导航:首页 > 源码编译 > tsp1200算法区块链

tsp1200算法区块链

发布时间:2022-11-15 09:21:35

㈠ TSP问题的算法

你是说有10个点,想选4个点么,找4个点+起点的周游最小值?
点比较少,枚举4个点,C(10,4) = 210 种情况,然后找所有情况的最小值。那么最后这4个点就是你要的4个点。

㈡ TSP问题数学模型的简介

“旅行商问题”常被称为“旅行推销员问题”,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。规则虽然简单,但在地点数目增多后求解却极为复杂。以42个地点为例,如果要列举所有路径后再确定最佳行程,那么总路径数量之大,几乎难以计算出来。多年来全球数学家绞尽脑汁,试图找到一个高效的算法,在大型计算机的帮助下才取得了一些进展 。
TSP问题在物流中的描述是对应一个物流配送公司,欲将n个客户的订货沿最短路线全部送到。如何确定最短路线。
TSP问题最简单的求解方法是枚举法。它的解是多维的、多局部极值的、趋于无穷大的复杂解的空间,搜索空间是n个点的所有排列的集合,大小为(n-1)。可以形象地把解空间看成是一个无穷大的丘陵地带,各山峰或山谷的高度即是问题的极值。求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到山顶或谷底的过程。

㈢ 假设哈密顿问题是NPC,证明:TSP(旅行商问题)属于NP-hard问题(现代优化计算方法 邢文旬主编 P50第11题)

首先HC是一个npc问题且是一个搜索问题,假设使用贪心策略的算法A(·)可解HC得到一条哈密顿回路。
再利用无向图G构造tsp的图G',图G中存在的边权值设为1,图G中不存在的边权值设为X(X>1的整数)。
这样得到的一个TSP问题可使用算法A(·)来解。
图灵规约条件:(1)问题1,问题2都是搜索问题;
(2)求解问题1的算法A(·)可求解问题2;

(3)算法A(问题1)时间复杂度是多项式时间,则算法A(问题2)也是多项式时间;
所以HC可以图灵规约到这样一个TSP问题实例。
又因为HC是NPC类问题,可以图灵规约到TSP,所以TSP是NP-hard问题

㈣ TSP中用蚁群算法和遗传算法有区别么

TSP,只是一个普通但很经典的NP-C问题。具有大的难以想象的解空间。一般的branch-and-bound算法是很难搞定的。于是,人们尝试智能算法,包括遗传算法,蚁群算法,粒子群算法等。遗传算法和蚁群算法都是基于种群的。但是这两个算法有着本质区别。遗传算法的进化机制是基于个体竞争,而蚁群算法的搜索机制则是蚂蚁之间的信息素传导机制下的群体合作。因此,蚁群算法,粒子群算法,人工鱼群算法等,被归纳为群智能算法,成为了一个有别于遗传算法的另一个进化计算领域的分支。由于搜索机制的不同,这两种算法对于不同的问题,具有不同的效率。就拿标准遗传算法和标准蚁群算法来说,应该是蚁群算法更适合求解TSP。然而,无论是遗传算法还是蚁群算法,都有大量的变种算法或者称为改进算法,所以很难简单的说谁更适合TSP。
记得采纳啊

㈤ TSP算法在实际中有什么意义

不要问解决数学问题有什么用,总会有用的,数学是自然科学的基础。

TSP问题的概述
旅行商问题,即TSP问题(Traveling Salesman Problem)是数学领域中着名问题之一。假设有一个旅行商人要拜访N个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值,这是一个NP难问题。
TSP问题的由来
TSP的历史很久,最早的描述是1759年欧拉研究的骑士周游问题,即对于国际象棋棋盘中的64个方格,走访64个方格一次且仅一次,并且最终返回到起始点。
TSP由美国RAND公司于1948年引入,该公司的声誉以及线形规划这一新方法的出现使得TSP成为一个知名且流行的问题。
TSP在中国的研究
同样的问题,在中国还有另一个描述方法:一个邮递员从邮局出发,到所辖街道投邮件,最后返回邮局,如果他必须走遍所辖的每条街道至少一次,那么他应该如何选择投递路线,使所走的路程最短?这个描述之所以称为中国邮递员问题(Chinese Postman Problem CPP)因为是我国学者管梅古教授于1962年提出的这个问题并且给出了一个解法。

㈥ 已知TSP是NP难的 证明WTSP是NP难的 是一道数模题 这个要怎么证明

由哈密顿路构造,设原来求哈密顿路的图1中每条边权值都为1,总边数为n,由于求哈密顿路的图1不是完全图,故新增加权值为n的边使之变为完全图2,假若WTSP会解,我们用WTSP的算法在图2中找出WTSP的路径。若总权值<n,则此路径不包含原图1中新增加的权值为n的边,此路径就是原图哈密顿路径;若总权值>n,则此路径必包含原图1中新增加的权值为n的边,原图中无哈密顿路。由此推出,若WTSP会解,那么我们可以在多项式时间内转化为哈密顿路,而已知哈密顿路是NP难的,所以WTSP是NP难的。

㈦ tsp是什么啊

TSP是英文"Total Suspended Particulate"的缩写,其中文含义可译为"总悬浮颗粒物"。

㈧ tSp Concorder算法原理

tsp问题遗传算法将多目标按照线性加权的方式转化为单目标,然后应用传统遗传算法求解
其中w_i表示第i个目标的权重,f_k表示归一化之后的第i个目标值。我们很容易知道,这类方法的关键是怎么设计权重。比如,Random Weight Genetic Algorithm (RWGA) 采用随机权重的方式,每次计算适应度都对所有个体随机地产生不同目标的权重,然后进行选择操作。Vector-Evaluated Genetic Algorithm (VEGA) 也是基于线性加权的多目标遗传算法。如果有K个目标,VEGA 会随机地将种群分为K个同等大小子种群,在不同的子种群按照不同的目标函数设定目标值,然后再进行选择操作。VEGA 实质上是基于线性加权的多目标遗传算法。VEGA 是第一个多目标遗传算法,开启了十几年的研究潮流。
1.TSP问题是指假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。本文使用遗传算法解决att30问题,即30个城市的旅行商问题。旅行商问题是一个经典的组合优化问题。一个经典的旅行商问题可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以使总的行程最短。从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton回路。由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个NP完全问题。TSP问题可以分为对称和不对称。在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图,而不对称TSP则形成有向图。对称性TSP问题可以将解的数量减少了一半。所以本次实验的TSP问题使用att48数据,可在tsplib中下载数据包。演化算法是一类模拟自然界遗传进化规律的仿生学算法,它不是一个具体的算法,而是一个算法簇。遗传算法是演化算法的一个分支,由于遗传算法的整体搜索策略和优化计算是不依赖梯度信息,所以它的应用比较广泛。我们本次实验同样用到了遗传算法(用MATLAB编写)来解决TSP问题。

㈨ TSP是什么意思啊

TSP即旅行商问题,即TSP问题(Traveling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中着名问题之一。

假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市,路径的选择目标是要求得的路径路程为所有路径之中的最小值。

TSP问题是一个组合优化问题。该问题可以被证明具有NPC计算复杂性。因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。

(9)tsp1200算法区块链扩展阅读:

描述

TSP问题作为图论问题可以用无向加权图来对TSP建模,则城市是图的顶点,道路是图的边,道路的距离就是该边的长度。它是起点和终点都在一个特定顶点,访问每个顶点恰好一次的最小化问题。通常,该模型是一个完全图(即每对顶点由一条边连接)。

如果两个城市之间不存在路径,则增加一条非常长的边就可以完成图,而不影响计算最优回路。

TSP问题非对称和对称,在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图。这种对称性将解的数量减少了一半。

㈩ TSP问题的简介

TSP问题是一个组合优化问题。该问题可以被证明具有NP计算复杂性。因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。
旅行推销员问题是图论中最着名的问题之一,即“已给一个n个点的完全图,每条边都有一个长度,求总长度最短的经过每个顶点正好一次的封闭回路”。Edmonds,Cook和Karp等人发现,这批难题有一个值得注意的性质,对其中一个问题存在有效算法时,每个问题都会有有效算法。
迄今为止,这类问题中没有一个找到有效算法。倾向于接受NP完全问题(NP-Complete或NPC)和NP难题(NP-Hard或NPH)不存在有效算法这一猜想,认为这类问题的大型实例不能用精确算法求解,必须寻求这类问题的有效的近似算法。
此类问题中,经典的还有 子集和问题; Hamilton回路问题;最大团问题。

阅读全文

与tsp1200算法区块链相关的资料

热点内容
北京文件夹加密多少钱 浏览:669
什么是车鉴定app 浏览:64
战地一私人服务器怎么买 浏览:497
陈天程序员 浏览:833
编译原理如何运用到编程中 浏览:17
linux选择数据库 浏览:376
php两个数组差集 浏览:978
迷你pdf阅读器下载 浏览:433
做一个python小程序 浏览:655
pythonossystem和 浏览:645
win2008如何搭建ftp服务器 浏览:53
安卓手机为什么不翻牌 浏览:546
删除pkpm及相关文件夹 浏览:481
房贷解压银行内部流程 浏览:734
安卓手机如何更改语音 浏览:601
android红包实现 浏览:734
苹果的nvme为什么安卓不用 浏览:32
python输入单词统计个数 浏览:998
脚本软件提取源码 浏览:281
程序员能给自己的微信钱包刷钱么 浏览:73