㈠ c语言算法优化
【算法描述】
转某牛人的解题报告!!!!
这道题在没看数据规模之前以为是一道简单的DP,但是数据开到十亿,无论在时间还是空间复杂度都过大,所以就要进行优化了。
解一:
简单方法:预期得分30。简单动态规划,f[i]代表青蛙跳到i点时所可能踩到的最少石子数,所以有f[i]=min{f[k]+map[i]}(i-s≤k≤i-t),其中map[i]代表i上是否有石子,有是1,否则0。算法复杂度O(n^2)。
解二:
改进方法:预期得分100。我们会发现,虽然桥很长,但上面最多只有100个石子,想到能否用石子DP,而应该是不行的。那能否基于第一种方法?由于石子排布非常的疏,我们还会发现,如果两个石子相隔甚远,那他们中间的f[i]大部分将会是同一个数,能否把两个石子的距离缩短,使之还与原来等效?要是行的话怎么缩?王乃岩同学考试时做了一个方法能够过全部数据,用的滚动数组存储,下面列出了他的程序。我自己也写了个程序,和他不尽相同:我令L=stone[i]-stone[i-1](stone[i]代表按坐标由小到大顺序排列的石块坐标),当L能够被t整除时(L%t==0),令k=t;当L不能被t整除时(L%t!=0),令k=L%t。然后令k为k+t,最后判断如果k>L,那么map[]数组中stone[i]和stone[i-1]两石头的距离就被等效成为L(也就是没变);如果k<=L,那么map[]数组中stone[i]和stone[i-1]两石头的距离就被等效成为k,可以看出来,这样处理完,两石子最大间距为2*t,大大的缩短了数组,再按解一进行DP,就可以通过了。
#include <stdio.h>
#include <string.h>
long stone[101];
int map[100001];
int f[100001];
long L;
int S, T, M;
void quickSort(int l, int r)
{
int i , j;
long temp;
i = l;
j = r;
temp = stone[i];
while (i < j)
{
while (i < j && stone[j] > temp)
j--;
if (i < j)
{
stone[i] = stone[j];
i++;
}
while (i < j && stone[i] < temp)
i++;
if (i < j)
{
stone[j] = stone[i];
j--;
}
}
stone[i] = temp;
if (i - 1 > l) quickSort(l, i - 1);
if (i + 1 < r) quickSort(i + 1, r);
}
int main()
{
int i, j;
long l, k, p = 0, min;
scanf("%ld%d%d%d", &L, &S, &T, &M);
for (i = 1; i <= M; i++)
scanf("%ld", &stone[i]);
memset(map, 0, sizeof(int)*100001);
memset(f, 0, sizeof(int)*100001);
quickSort(1, M);
stone[0] = 0;
p = 0;
for (i = 1; i <= M; i++)
{
l = stone[i] - stone[i - 1];
if (l % T == 0)
k = T;
else
k = l % T;
k = k + T;
if (l < k)
k = l;
p = p + k;
map[p] = 1;
}
for (i = 1; i <= p + T; i++)
{
min = 1000;
for (j = i - T; j <= i - S; j++)
if ( j >= 0 && f[j] < min)
min = f[j];
f[i] = min + map[i];
}
min = 1000;
for (i = p + 1; i <= p + T; i++)
if (f[i] < min)
min = f[i];
printf("%d\n", min);
return 0;
}
㈡ 独木桥(青蛙过河)问题思考
题目描述
在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。
题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。
对于30%的数据,L <= 10000;对于全部的数据,L <= 10^9。<= 10^9<= 10^9<= 10^9<= 10^9<= 10^9<= 10^9= 10^9
输入
输入的第一行有一个正整数L(1 <= l <= 10^9),表示独木桥的长度。第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1 <= s <= t <= 10,1 <= m <= 100。第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。<= m <= 100<= m <= 100<= m <= 100<= m <= 100<= m <= 100<= m <= 100= M <= 100
问题算法本身不难,一个从后往前反向求出起点最小石子个数的动态规划问题,搜索青蛙过河,网上可以找到很多帖子。不过只这么做是不够的,首先数据量大的时候,内存直接爆了,所以需要压缩数据,片段化处理;另一个就是一个特殊情况, 如果青蛙最小步数和最大步数相等时,直接计算 即可。
这里主要记录下我自己是怎么压缩的,思路主要是这样,首先对石子位置进行排序,然后从后往前遍历,如果发现两个石子之间距离过长,那么就以后一个石子为开头得到一个片段;然后计算经过这个片段的最小石子个数。最终整个独木桥的最小石子个数,就是所有片段结果之和。
那么现在的问题就是,怎么才算石子之间的距离足够长。如果前maxStep个数已经都一样了,那么再怎么往前推,都是一个数了;而多长的距离能够保证前面的数都变成最小值,我的想法比较简单粗暴,跟冒泡排序的想法有点接近,就是假设最后一个值(maxStep-1位置上的值)是最小值,那么它每一轮往前移动(maxStep-minStep)个位置,直接假定每一轮的长度为maxStep,所以它移动到第一个位置需要(maxStep - 1)*maxStep/(maxStep-minStep)。所以,如果两个石子之间的距离超过这个值,那么直接算出这个片段每个位置的最小石子数,然后取前面maxStep个值的最小值。
最后,如果到了最开始的片段,如果第一个石子离起点还是足够远,可以一样计算,但是,如果第一个石子离起点很近的时候,直接计算到起点的最小石子数即可。
㈢ ACM入门学什么
初学者建议购买,《算法竞赛入门经典》 刘汝佳作,十分好,在深入可以是他的另外一本,黑书,《算法艺术与信息学竞赛》。
计划:
ACM的算法(觉得很好,有层次感)POJ上的一些水题(可用来练手和增加自信)
(poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)
初期:
一.基本算法:
(1)枚举. (poj1753,poj2965)
(2)贪心(poj1328,poj2109,poj2586)
(3)递归和分治法.
(4)递推.
(5)构造法.(poj3295)
(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.图算法:
(1)图的深度优先遍历和广度优先遍历.
(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓扑排序 (poj1094)
(5)二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)
(6)最大流的增广路算法(KM算法). (poj1459,poj3436)
三.数据结构.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)
(3)简单并查集的应用.
(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼树(poj3253)
(6)堆
(7)trie树(静态建树、动态建树) (poj2513)
四.简单搜索
(1)深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
(1)背包问题. (poj1837,poj1276)
(2)型如下表的简单DP(可参考lrj的书 page149):
1.E[j]=opt{D[i]+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学
(1)组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
(2)数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
(3)计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.
(1)几何公式.
(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)
(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)
中级:
一.基本算法:
(1)C++的标准模版库的应用. (poj3096,poj3007)
(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
(1)差分约束系统的建立和求解. (poj1201,poj2983)
(2)最小费用最大流(poj2516,poj2516,poj2195)
(3)双连通分量(poj2942)
(4)强连通分支及其缩点.(poj2186)
(5)图的割边和割点(poj3352)
(6)最小割模型、网络流规约(poj3308, )
三.数据结构.
(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)静态二叉检索树. (poj2482,poj2352)
(3)树状树组(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)并查集的高级应用. (poj1703,2492)
(6)KMP算法. (poj1961,poj2406)
四.搜索
(1)最优化剪枝和可行性剪枝
(2)搜索的技巧和优化 (poj3411,poj1724)
(3)记忆化搜索(poj3373,poj1691)
五.动态规划
(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)
(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)
六.数学
(1)组合数学:
1.容斥原理.
2.抽屉原理.
3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.
(2)数学.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)
(3)计算方法.
1.0/1分数规划. (poj2976)
2.三分法求解单峰(单谷)的极值.
3.矩阵法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
(4)随机化算法(poj3318,poj2454)
(5)杂题.
(poj1870,poj3296,poj3286,poj1095)
七.计算几何学.
(1)坐标离散化.
(2)扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多边形的内核(半平面交)(poj3130,poj3335)
(4)几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
高级:
一.基本算法要求:
(1)代码快速写成,精简但不失风格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保证正确性和高效性. poj3434
二.图算法:
(1)度限制最小生成树和第K最短路. (poj1639)
(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最优比率生成树. (poj2728)
(4)最小树形图(poj3164)
(5)次小生成树.
(6)无向图、有向图的最小环
三.数据结构.
(1)trie图的建立和应用. (poj2778)
(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法
(RMQ+dfs)).(poj1330)
(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的
目的). (poj2823)
(4)左偏树(可合并堆).
(5)后缀树(非常有用的数据结构,也是赛区考题的热点).
(poj3415,poj3294)
四.搜索
(1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)
五.动态规划
(1)需要用数据结构优化的动态规划.
(poj2754,poj3378,poj3017)
(2)四边形不等式理论.
(3)较难的状态DP(poj3133)
六.数学
(1)组合数学.
1.MoBius反演(poj2888,poj2154)
2.偏序关系理论.
(2)博奕论.
1.极大极小过程(poj3317,poj1085)
2.Nim问题.
七.计算几何学.
(1)半平面求交(poj3384,poj2540)
(2)可视图的建立(poj2966)
(3)点集最小圆覆盖.
(4)对踵点(poj2079)
八.综合题.
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)gsyagsy 2007-11-29 00:22
以及补充 Dp状态设计与方程总结
1.不完全状态记录
<1>青蛙过河问题
<2>利用区间dp
2.背包类问题
<1> 0-1背包,经典问题
<2>无限背包,经典问题
<3>判定性背包问题
<4>带附属关系的背包问题
<5> + -1背包问题
<6>双背包求最优值
<7>构造三角形问题
<8>带上下界限制的背包问题(012背包)
3.线性的动态规划问题
<1>积木游戏问题
<2>决斗(判定性问题)
<3>圆的最大多边形问题
<4>统计单词个数问题
<5>棋盘分割
<6>日程安排问题
<7>最小逼近问题(求出两数之比最接近某数/两数之和等于某数等等)
<8>方块消除游戏(某区间可以连续消去求最大效益)
<9>资源分配问题
<10>数字三角形问题
<11>漂亮的打印
<12>邮局问题与构造答案
<13>最高积木问题
<14>两段连续和最大
<15>2次幂和问题
<16>N个数的最大M段子段和
<17>交叉最大数问题
4.判定性问题的dp(如判定整除、判定可达性等)
<1>模K问题的dp
<2>特殊的模K问题,求最大(最小)模K的数
<3>变换数问题
5.单调性优化的动态规划
<1>1-SUM问题
<2>2-SUM问题
<3>序列划分问题(单调队列优化)
6.剖分问题(多边形剖分/石子合并/圆的剖分/乘积最大)
<1>凸多边形的三角剖分问题
<2>乘积最大问题
<3>多边形游戏(多边形边上是操作符,顶点有权值)
<4>石子合并(N^3/N^2/NLogN各种优化)
7.贪心的动态规划
<1>最优装载问题
<2>部分背包问题
<3>乘船问题
<4>贪心策略
<5>双机调度问题Johnson算法
8.状态dp
<1>牛仔射击问题(博弈类)
<2>哈密顿路径的状态dp
<3>两支点天平平衡问题
<4>一个有向图的最接近二部图
9.树型dp
<1>完美服务器问题(每个节点有3种状态)
<2>小胖守皇宫问题
<3>网络收费问题
<4>树中漫游问题
<5>树上的博弈
<6>树的最大独立集问题
<7>树的最大平衡值问题
<8>构造树的最小环
㈣ 电脑编程问题
dp压缩
这是解题报告
第二题 过河-River
[问题分析]
此题初看是一个典型的搜索题。从河的一侧到河的另一侧,要找最少踩到的石头数。但从数据范围来看。1..109长度的桥。就算是O(n)的算法也不能在一秒内出解。
如果搜索石子,方法更困难。这要考虑到前面以及后面连续的石子。若换一种方法。用动态规划,以石子分阶段的一维动规,时间复杂度是O(n2)。最多也只有100×100的时间。但是这样分状态就十分复杂。因为石头的分布是没有任何规律,而且会有后效性。
这样只好有回到搜索。搜索石子会和动规一样没有规律。我们一桥的长度为对象进行搜索,然后再加上一个巧妙的剪枝就可以在很短的时间内出解。可以号称为O(m2)。[批注:号称一词已成为湖南OI本世纪流行词汇 ]
[题目实现]
先以时间为对象进行搜索。时间复杂度为O(L)。从桥的一侧到另一侧,中间最多只有100个石子。假设桥长为最大值(109),石头数也为最大值(100)。这样中间一定会有很多“空长条” (两个石子中的空地),处理时把这些跳过,就只会有M次运算。关键是找出每一个可以跳过的“空长条”。
我们可以先把青蛙可以跳出的所有可能求出,然后就可以求出可以忽略的“空长条”。
[特殊算法]
a[i]:前i个坐标中石子最小个数,初始为第i个坐标的石子个数
b[i]:第i个石子坐标
动规
a[0]=0;
对n>=t
a[n]=min{a[n]+a[n-s],a[n]+a[n-s-1], ...,a[n]+a[n-t]}
对s=<n<t
a[n]=max{a[n]+a[n-s],a[n]+a[n-s-1],...,a[n]+a[0]}
但由于n较大直接动规会超时。所以要将n压缩
查看坐标,可以发现,如果b[i]-b[i-1]>t,显然对于b[i-1]+t<n<b[i],a[n]总是等于a[b[i-1]]..a[b[i-1]+t]中的数,因此可对其进行压缩。
注意,在计算过程中,由于其中有一些坐标是永远走不到的,因此需要用一个布尔型的数组c[n]进行判断。方法是,对于c[n],如果0<n<s,则c[n]为false,如果n>s,c[n-t],c[n-t+1],...,c[n-s]都为false,则c[n]也为false。
这个我试了,是对的
type arr=array[0..100000] of longint;
var a,f,stone,stone2:arr;
l,s,x,t,m,n,o,p,i,j,k,min:cardinal;
procere deal;
var i:longint;
begin
stone[0]:=0;
stone[m+1]:=l;
for i:=1 to m+1 do
if stone[i]-stone[i-1]>=100 then stone2[i]:=stone2[i-1]+100
else stone2[i]:=stone2[i-1]+stone[i]-stone[i-1];
end;
begin
readln(l);
readln(s,t,m);
for i:=1 to m do
read(stone[i]);
if s=t then begin
for i:=1 to m do
if stone[i] mod s=0 then inc(o);
writeln(o);
end
else begin
for i:=1 to m-1 do
for j:=1 to m-i do
if stone[j]>stone[j+1] then begin
stone[0]:=stone[j];
stone[j]:=stone[j+1];
stone[j+1]:=stone[0];
end;
Deal;
l:=stone2[m+1];
for i:=1 to m do
a[stone2[i]]:=1;
f[0]:=0;
for i:=1 to l+t do begin
f[i]:=maxlongint-1;
for j:=t downto s do
if i<j then break
else
if (f[i-j]+a[i])<f[i] then f[i]:=f[i-j]+a[i];
end;
min:=maxlongint;
for i:=l to l+t do begin
if f[i]<min then min:=f[i];
end;
writeln(min);
end;
end.
说了就是状态压缩dp
㈤ 动态规划 青蛙过河
你可能忘记了有些格子青蛙是永远也跳不到的,如果你不用一个布尔型数组记录的话,你在后面的枚举可能在寻找最小的步数时找到你永远走不到的格子的步数,因为你走不到自然那个格子步数就小。。。。。
㈥ 一道noip模拟题 高手求解 或 解释下同学的程序!
你很好学呀,你的这个是搜来的吧。应为没人会打开头那些可有可无的程序。
倒数第三行可知f数组是包含最大可以获得的奖品价值(也就是快排找最大)
c数组自然就是放每两级的值来做排序的比较和来存f数组最优。
支持原创!!!抄袭的不得好死!!!