导航:首页 > 源码编译 > 在线计算算法复杂度

在线计算算法复杂度

发布时间:2022-11-13 21:28:31

A. 求计算算法的复杂度 (Python写的逻辑)

(a) 算法复杂度为O(n),因为只有一个while循环,且i<n,所以复杂度是线性级,仅跟n有关
(b) 算法复杂度为O(n²),实际上算法复杂度为nxn/2 = n²/2,因为有for循环的嵌套
(c) 算法复杂度为O(n),因为只有while循环,尽管里面i=ix2,但是这是常数级操作
(d) 算法复杂度为O(log i),这是对数级操作,每次i除以2,所以是log(i)base(2)
(e) 算法复杂度为O(n log n)
(f) 算法复杂度为O(2^i),这是一个递归算法,为指数级
(g) 算法复杂度为O(n 2^n),这是一个交换数据的算法,是一个递归+一个for 循环

B. 算法空间复杂度怎么算

算法空间复杂度计算方法:

一个算法的空间复杂度只考虑在运行过程中为局部变量分配的存储空间的大小,它包括为参数表中形参变量分配的存储空间和为在函数体中定义的局部变量分配的存储空间两个部分。

若一个算法为递归算法,其空间复杂度为递归所使用的堆栈空间的大小,它等于一次调用所分配的临时存储空间的大小乘以被调用的次数(即为递归调用的次数加1,这个1表示开始进行的一次非递归调用)。

算法的空间复杂度一般也以数量级的形式给出。如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为O(log2n);当一个算法的空间复杂度与n成线性比例关系时,可表示为O(n)。若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,以便由系统自动引用实参变量。

(2)在线计算算法复杂度扩展阅读:

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。比如直接插入排序的时间复杂度是O(n^2),空间复杂度是O(1) 。而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。

个算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。空间复杂度(SpaceComplexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。

C. 用什么软件来计算算法的复杂度

你可以自己写软件算,否则就手算,其实很简单,每条语句用1时间,for (int i=0;i<n;i++)这样的for复杂度就是n,两个这样的就是o(n^2),一般就把程序某部分最大的算法复杂度看作总共的复杂度,就比如一个for(int i=0;i<n;i++)和一个双重循环和一个每层搜2个节点,n层的DFS同在一个程序里,且是并列,那么这可复杂度一般情况可以看作O(2^n),如果时间要求非常严格,那么在算的时候也可以算上n^2,但一般可以忽略,因为数据大时n^2比起2^n是很小的,n比起n^2又是很小的。看到代码复杂度就出来了,有兴趣可以做一个字符串处理,用程序出你代码的复杂度,不过没什么必要了。

D. 如何分析算法的复杂度

算法的复杂性
算法的复杂性是算法效率度量,是评价算法优劣的重要依据。一个算法的复杂性的高低体现在运行该算法所需要的计算机资源的多少上面,所需的资源越多,我们就说该算法的复杂性越高;反之,所需的资源越低,则该算法的复杂性越低。
计算机的资源,最重要的是时间和空间(即存储器)资源。因而,算法的复杂性有时间复杂性和空间复杂性之分。
不言而喻,对于任意给定的问题,设计出复杂性尽可能低的算法是我们在设计算法时追求的一个重要目标;另一方面,当给定的问题已有多种算法时,选择其中复杂性最低者,是我们在选用算法适应遵循的一个重要准则。因此,算法的复杂性分析对算法的设计或选用有着重要的指导意义和实用价值。
简言之,在算法学习过程中,我们必须首先学会对算法的分析,以确定或判断算法的优劣。
1.时间复杂性:
例1:设一程序段如下(为讨论方便,每行前加一行号)
(1) for i:=1 to n do
(2) for j:=1 to n do
(3) x:=x+1
......
试问在程序运行中各步执行的次数各为多少?
解答:
行号 次数(频度)
(1) n+1
(2) n*(n+1)
(3) n*n
可见,这段程序总的执行次数是:f(n)=2n2+2n+1。在这里,n可以表示问题的规模,当n趋向无穷大时,如果 f(n)的值很小,则算法优。作为初学者,我们可以用f(n)的数量级O来粗略地判断算法的时间复杂性,如上例中的时间复杂性可粗略地表示为T(n)=O(n2)。

E. 如何计算一个算法的时间复杂度

求解算法的时间复杂度的具体步骤是:

1、找出算法中的基本语句:

算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

2、计算基本语句的执行次数的数量级:

(1)只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。

(2)这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

3、用大Ο记号表示算法的时间性能:

(1)将基本语句执行次数的数量级放入大Ο记号中。

(2)如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:

for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++)
for(j=1;j<=n;j++)x++;

(3)第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

F. 时间复杂度的计算方法

时间复杂度1. 算法复杂度分为 时间复杂度和空间复杂度。
作用: 时间复杂度是度量算法执行的时间长短;而空间复杂度是度量算法所需存储空间的大小。
2. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
3. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,在找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))
例:算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n的三次方 次
}
}
则有 T(n)= n的平方+n的三次方,根据上面空号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级
则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n的三次方)
希望能解决您的问题。

G. 算法时间复杂度怎么算

一、概念
时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)
比如:一般总运算次数表达式类似于这样:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0时,时间复杂度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此类推
eg:
(1) for(i=1;i<=n;i++) //循环了n*n次,当然是O(n^2)
for(j=1;j<=n;j++)
s++;
(2) for(i=1;i<=n;i++)//循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
for(j=i;j<=n;j++)
s++;
(3) for(i=1;i<=n;i++)//循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
for(j=1;j<=i;j++)
s++;
(4) i=1;k=0;
while(i<=n-1){
k+=10*i; i++; }//循环了n-1≈n次,所以是O(n)(5) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;
//循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)
另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的
二、计算方法1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。
3.常见的时间复杂度
按数量级递增排列,常见的时间复杂度有:
常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。
其中,1.O(n),O(n^2), 立方阶O(n^3),..., k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。2.O(2^n),指数阶时间复杂度,该种不实用3.对数阶O(log2n), 线性对数阶O(nlog2n),除了常数阶以外,该种效率最高
例:算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
}
}
则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级
则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n^3)
四、

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数
T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

“大O记法”:在这种描述中使用的基本参数是
n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)

2.1.
交换i和j的内容
sum=0;(一次)
for(i=1;i<=n;i++)(n次 )
for(j=1;j<=n;j++)
(n^2次 )
sum++;(n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.
for (i=1;i<n;i++)
{
y=y+1;①
for
(j=0;j<=(2*n);j++)
x++;②
}
解:
语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).

O(n)

2.3.
a=0;
b=1;①
for
(i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解:语句1的频度:2,
语句2的频度:
n,
语句3的频度: n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n
)

2.4.
i=1;①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是f(n),则:2^f(n)<=n;f(n)<=log2n
取最大值f(n)=
log2n,
T(n)=O(log2n )

O(n^3)

2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m,
j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).


我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最
坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
下面是一些常用的记法:


访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对
元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如着名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。

H. C语言算法的时间复杂度如何计算啊

(1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。 (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。 在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。 按数量级递增排列,常见的时间复杂度有: 常数阶O(1),对数阶O(log(2)n),线性阶O(n), 线性对数阶O(nlog(2)n),平方阶O(n^2),立方阶O(n^3),..., k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

阅读全文

与在线计算算法复杂度相关的资料

热点内容
命令与征服4免cd补丁完美版 浏览:426
kotlin编译为native 浏览:138
家用编译机 浏览:549
电子加密货币最新政策 浏览:379
androidcanvas撤销 浏览:269
安卓手机怎么把图标全部下移 浏览:185
饥荒被服务器踢出怎么进 浏览:170
c编译器哪款好 浏览:732
快手宝哥发明什么app 浏览:822
张艳玲编译 浏览:66
android展开收起动画 浏览:237
linuxxz文件 浏览:160
在游戏中心里面怎么玩到解压神器 浏览:484
电脑发到手机里面照片怎么解压 浏览:74
虚拟pdf打印机64位 浏览:413
支付宝AES加密和解密 浏览:379
编译实验原理下载 浏览:131
加密防伪溯源系统私人定做 浏览:222
扫码给电动车充电的app叫什么 浏览:760
关闭命令提醒 浏览:356