导航:首页 > 源码编译 > 存储器和编译器

存储器和编译器

发布时间:2022-11-15 09:08:48

① C语言编译器是什么

C语言是一门面向过程的计算机编程语言,与C++、Java等面向对象编程语言有所不同。C语言的设计目标是提供一种能以简易的方式编译、处理低级存储器、仅产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。C语言描述问题比汇编语言迅速,工作量小、可读性好,易于调试、修改和移植,而代码质量与汇编语言相当。C语言一般只比汇编语言代码生成的目标程序效率低10%~20%。因此,C语言可以编写系统软件。[2]
二十世纪八十年代,美国国家标准局为了避免各开发厂商用的C语言语法产生差异,给C语言制定了一套完整的美国国家标准语法,称为ANSI C。作为C语言最初的标准。[3]2011年12月8日,国际标准化组织(ISO)和国际电工委员会(IEC)发布的C11标准是C语言的第三个官方标准,也是C语言的最新标准,该标准更好的支持了汉字函数名和汉字标识符,一定程度上实现了汉字编程。
C语言编译器普遍存在于各种不同的操作系统中,例如Microsoft Windows, Mac OS X, Linux, Unix等。C语言的设计影响了众多后来的编程语言,例如C++、Objective-C、Java、C#等。

例:
#include <stdio.h>

int main() {
printf("Hello,world!");

return 0;
}

编译运行将输出: Hello,world!

② 微机原理 存储器扩展&译码器,有一些疑惑!

1:低位址也有进入6264中,那个A0~A12就是
2:memr跟memw是8086系统对外的读取信号
3:圆圈代表低电平输出,6264有两个片选,一个高电平,一个低电平,两个搭配可以组成很多的组合,在这里高电平就直接接5伏,低电平从A18获得

③ 微机中访问速度最快储存器是什么

微机中访问速度最快的存储器是内存。中央处理器(CPU)直接与内存打交道,即CPU可以直接访问内存。而外存储器只能先将数据指令先调入内存然后再由内存调入CPU,CPU不能直接访问外存储器。CD-ROM、硬盘和U盘都属于外存储器,因此,内存储器比外存储器的访问周期更短。

硬盘的特点是存储容量大、存取速度快。硬盘可以进行格式化处理,格式化后,硬盘上的数据丢失。每台计算机可以安装一块以上的硬盘,扩大存储容量。

CPU只能通过访问硬盘存储在内存中的信息来访问硬盘。断电后,硬盘中存储的数据不会丢失。

内存是计算机写入和读取数据的中转站,它的速度是最快的。存取周期最短的是内存,其次是硬盘,再次是光盘,最慢的是软盘。

中央处理器(CPU)直接与内存打交道,即CPU可以直接访问内存。而外存储器只能先将数据指令先调入内存然后再由内存调入CPU,CPU不能直接访问外存储器。

④ 计算机指令主要存放在哪

A、存储器。

计算机存储器(英语:Computer memory)是一种利用半导体、磁性介质等技术制成的存储资料的电子设备。其电子电路中的资料以二进制方式存储,不同存储器产品中基本单元的名称也不一样。

计算机存储器可分为内部存储器(又称内存或主存)和外部存储器,其中内存是CPU能直接寻址的储存空间,由半导体器件制成。内存的特点是访问速率快。

我们平常使用的程序,如Windows操作系统、打字软件、游戏软件等,一般都是安装在硬盘等外部记忆体上的,但必须把它们调入内存中运行,才能真正使用其功能,我们平时输入一段文字,或玩一个游戏,其实都是在内存中进行的,数据产生后不断地由内存向外部记忆体进行读写。

就好比在一个书房里,存放书籍的书架和书柜相当于电脑的外部记忆体,而我们工作的办公桌就是内存。通常我们把要永久保存的、大量的数据储存在外部记忆体上,而把一些临时的或少量的数据和程序放在内存上,当然内存的好坏会直接影响电脑的运行速度。

容量

存储器以二进制计算容量,基本单位是Byte:

1、1 Kilobyte(KB) =1,024B=210B

2、1 Megabyte(MB)=1,024KiB=220B=1,048,576B

3、1 Gigabyte(GB)=1,024MiB=230B=1,073,741,824B

4、1 Terabyte(TB)=1,024GiB=240B=1,099,511,627,776B

5、1 Petabyte(PB)=1,024TiB=250B=1,125,899,906,842,624B

6、1 Exabyte(EB) =1,024PiB=260B=1,152,921,504,606,846,976B

7、1 Zettabyte(ZB)=1,024EiB=270B

8、1 Yottabyte(YB)=1,024ZiB=280B

(4)存储器和编译器扩展阅读:

在计算机技术中,指令是由指令集架构定义的单个的CPU操作。在更广泛的意义上,“指令”可以是任何可执行程序的元素的表述,例如字节码。

在传统的构架上,指令包括一个操作码(opcode)——它指定要进行什么样的操作,例如“将存储器中的内容与寄存器中的内容相加”——和零个或者更多的操作数(operand)——它可能指定参与操作的寄存器、内存地址或者立即数(literal data)。操作数可能还包括寻址方式,它确定操作数的含义。

在超长指令字(VLIW)构架中(包括很多微指令(microcode)构架)多个并发的操作和操作数在一条单独的指令中被指定。

指令的长度相差悬殊,从一些微控制器(microcontroller)中的4位(bit)到一些超长指令字系统中的几百位。大部分现代的个人计算机、大型计算机、超大型计算机中的处理器的指令尺寸在16到64位之间。

在一些构架中,特别是RISC构架中,指令长度是固定的,通常与其构架的字长一致。在其他的构架中,指令有不同的长度,但通常是字节或者半个字的整数倍。

构成程序的指令很少以它在机器内部的数值形式而直接的被使用;它们可以被程序员通过汇编语言加以表示,或者,更常见的,被编译器生成。

⑤ C51编译器支持的存储器类型有哪些

c51存储器类型有bit
sbit
data
xdata
bdata
pdata
sfr
code等,可能不全面有遗漏
对应的物理存储器是:
bit,即位数据:数据存储器位寻址区,即20h~2fh的范围,共16个字节,16*8=128个位,位地址00h~7fh,连续的。
sbit:特殊功能寄存器中的位数据:只有能够被8整除的那些特殊功能寄存器中的各个位才能被称为sbit,位地址80h~ffh,不连续的,间断的。
data:数据区,对51为00h~7fh共128个字节,对52为00h~ffh,共256个字节,用mov寻址,前128用直接寻址或寄存器(r0~r7)寻址,后128用r0、r1间接寻址。
xdata:外部数据区,0000h~ffffh连续,用dptr间接寻址(movx指令)
bdata:位寻址去的字节,20h~2fh
sfr:特殊功能寄存器(80h~ffh),直接寻址
pdata:外部数据区,p2口保持数据,用r0r1间接寻址(movx指令)
code:程序存储器,用movc指令只读

⑥ 一个完整的计算机系统由什么组成

一个完整的计算机系统由硬件和软件系统构成,其中硬件系统。硬件系统是计算机系统的内核,进行信息处理的实际物理装置,包括中央处理器、存储器、输入输出控制系统和各种外部设备。连接人与硬件系统之间的接口界面就是软件系统,主要包括系统软件、支撑软件和应用软件。

中央处理器是对信息进行高速运算处理的主要部件,其处理速度可达每秒几亿次以上操作。存储器用于存储程序、数据和文件。各种输入输出外部设备是人机间的信息转换器。操作系统是对各种软硬件资源的实施管理和控制,应用软件是用户按其需要自行编写的专用程序。

(6)存储器和编译器扩展阅读

计算机的特点

1、运算速度快,可以高速准确地完成各种算术运算。

2、计算精确度高,一般计算机可以有十几位甚至几十位(二进制)有效数字,计算精度可由千分之几到百万分之几。

3、存储容量大,计算机内部的存储器具有记忆特性,可以存储大量的信息,这些信息,不仅包括各类数据信息,还包括加工这些数据的程序。

⑦ C51编译器支持的存储器类型有哪些

如图所示:

望采纳~

⑧ 一个完整的计算机系统由什么组成

1、计算机系统的组成

硬件系统(看得见摸得着的设备)和软件系统(开机后才能看见的电脑桌面上的软件,一般时图标和文字组成)两部分组成。

2、计算机的基本构成

包括:中央处理器(cpu),内存,硬盘,软盘和光盘,显示器,显示卡,声卡,键盘和鼠标,打印机。

3、计算机(电脑)硬件

看得见找得着的实物:显示器(液晶)、主机、键盘和鼠标、打印机、音响等。

4、电脑主机

一般看到的是主机外箱,掌握主机上的开关位置在哪里即可,主机上的开关位置在上面、中间和下面都有。

5、显示器

一般是液晶显示器,尺寸有17英寸、19英寸、22英寸等,如图所示:

6、键盘和鼠标

是最主要的输入设备,输入文字字符和排版时一定会用到。

7、其它设备

音响:多媒体的配置,听音乐看影视时用到;打印机:输出设备,把电子版的资料打印在纸质上。

⑨ 存储器层次结构中的缓存

《深入理解计算机系统》p422

6.1 存储器层次结构中的缓存

一般而言,高速缓存( cache ,读作“ cash ”)是一个小而快速的存储设备,它作为存储在更大、也更慢的设备中的数据对象的缓冲区域。使用高速缓存的过程称为缓存( caching ,读作“ cashing ”)。存储器层次结构的中心思想是,对于每个 k ,位于 k 层的更快更小的存储设备作为位于 k 十1层的更大更慢的存储设备的缓存。换句话说,层次结构中的每一层都缓存来自较低一层的数据对象。例如,本地磁盘作为通过网络从远程磁盘取出的文件(例如 Web 页面)的缓存,主存作为本地磁盘上数据的缓存,依此类推,直到最小的缓存—— CPU 寄存器组。图6-22展示了存储器层次结构中缓存的一般性概念。第 k 十1层的存储器被划分成连续的数据对象组块( chunk ),称为块( block )。每个块都有一个唯一的地址或名字,使之区别于其他的块。块可以是固定大小的(通常是这样的),也可以是可变大小的(例如存储在 Web 服务器上的远程 HTML 文件)。例如,图6-22中第 k 十1层存储器被划分成16个大小固定的块,编号为0~15。

类似地,第 k 层的存储器被划分成较少的块的集合,每个块的大小与 k 十1层的块的大小一样。在任何时刻,第 k 层的缓存包含第 k 十1层块的一个子集的副本。例如,在图6-22中,第 k 层的缓存有4个块的空间,当前包含块4、9、14和3的副本。

数据总是以块大小为传送单元( transfer unit )在第 k 层和第 k +1层之间来回复制的。虽然在层次结构中任何一对相邻的层次之间块大小是固定的,但是其他的层次对之间可以有不同的块大小。例如,在图6-21中,L1和 LO 之间的传送通常使用的是1个字大小的块。L2和L1之间(以及I3和I2之间、L4和I3之间)的传送通常使用的是几十个字节的

块。而L5和L4之间的传送用的是大小为几百或几千字节的块。一般而言,层次结构中较低层(离 CPU 较远)的设备的访问时间较长,因此为了补偿这些较长的访问时间,倾向于使用较大的块。

1. 缓存命中

当程序需要第 k 十1层的某个数据对象 d 时,它首先在当前存储在第 k 层的一个块中查找 d 。如果 d 刚好缓存在第 k 层中,那么就是我们所说的缓存命中( cache hit )。该程序直接从第 k 层读取 d ,根据存储器层次结构的性质,这要比从第 k +1层读取 d 更快。例如,一个有良好时间局部性的程序可以从块14中读出一个数据对象,得到一个对第 k 层的缓存命中。

2. 缓存不命中

另一方面,如果第 k 层中没有缓存数据对象 d ,那么就是我们所说的缓存不命中( cache miss )。当发生缓存不命中时,第 k 层的缓存从第 k 十1层缓存中取出包含 d 的那个块,如果第 k 层的缓存已经满了,可能就会覆盖现存的一个块。

覆盖一个现存的块的过程称为替换( replacing )或驱逐( evicting )这个块。被驱逐的这个块有时也称为牺牲块( victim block )。决定该替换哪个块是由缓存的替换策略( replace — ment policy )来控制的。例如,一个具有随机替换策略的缓存会随机选择一个牺牲块。一个具有最近最少被使用 LRU )替换策略的缓存会选择那个最后被访问的时间距现在最远的块。

在第 k 层缓存从第 k 十1层取出那个块之后,程序就能像前面一样从第 k 层读出 d 了。例如,在图6-22中,在第 k 层中读块12中的一个数据对象,会导致一个缓存不命中,因为块12当前不在第 k 层缓存中。一旦把块12从第 k 十1层复制到第 k 层之后,它就会保持在那里,等待稍后的访问。

3. 缓存不命中的种类

区分不同种类的缓存不命中有时候是很有帮助的。如果第 k 层的缓存是空的,那么对

任何数据对象的访问都会不命中。一个空的缓存有时被称为冷缓存( cold cache ),此类不命中称为强制性不命中( compulsory miss )或冷不命中( cold miss )。冷不命中很重要,因为它们通常是短暂的事件,不会在反复访问存储器使得缓存暖身( warmed up )之后的稳定状态中出现。

只要发生了不命中,第 k 层的缓存就必须执行某个放置策略( placement policy ),确定把它从第 k 十1层中取出的块放在哪里。最灵活的替换策略是允许来自第 k +1层的任何块放在第 k 层的任何块中。对于存储器层次结构中高层的缓存(靠近 CPU ),它们是用硬件来实现的,而且速度是最优的,这个策略实现起来通常很昂贵,因为随机地放置块,定位起来代价很高。

因此,硬件缓存通常使用的是更严格的放置策略,这个策略将第 k 十1层的某个块限制放置在第 k 层块的一个小的子集中(有时只是一个块)。例如,在图6-22中,我们可以确定第 k 十1层的块 i 必须放置在第 k 层的块( i mod 4)中。例如,第 k 十1层的块0、4、8和12会映射到第 k 层的块0;块1、5、9和13会映射到块1;依此类推。注意,图6-22中的示例缓存使用的就是这个策略。

这种限制性的放置策略会引起一种不命中,称为冲突不命中( conflict miss ),在这种情况中,缓存足够大,能够保存被引用的数据对象,但是因为这些对象会映射到同一个缓存块,缓存会一直不命中。例如,在图6-22中,如果程序请求块0,然后块8,然后块0,然后块8,依此类推,在第 k 层的缓存中,对这两个块的每次引用都会不命中,即使这个缓存总共可以容纳4个块。

程序通常是按照一系列阶段(如循环)来运行的,每个阶段访问缓存块的某个相对稳定不变的集合。例如,一个嵌套循环可能会反复地访问同一个数组的元素。这个块的集合称为这个阶段的工作集( working set )。当工作集的大小超过缓存的大小时,缓存会经历容量不命中( capacity miss )。换句话说就是,缓存太小了,不能处理这个工作集。

4. 缓存管理

正如我们提到过的,存储器层次结构的本质是,每一层存储设备都是较低一层的缓存。在每一层上,某种形式的逻辑必须管理缓存。这里,我们的意思是指某个东西要将缓存划分成块,在不同的层之间传送块,判定是命中还是不命中,并处理它们。管理缓存的逻辑可以是硬件、软件,或是两者的结合。

例如,编译器管理寄存器文件,缓存层次结构的最高层。它决定当发生不命中时何时发射加载,以及确定哪个寄存器来存放数据。L1、L2和L3层的缓存完全是由内置在缓存中的硬件逻辑来管理的。在一个有虚拟内存的系统中, DRAM 主存作为存储在磁盘上的数据块的缓存,是由操作系统软件和 CPU 上的地址翻译硬件共同管理的。对于一个具有像 AFS 这样的分布式文件系统的机器来说,本地磁盘作为缓存,它是由运行在本地机器上的 AFS 客户端进程管理的。在大多数时候,缓存都是自动运行的,不需要程序采取特殊的或显式的行动。

6.3.2 存储器层次结构概念小结

概括来说,基于缓存的存储器层次结构行之有效,是因为较慢的存储设备比较快的存储设备更便宜,还因为程序倾向于展示局部性:

1)利用时间局部性: 由于时间局部性,同一数据对象可能会被多次使用。一旦一个数据对象在第一次不命中时被复制到缓存中,我们就会期望后面对该目标有一系列的访问命中。因为缓存比低一层的存储设备更快,对后面的命中的服务会比最开始的不命中快很多。

2)利用空间局部性: 块通常包含有多个数据对象。由于空间局部性,我们会期望后面对该块中其他对象的访问能够补偿不命中后复制该块的花费。现代系统中到处都使用了缓存。正如从图6-23中能够看到的那样, CPU 芯片、操作系统、分布式文件系统中和万维网上都使用了缓存。各种各样硬件和软件的组合构成和管理着缓存。注意,图6-23中有大量我们还未涉及的术语和缩写。在此我们包括这些术语和缩写是为了说明缓存是多么的普遍。

⑩ 在存储器的内部结构中,译码器的作用是

在存储器的内部结构中,译码器的作用是?简单讲,编译器就是将“一种语言(通常为高级语言)”翻译为“另一种语言(通常为低级语言)”的程序。一个现代编译器的主要工作流程:源代码 (source code) → 预处理器 (preprocessor) → 编译器 (compiler) → 目标代码 (object code) → 链接器 (Linker) → 可执行程序 (executables)
高级计算机语言便于人编写,阅读交流,维护。机器语言是计算机能直接解读、运行的。编译器将汇编或高级计算机语言源程序(Source program)作为输入,翻译成目标语言(Target language)机器代码的等价程序。源代码一般为高级语言 (High-level language), 如Pascal、C、C++、Java、汉语编程等或汇编语言,而目标则是机器语言的目标代码(Object code),有时也称作机器代码(Machine code)。
对于C#、VB等高级语言而言,此时编译器完成的功能是把源码(SourceCode)编译成通用中间语言(MSIL/CIL)的字节码(ByteCode)。最后运行的时候通过通用语言运行库的转换,编程最终可以被CPU直接计算的机器码(NativeCode)。
中文名
编译器
外文名
Compiler
别称
译码器
表达式
源代码→预处理器 → 编译器 → 目标代码
提出者
葛丽丝·霍普

阅读全文

与存储器和编译器相关的资料

热点内容
北京文件夹加密多少钱 浏览:669
什么是车鉴定app 浏览:64
战地一私人服务器怎么买 浏览:497
陈天程序员 浏览:833
编译原理如何运用到编程中 浏览:17
linux选择数据库 浏览:376
php两个数组差集 浏览:978
迷你pdf阅读器下载 浏览:433
做一个python小程序 浏览:655
pythonossystem和 浏览:645
win2008如何搭建ftp服务器 浏览:53
安卓手机为什么不翻牌 浏览:546
删除pkpm及相关文件夹 浏览:481
房贷解压银行内部流程 浏览:734
安卓手机如何更改语音 浏览:601
android红包实现 浏览:734
苹果的nvme为什么安卓不用 浏览:32
python输入单词统计个数 浏览:998
脚本软件提取源码 浏览:281
程序员能给自己的微信钱包刷钱么 浏览:73