导航:首页 > 源码编译 > 迪杰斯特拉算法避障问题

迪杰斯特拉算法避障问题

发布时间:2022-11-15 06:25:58

Ⅰ dijkstra算法是什么

迪杰斯特拉算法用来解决从顶点v0出发到其余顶点的最短路径,该算法按照最短路径长度递增的顺序产生所以最短路径。

对于图G=(V,E),将图中的顶点分成两组:第一组S:已求出的最短路径的终点集合(开始为{v0})。第二组V-S:尚未求出最短路径的终点集合(开始为V-{v0}的全部结点)。

堆优化

思考

该算法复杂度为n^2,我们可以发现,如果边数远小于n^2,对此可以考虑用堆这种数据结构进行优化,取出最短路径的复杂度降为O(1);每次调整的复杂度降为O(elogn);e为该点的边数,所以复杂度降为O((m+n)logn)。

实现

1、将源点加入堆,并调整堆。

2、选出堆顶元素u(即代价最小的元素),从堆中删除,并对堆进行调整。

3、处理与u相邻的,未被访问过的,满足三角不等式的顶点

1):若该点在堆里,更新距离,并调整该元素在堆中的位置。

2):若该点不在堆里,加入堆,更新堆。

4、若取到的u为终点,结束算法;否则重复步骤2、3。

Ⅱ 迪杰斯特拉算法的本质是贪心还是动态规划

贪心是一种特殊的动态规划,动态规划的本质是独立的子问题,而贪心则是每次可以找到最优的独立子问题。
贪心和动归不是互斥的,而是包含的,贪心更快,但约束更强,适应范围更小。
动归和bfs的关系也是一样的。
展开一点讲,在求解最优化问题时,有多个解。而求解的过程类似一个树,我们称之为求解树。
一般的求解树真的是一棵树,所以我们只能用bfs来搜索,顶多剪枝。
有些特殊的求解树,中间很多结点是重合的,结点个数比所有搜索分支的个数少很多个数量级。这类问题较特殊,我们可以保存中间的搜索过程。而记忆化搜索和动态规划本质上就是一个东西,快就快在可以不用重复计算很多中间结果(所谓的最优子问题)。
还有一些特殊的求解树,更特殊,它们不止有很多重复结点,而且每次选择分支的时候,我们可以证明只要选择一个分支,这个分支的解就一定比其他选择更优。这类问题就是贪心了,
所以bfs,dp,贪心三个方法都是解决最优化问题的方法,根据问题的不同,约束越大的问题可以用越快的方法,越慢的方法可以解决的问题越普适。
动态规划的状态转移函数,可以抽象成这样一种函数:
f(x)=g(f(x1), f(x2), f(x3), ... f(xn))
其中f就是我们说的独立问题,每个f都有一个唯一值,也就是没有后效性。
贪心也是这个函数,但可以证明:
f(xi) >= f(x1|x2|...|xn)
那么我们就不用再去计算除了f(xi)以外的任何子状态了,所以就更快
而标准的bfs,虽然也有
f(x)=g(f(x1), f(x2), f(x3), ... f(xn))
但是因为对于任意的f(x),它的子问题f(xi)的输入状态xi都不同(换一种思路也可以说f(xi)在不同的路径下值都不同,本质上是我们怎么定义xi,到底是狭义的参数还是广义的状态),所以无法使用内存去换取时间,就只能去遍历所有状态了。

Ⅲ 迪杰斯特拉算法难度什么水平

迪杰斯特拉算法难度是一般水平。迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959年提出的,是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法的主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。迪杰斯特拉算法的成功率是最高的,因为它每次必能搜索到最优路径。但迪杰斯特拉算法算法的搜索速度是最慢的。

Ⅳ 用dijkstra算法计算源点到个结点的最短路径....谢谢亲爱的朋友~ 详细答案

(这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值)
1. 置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边) 2. 在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转3
3. 对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2

Ⅳ 解释一下dijkstra算法这个计算过程的意思 怎么算的

最近也看到这个算法,不过主要是通过C语言介绍的,不太一样,但基本思想差不多。下面只是我个人的看法不一定准确。
Dijkstra算法主要解决指定某点(源点)到其他顶点的最短路径问题。
基本思想:每次找到离源点最近的顶点,然后以该顶点为中心(过渡顶点),最终找到源点到其余顶点的最短路。

t=1:令源点(v_0)的标号为永久标号(0,λ)(右上角加点), 其他为临时(+无穷,λ). 就是说v_0到v_0的距离是0,其他顶点到v_0的距离为+无穷。t=1时,例5.3上面的步骤(2)(3)并不能体现

t=2:第1步v_0(k=0)获得永久标号,记L_j为顶点标号当前的最短距离(比如v_0标号(0,λ)中L_0=0), 边(v_k,v_j)的权w_kj. 步骤(2)最关键,若v_0与v_j之间存在边,则比较L_k+w_kj与L_j, 而L_k+w_kj=L_0+w_0j<L_j=+无穷。
这里只有v_1,v_2与v_0存在边,所以当j=1,2时修改标号, 标号分别为(L_1, v_0)=(1, v_0), (L_2, v_0)=(4, v_0), 其他不变。步骤(3)比较所有临时标号中L_j最小的顶点, 这里L_1=1最小,v_1获得永久标号(右上角加点)。

t=3: 第2步中v_1获得永久标号(k=1), 同第2步一样,通过例5.3上面的步骤(2)(3),得到永久标号。 步骤(2),若v_1与v_j(j=2,3,4,5(除去获得永久标号的顶点))之间存在边,则比较L_1+w_1j与L_j。这里v_1与v_2,v_3,v_,4存在边,
对于v_2, L_1+w_12=1+2=3<L_2=4, 把v_2标号修改为(L_1+w_12, v_1)=(3, v_1);
对于v_3, L_1+w_13=1+7=8<L_3=+无穷, 把v_3标号修改为(L_1+w_13, v_1)=(8, v_1);
对于v_4, L_1+w_14=1+5=6<L_4=+无穷, 把v_4标号修改为(L_1+w_14, v_1)=(6, v_1);
v_5与v_1不存在边,标号不变。步骤(3), 找这些标号L_j最小的顶点,这里v_2标号最小

t=4: k=2, 与v_2存在边的未获得永久标号的顶点只有v_4, 比较L_2+w_24=3+1=4<L_4=6, 把v_4标号修改为(L_2+w_24, v_2)=(4, v_2); 其他不变。步骤(3), L_4=4最小。

t=5: k=4, 同理先找v_4邻接顶点,比较,修改标号,找L_j最小
t=6: 同理

啰嗦的这么多,其实步骤(2)是关键,就是通过比较更新最短路径,右上角标点的就是距离源点最近的顶点,之后每一步就添加一个新的”源点”,再找其他顶点与它的最短距离。

迪杰斯特拉算法(Dijkstra)(网络):
http://ke..com/link?url=gc_mamV4z7tpxwqju6BoqxVOZ_josbPNcGKtLYJ5GJsJT6U28koc_#4
里面有个动图,更形象地说明了该算法的过程。(其中每次标注的一个红色顶点out就和你的这本书中获得永久标号是相似的)

Ⅵ 迪杰斯特拉算法的原理

1.首先,引入一个辅助向量D,它的每个分量 D 表示当前所找到的从起始点 (即源点 )到其它每个顶点 的长度。
例如,D[3] = 2表示从起始点到顶点3的路径相对最小长度为2。这里强调相对就是说在算法执行过程中D的值是在不断逼近最终结果但在过程中不一定就等于长度。
2.D的初始状态为:若从 到 有弧(即从 到 存在连接边),则D 为弧上的权值(即为从 到 的边的权值);否则置D 为∞。
显然,长度为 D = Min{ D | ∈V } 的路径就是从 出发到顶点 的长度最短的一条路径,此路径为( )。
3.那么,下一条长度次短的是哪一条呢?也就是找到从源点 到下一个顶点的最短路径长度所对应的顶点,且这条最短路径长度仅次于从源点 到顶点 的最短路径长度。
假设该次短路径的终点是 ,则可想而知,这条路径要么是( ),或者是( )。它的长度或者是从 到 的弧上的权值,或者是D 加上从 到 的弧上的权值。
4.一般情况下,假设S为已求得的从源点 出发的最短路径长度的顶点的集合,则可证明:下一条次最短路径(设其终点为 )要么是弧( ),或者是从源点 出发的中间只经过S中的顶点而最后到达顶点 的路径。
因此,下一条长度次短的的最短路径长度必是D = Min{ D | ∈V-S },其中D 要么是弧( )上的权值,或者是D ( ∈S)和弧( , )上的权值之和。
算法描述如下:
1)令arcs表示弧上的权值。若弧不存在,则置arcs为∞(在本程序中为MAXCOST)。S为已找到的从 出发的的终点的集合,初始状态为空集。那么,从 出发到图上其余各顶点 可能达到的长度的初值为D=arcs[Locate Vex(G, )], ∈V;
2)选择 ,使得D =Min{ D | ∈V-S } ;
3)修改从 出发的到集合V-S中任一顶点 的最短路径长度。

Ⅶ 迪杰斯特拉算法的算法思想

按路径长度递增次序产生算法:
把顶点集合V分成两组:
(1)S:已求出的顶点的集合(初始时只含有源点V0)
(2)V-S=T:尚未确定的顶点集合
将T中顶点按递增的次序加入到S中,保证:
(1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度
(2)每个顶点对应一个距离值
S中顶点:从V0到此顶点的长度
T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度
依据:可以证明V0到T中顶点Vk的,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和
(反证法可证)
求最短路径步骤
算法步骤如下:
G={V,E}
1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值
若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值
若不存在<V0,Vi>,d(V0,Vi)为∞
2. 从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中
3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值
重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

Ⅷ 弗洛伊德与地杰斯特拉算法的区别

最大的区别是算法的时间复杂度
弗洛伊德算法的复杂度最低也是N的三次方 如果是竞赛的话你用弗洛伊德很不幸 你会超时
但是地杰斯特拉算法的复杂度就很低了可以达到期望logn级别 比N的三次方的算法就快了很多
还有一个区别就是在做最短路问题的时候迪杰斯特拉算法不适用于边有负权值的图
当碰到边有负权时 你可以选择SPFA算法 这是迪杰斯特拉算法的优化版 对稀疏图有不错的效果
顺带一提 SPFA是中国人优化的

Ⅸ 迪杰斯特拉算法

Dijkstra算法是一种求单源最短路的算法,即从一个点开始到所有其他点的最短路。其基本原理是:每次新扩展一个距离最短的点,更新与其相邻的点的距离。当所有边权都为正时,由于不会存在一个距离更短的没扩展过的点,所以这个点的距离永远不会再被改变,因而保证了算法的正确性。不过根据这个原理,用Dijkstra求最短路的图不能有负权边,因为扩展到负权边的时候会产生更短的距离,有可能就破坏了已经更新的点距离不会改变的性质。

Ⅹ 图遍历算法之最短路径Dijkstra算法

最短路径问题是图论研究中一个经典算法问题,旨在寻找图中两节点或单个节点到其他节点之间的最短路径。根据问题的不同,算法的具体形式包括:

常用的最短路径算法包括:Dijkstra算法,A 算法,Bellman-Ford算法,SPFA算法(Bellman-Ford算法的改进版本),Floyd-Warshall算法,Johnson算法以及Bi-direction BFS算法。本文将重点介绍Dijkstra算法的原理以及实现。

Dijkstra算法,翻译作戴克斯特拉算法或迪杰斯特拉算法,于1956年由荷兰计算机科学家艾兹赫尔.戴克斯特拉提出,用于解决赋权有向图的 单源最短路径问题 。所谓单源最短路径问题是指确定起点,寻找该节点到图中任意节点的最短路径,算法可用于寻找两个城市中的最短路径或是解决着名的旅行商问题。

问题描述 :在无向图 中, 为图节点的集合, 为节点之间连线边的集合。假设每条边 的权重为 ,找到由顶点 到其余各个节点的最短路径(单源最短路径)。

为带权无向图,图中顶点 分为两组,第一组为已求出最短路径的顶点集合(用 表示)。初始时 只有源点,当求得一条最短路径时,便将新增顶点添加进 ,直到所有顶点加入 中,算法结束。第二组为未确定最短路径顶点集合(用 表示),随着 中顶点增加, 中顶点逐渐减少。

以下图为例,对Dijkstra算法的工作流程进行演示(以顶点 为起点):

注:
01) 是已计算出最短路径的顶点集合;
02) 是未计算出最短路径的顶点集合;
03) 表示顶点 到顶点 的最短距离为3
第1步 :选取顶点 添加进


第2步 :选取顶点 添加进 ,更新 中顶点最短距离




第3步 :选取顶点 添加进 ,更新 中顶点最短距离




第4步 :选取顶点 添加进 ,更新 中顶点最短距离





第5步 :选取顶点 添加进 ,更新 中顶点最短距离



第6步 :选取顶点 添加进 ,更新 中顶点最短距离



第7步 :选取顶点 添加进 ,更新 中顶点最短距离

示例:node编号1-7分别代表A,B,C,D,E,F,G

(s.paths <- shortest.paths(g, algorithm = "dijkstra"))输出结果:

(s.paths <- shortest.paths(g,4, algorithm = "dijkstra"))输出结果:

示例:

找到D(4)到G(7)的最短路径:

[1] 维基网络,最短路径问题: https://zh.wikipedia.org/wiki/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98 ;
[2]CSDN,Dijkstra算法原理: https://blog.csdn.net/yalishadaa/article/details/55827681 ;
[3]RDocumentation: https://www.rdocumentation.org/packages/RNeo4j/versions/1.6.4/topics/dijkstra ;
[4]RDocumentation: https://www.rdocumentation.org/packages/igraph/versions/0.1.1/topics/shortest.paths ;
[5]Pypi: https://pypi.org/project/Dijkstar/

阅读全文

与迪杰斯特拉算法避障问题相关的资料

热点内容
北京文件夹加密多少钱 浏览:669
什么是车鉴定app 浏览:64
战地一私人服务器怎么买 浏览:497
陈天程序员 浏览:833
编译原理如何运用到编程中 浏览:17
linux选择数据库 浏览:376
php两个数组差集 浏览:978
迷你pdf阅读器下载 浏览:433
做一个python小程序 浏览:655
pythonossystem和 浏览:645
win2008如何搭建ftp服务器 浏览:53
安卓手机为什么不翻牌 浏览:546
删除pkpm及相关文件夹 浏览:481
房贷解压银行内部流程 浏览:734
安卓手机如何更改语音 浏览:601
android红包实现 浏览:734
苹果的nvme为什么安卓不用 浏览:32
python输入单词统计个数 浏览:998
脚本软件提取源码 浏览:281
程序员能给自己的微信钱包刷钱么 浏览:73