导航:首页 > 源码编译 > 火柴奥数算法

火柴奥数算法

发布时间:2022-11-13 03:29:09

A. 奥数题(火柴上的几何学)

太容易了吧,人家都给你提示的那么明显了

首先移去左上,右上,正上,正下那4根火柴,然后就有2个相等的等边三角形了

然后呢,自己想嘛,那4根再放进去,摆出来一个三角形,很容易的嘛

B. 奥数题火柴棒题1+9=8+8

如果1可以用单根火柴表示,则动1根火柴即可:

11+5=8+8

1+15=8+8

如果1必须用双根火柴表示,则需要动3根火柴:

3+9=4+8

如下图所示。

C. 小学奥数火柴棒问题:19-8+6=3,移动一根火柴帮使等式成立

19-8-8=3
把+变为-
把这个火柴放在6上,变为8

D. 奥数移动火柴问题

1.把中间4根中的任意相邻两根拿掉.

2.把左上角的两根,和右下平躺着的那根移动,形成"品"字.

3.把左上两根和右下的两根组成一正方形,把整个图形弄成串(这一步纯属为了好看)

4.第四题的答案见图!

E. 奥数题(移动一根火柴棒)

1+11+111=12 --------->>>1+1-1+11=12

1+11+111=4 --------->>>1+1+1+1=4

把第11中的一个1移动到111中间的哪个1上构成

F. 有趣的奥数游戏:火柴游戏

一个最普通的火柴游戏就是两人一起玩,先置若干支火柴于桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。

规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?

例如:桌面上有n=15根火柴,甲﹑乙两人轮流取,甲先取,则甲应如何取才能致胜?

为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16……等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。

规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?

原则:若甲先取,则甲每次取时,须留5的'倍数的火柴给乙去取。

通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。

规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1﹑3﹑7,则又该如何玩法?

分析:1﹑3﹑7均为奇数,由于目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对于火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。

通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。

规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。

分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。

通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。

G. 小学奥数火柴问题。7-4=1.14-1=6.1+1+1=141。移动一根火柴使等式成立 急求

1-5=4
4.1=24

3-2=6
5+4+3+2+1=8+10
移动一根火柴使式子成立

H. 奥数火柴题

19-8-6=5
1+6+2=9

I. 取火柴问题规律

第一题比较简单,可以推广到有n根火柴每人可取1到m根
若n % ( m + 1 ) == 1则先取必败,否则必胜,这个比较好证明
很简单可以证明当火柴数为1时先取必败,然后火柴数为m + 1时,无论先取的人怎样取,假定取x个,那么第二个人取m - x个,即可只剩一个留给对方。这样一直下来,如果用D( x ) = 1表示当留有x个火柴时先取必败,那么
D( 1 ) = 1
D( m + 2 ) = 1
D( 2m + 3 ) = 1
........
在这道题的情况就是
D( 1 ) = 1
D( 4 ) = 1
D( 7 ) = 1
.........
所以刚开始这些情况是必败的,换言之,如果刚开始不是这种情况,则先取的人可以取n % ( m + 1 ) - 1个(注意n % ( m + 1 ) == 0的情况,这是应该是取m个),就可以转化成上述令对手必败的情况。
第二题比较麻烦
我这里正好有一个别人写的
只有一堆时,无论有多少,先取者都可以一次性全部取走,所以必胜。
(1,1)时,显然先取者必败。
(1,2)时,先取者必胜,他可以在2那一堆中取1个,于是变成(1,1),但这成为上一种情况了,于是接下来取的人必败,亦即先取者必胜。
(1,3)时,先取者必胜。他可以在3那一堆中取2个,于是变成(1,1)。
(2,2)时,先取者必败。他在任何一堆中取1个,对方随即在另一堆中取1个,即变成(1,1);如果他取走一堆中的全部石子,对方即取走另一堆中的全部石子。
(2,3)时,先取者必胜。他可以在3那一堆中取1个,于是变成(2,2)。
(3,3)时,先取者必败。他取走任一堆中的1,2或3个,就变成了以上讨论过的情形。
(1,1,1)时,先取者必胜。他取走任一堆,就变成了(1,1)。
(1,1,2)时,先取者必胜。他取走2那一堆,就变成了(1,1)。
(1,1,3)时,先取者必胜。他取走3那一堆,就变成了(1,1)。
(1,2,2)时,先取者必胜。他取走1那一堆,就变成了(2,2)。
(1,2,3)时,先取者必败。分析如下:
他先取1那一堆,则变为(2,3),由上面的分析,对手必胜。
他从2那一堆中取1个,就变成了(1,1,3),对手可以将3那一堆全部取走,变成了(1,1),于是必胜。
他将2那一堆全部取走,就变成了(1,3),对手必胜。
他从3那一堆中取1个,就变成了(1,2,2),对手必胜。
他从3那一堆中取2个,就变成了(1,2,1),对手必胜。
他将3那一堆全部取走,就变成了(1,2),对手必胜。
这些胜负有什么规律呢?我们可以将每堆的数转换成二进制,然后看每一位上所有堆里的1的个数总和:
必胜情况:(n) (1,2)(1,3)(2,3) (1,1,1)(1,1,2)(1,2,2)
必败情况: (1,1)(2,2)(3,3) (1,2,3)
化为二进制:
必胜情况:
(n):……(反正每位只要有1肯定只有1个)
(1,2):1,10
列成竖式:
01
10
个位上只有1个1,“十位”(因为是二进制所以叫十位不妥,这里为了方便说明暂且使用,下同)上也只有1个1。
(1,3):1,11
列成竖式:
01
11
个位上有2个1(1的1个,3的1个),十位上有1个1。
(2,3):10,11
个位上有1个1,十位上有2个1。
(1,1,1):1,1,1
个位上有3个1。
(1,1,2):1,1,10
个位上有2个1,十位上有1个1。
(1,1,3):1,1,11
个位上有3个1,十位上有1个1。
(1,2,2):1,10,10
个位上有1个1,十位上有2个1。
必败情况:
(1,1):1,1
个位上有2个1。
(2,2):10,10
十位上有2个1。
(3,3):11,11
个位上有2个1,十位上也有2个1。
(1,2,3):1,10,11
个位上有2个1,十位上也有2个1。
下面分析一下这些情况。
先看必败情形。容易发现,所有的必败情形,都是所有的数位上都有偶数个1。
下看必胜情形。我们发现,出现了两种情况:
1.只有1位上有奇数个1,如(1,3)(2,3)(1,1,1)(1,1,2)(1,2,2)。而先取者取走该位上的1,所有的位上就都变成了偶数个1,而这时后取者变成了先取者。
2.有若干位上都是奇数个1,如(n)(1,2)(1,1,3)。先取者取(不一定取走哪位)后,所有的位上也都变成了偶数个1。后取者变成了先取者。
以上两种情况,都是将后取者逼至必败情况从而取胜。
由以上分析我们可以得到结论:将所有的堆的石子数化为二进制后,如果所有数位上的1的个数都是偶数,那么先取者必败;如果有些位上的1的个数是奇数,先取者能够将所有数位上的1的个数都变为偶数的话,那么先取者必胜。
好,下面来分析我们的题目。
3,5,7,19,50化为二进制是:
000011
000101
000111
010011
110010
可见,只有最高位的1是奇数个,其他位上都是偶数个。
所以只需要将最高位的1取走即可必胜。
二进制的100000就是10进制的32,所以要将50个石子的那堆取32个,取掉就变成偶数个数目。于是先取者必胜。以后无论对方怎么取,始终保证每一位上的1的个数是偶数即可(一种简单的方法是,他在一堆中取几个,你在另一堆中也取几个就可以)。

阅读全文

与火柴奥数算法相关的资料

热点内容
命令与征服4免cd补丁完美版 浏览:426
kotlin编译为native 浏览:138
家用编译机 浏览:547
电子加密货币最新政策 浏览:379
androidcanvas撤销 浏览:269
安卓手机怎么把图标全部下移 浏览:185
饥荒被服务器踢出怎么进 浏览:170
c编译器哪款好 浏览:732
快手宝哥发明什么app 浏览:822
张艳玲编译 浏览:66
android展开收起动画 浏览:237
linuxxz文件 浏览:160
在游戏中心里面怎么玩到解压神器 浏览:484
电脑发到手机里面照片怎么解压 浏览:74
虚拟pdf打印机64位 浏览:413
支付宝AES加密和解密 浏览:379
编译实验原理下载 浏览:131
加密防伪溯源系统私人定做 浏览:222
扫码给电动车充电的app叫什么 浏览:760
关闭命令提醒 浏览:356