文或转发B发给A的报文,在途中根据需要修改它们的密文。使得A和B都不知道他们在和C共享通信。
③ 密码算法的密码学
(1) 发送者和接收者
假设发送者想发送消息给接收者,且想安全地发送信息:她想确信偷听者不能阅读发送的消息。
(2) 消息和加密
消息被称为明文。用某种方法伪装消息以隐藏它的内容的过程称为加密,加了密的消息称为密文,而把密文转变为明文的过程称为解密。
明文用M(消息)或P(明文)表示,它可能是比特流(文本文件、位图、数字化的语音流或数字化的视频图像)。至于涉及到计算机,P是简单的二进制数据。明文可被传送或存储,无论在哪种情况,M指待加密的消息。
密文用C表示,它也是二进制数据,有时和M一样大,有时稍大(通过压缩和加密的结合,C有可能比P小些。然而,单单加密通常达不到这一点)。加密函数E作用于M得到密文C,用数学表示为:
E(M)=C.
相反地,解密函数D作用于C产生M
D(C)=M.
先加密后再解密消息,原始的明文将恢复出来,下面的等式必须成立:
D(E(M))=M
(3) 鉴别、完整性和抗抵赖
除了提供机密性外,密码学通常有其它的作用:.
(a) 鉴别
消息的接收者应该能够确认消息的来源;入侵者不可能伪装成他人。
(b) 完整性检验
消息的接收者应该能够验证在传送过程中消息没有被修改;入侵者不可能用假消息代替合法消息。
(c) 抗抵赖
发送者事后不可能虚假地否认他发送的消息。
(4) 算法和密钥
密码算法也叫密码,是用于加密和解密的数学函数。(通常情况下,有两个相关的函数:一个用作加密,另一个用作解密)
如果算法的保密性是基于保持算法的秘密,这种算法称为受限制的算法。受限制的算法具有历史意义,但按现在的标准,它们的保密性已远远不够。大的或经常变换的用户组织不能使用它们,因为每有一个用户离开这个组织,其它的用户就必须改换另外不同的算法。如果有人无意暴露了这个秘密,所有人都必须改变他们的算法。
但是,受限制的密码算法不可能进行质量控制或标准化。每个用户组织必须有他们自己的唯一算法。这样的组织不可能采用流行的硬件或软件产品。但窃听者却可以买到这些流行产品并学习算法,于是用户不得不自己编写算法并予以实现,如果这个组织中没有好的密码学家,那么他们就无法知道他们是否拥有安全的算法。
尽管有这些主要缺陷,受限制的算法对低密级的应用来说还是很流行的,用户或者没有认识到或者不在乎他们系统中内在的问题。
现代密码学用密钥解决了这个问题,密钥用K表示。K可以是很多数值里的任意值。密钥K的可能值的范围叫做密钥空间。加密和解密运算都使用这个密钥(即运算都依赖于密钥,并用K作为下标表示),这样,加/解密函数现在变成:
EK(M)=C
DK(C)=M.
这些函数具有下面的特性:
DK(EK(M))=M.
有些算法使用不同的加密密钥和解密密钥,也就是说加密密钥K1与相应的解密密钥K2不同,在这种情况下:
EK1(M)=C
DK2(C)=M
DK2 (EK1(M))=M
所有这些算法的安全性都基于密钥的安全性;而不是基于算法的细节的安全性。这就意味着算法可以公开,也可以被分析,可以大量生产使用算法的产品,即使偷听者知道你的算法也没有关系;如果他不知道你使用的具体密钥,他就不可能阅读你的消息。
密码系统由算法、以及所有可能的明文、密文和密钥组成的。
基于密钥的算法通常有两类:对称算法和公开密钥算法。下面将分别介绍: 对称算法有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加/解密密钥是相同的。这些算法也叫秘密密钥算法或单密钥算法,它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加/解密。只要通信需要保密,密钥就必须保密。
对称算法的加密和解密表示为:
EK(M)=C
DK(C)=M
对称算法可分为两类。一次只对明文中的单个比特(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组比特亚行运算,这些比特组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64比特——这个长度大到足以防止分析破译,但又小到足以方便使用(在计算机出现前,算法普遍地每次只对明文的一个字符运算,可认为是序列密码对字符序列的运算)。 公开密钥算法(也叫非对称算法)是这样设计的:用作加密的密钥不同于用作解密的密钥,而且解密密钥不能根据加密密钥计算出来(至少在合理假定的长时间内)。之所以叫做公开密钥算法,是因为加密密钥能够公开,即陌生者能用加密密钥加密信息,但只有用相应的解密密钥才能解密信息。在这些系统中,加密密钥叫做公开密钥(简称公钥),解密密钥叫做私人密钥(简称私钥)。私人密钥有时也叫秘密密钥。为了避免与对称算法混淆,此处不用秘密密钥这个名字。
用公开密钥K加密表示为
EK(M)=C.
虽然公开密钥和私人密钥是不同的,但用相应的私人密钥解密可表示为:
DK(C)=M
有时消息用私人密钥加密而用公开密钥解密,这用于数字签名(后面将详细介绍),尽管可能产生混淆,但这些运算可分别表示为:
EK(M)=C
DK(C)=M
当前的公开密码算法的速度,比起对称密码算法,要慢的多,这使得公开密码算法在大数据量的加密中应用有限。 单向散列函数 H(M) 作用于一个任意长度的消息 M,它返回一个固定长度的散列值 h,其中 h 的长度为 m 。
输入为任意长度且输出为固定长度的函数有很多种,但单向散列函数还有使其单向的其它特性:
(1) 给定 M ,很容易计算 h ;
(2) 给定 h ,根据 H(M) = h 计算 M 很难 ;
(3) 给定 M ,要找到另一个消息 M‘ 并满足 H(M) = H(M’) 很难。
在许多应用中,仅有单向性是不够的,还需要称之为“抗碰撞”的条件:
要找出两个随机的消息 M 和 M‘,使 H(M) = H(M’) 满足很难。
由于散列函数的这些特性,由于公开密码算法的计算速度往往很慢,所以,在一些密码协议中,它可以作为一个消息 M 的摘要,代替原始消息 M,让发送者为 H(M) 签名而不是对 M 签名 。
如 SHA 散列算法用于数字签名协议 DSA中。 提到数字签名就离不开公开密码系统和散列技术。
有几种公钥算法能用作数字签名。在一些算法中,例如RSA,公钥或者私钥都可用作加密。用你的私钥加密文件,你就拥有安全的数字签名。在其它情况下,如DSA,算法便区分开来了??数字签名算法不能用于加密。这种思想首先由Diffie和Hellman提出 。
基本协议是简单的 :
(1) A 用她的私钥对文件加密,从而对文件签名。
(2) A 将签名的文件传给B。
(3) B用A的公钥解密文件,从而验证签名。
这个协议中,只需要证明A的公钥的确是她的。如果B不能完成第(3)步,那么他知道签名是无效的。
这个协议也满足以下特征:
(1) 签名是可信的。当B用A的公钥验证信息时,他知道是由A签名的。
(2) 签名是不可伪造的。只有A知道她的私钥。
(3) 签名是不可重用的。签名是文件的函数,并且不可能转换成另外的文件。
(4) 被签名的文件是不可改变的。如果文件有任何改变,文件就不可能用A的公钥验证。
(5) 签名是不可抵赖的。B不用A的帮助就能验证A的签名。 加密技术是对信息进行编码和解码的技术,编码是把原来可读信息(又称明文)译成代码形式(又称密文),其逆过程就是解码(解密)。加密技术的要点是加密算法,加密算法可以分为对称加密、不对称加密和不可逆加密三类算法。
对称加密算法 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES和IDEA等。美国国家标准局倡导的AES即将作为新标准取代DES。
不对称加密算法 不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。
不可逆加密算法 的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。显然,在这类加密过程中,加密是自己,解密还得是自己,而所谓解密,实际上就是重新加一次密,所应用的“密码”也就是输入的明文。不可逆加密算法不存在密钥保管和分发问题,非常适合在分布式网络系统上使用,但因加密计算复杂,工作量相当繁重,通常只在数据量有限的情形下使用,如广泛应用在计算机系统中的口令加密,利用的就是不可逆加密算法。近年来,随着计算机系统性能的不断提高,不可逆加密的应用领域正在逐渐增大。在计算机网络中应用较多不可逆加密算法的有RSA公司发明的MD5算法和由美国国家标准局建议的不可逆加密标准SHS(Secure Hash Standard:安全杂乱信息标准)等。
④ “密码学”“密码法”中的密码跟“用户名密码”中的密码是一样的意思吗
意思不完全相同。“密码学”中的“密码”更偏重的是:密码理论及其各种密码算法的研究(抽象的);而“用户名密码”中的“密码”更强调的是:用户利用前人设计的各种密码算法给自己的账号设置一个便于自己记忆的密码(具体的)。
⑤ 密码的核心是密码算法密码算法是不能公开的
这个主要是为了保证设计的密码算法是可靠的,不是随随便便就能被人破解的,因为设计好的密码算法总是要被人用的,而要被人广泛使用的话。
在公开密钥密码体制中,加密密钥(即公开密钥)PK是公开信息,而解密密钥(即秘密密钥)SK是需要保密的。加密算法E和解密算法D也都是公开的。虽然秘密密钥SK是由公开密钥PK决定的,但却不能根据PK计算出SK。
公开密码算法:
用作加密的密钥不同于用作解密的密钥,而且解密密钥不能根据加密密钥计算出来(至少在合理假定的长时间内)。之所以叫做公开密钥算法,是因为加密密钥能够公开,即陌生者能用加密密钥加密信息。
但只有用相应的解密密钥才能解密信息。在这些系统中,加密密钥叫做公开密钥(简称公钥),解密密钥叫做私人密钥(简称私钥)。私人密钥有时也叫秘密密钥。为了避免与对称算法混淆,此处不用秘密密钥这个名字。
⑥ 密码和数学有什么关系
很简单,密码是由数字组成的,这是一点,外加数学有有很多定理、定义,根据这些,能用合适的方法去推出密码,另外设置密码也是离不开数学的,必须用所拥有的数学思维去思考才能想出高难度的密码。所以密码和数学是紧密相关的。
⑦ 密码的核心是密码算法密码算法是不能公开的是否正确
是正确的。密码的核心密码算法是密码的重要组成部分,公开之后一些非法分子就会通过非法途径获得密码,从而进行一些违法犯罪的事情,个人也会因此受到或大或小的不必要麻烦,严重时会泄露个人信息。