导航:首页 > 源码编译 > 数据和算法哪个好用

数据和算法哪个好用

发布时间:2022-11-21 15:40:30

‘壹’ 巧妇难为无米之炊,算力、算法和数据到底哪个更重要

“巧妇难为无米之炊”,这句话隐含的信息量并不小,正好可以用于对比人工智能。巧妇的“巧”就是算法,食材就是数据,而锅碗瓢盆和炉灶就是算力。

如果没有食材,就算你有炉灶和锅碗瓢盆,也没办法做出饭,而有了食材,没有炉灶和锅碗瓢盆也做不出饭菜,有了食材,有了锅碗瓢盆,没有巧妇,也同样做不出一桌丰盛的饭菜。

数字化归根结底:

是靠数据驱动的,如果没有高质量的大数据,那就是巧妇难为无米之炊。因此,做好大数据工作是推进数字化变革的前提性、基础性工作。但非数字原生企业相比数字原生企业,大数据工作的复杂性和困难度要大的多。

何老师表示,做好大数据工作,要有知难而上的坚强决心。此外,他基于对华为等企业实践的认真了解研究,结合自身对企业战略执行的长期深刻体悟,还在演讲中给出了切实的决策思路和行动建议。

据悉,《数字企业》之所以能成为数字化转型、数字化变革的代表性演讲,很大程度上是因为既具备企业家的高度、又具备思想家的深度、还具备实践家的力度。

‘贰’ 人工智能中算法重要还是数据重要

现在人工智能的发展可谓是如火如荼,从而引起了很多人学习人工智能的兴趣。我们在学习人工智能的时候,会接触到算法和数据,而人工智能是由很多算法组成的,因此大家都认为在人工智能学习中算法是比数据重要的,但是事实是这样的吗?在这篇文章中我们就给大家解答一下这个问题。
很多关于人工智能的文献以及报告都不约而同的偏重于关注机器学习算法,将其视为最重要的部分。主流媒体似乎把算法与人脑等同了。他们似乎在传达着这样一个信息,那就是复杂的算法最终会超越人类的大脑并创造奇迹。当然他们还强调“深度神经网络”和“深度学习”,以及机器是如何做出决策。这样的报告使得人们认为一个公司要想应用人工智能就需要聘请机器学习专家来建立完美的算法。但如果一个企业没有思考如何获得高质量的算法,即使机器学习模型经过大量的特定训练数据学习之后,仍然会产生一个与期望不匹配的结果,这样就严重的影响了人们对人工智能的印象。
当然,数据的重要性就是上面提到的内容,如果没有数据,就好比买了一个没有电池的手机,而手机的电池适配程度也是不同的,如果没有合适的电池一样也不能够正常工作。在人工智能中,如果给机器学习模型的训练数据越多,这样机器学习模型就会越准确。这就像不断给手机充电,这样电池的电量利用率会不断提高。训练数据对于机器学习模型的重要性比电池和手机重要性更高。所以我们在进行人工智能工作的时候一定要注意其关键所在,那就是训练数据的质量和数量至少是和算法一样重要的,要确保部署人工智能的计划和预算反映这一点。这也是所有企业和公司需要注意的事情。
在这篇文章中我们给大家介绍了在人工智能中数据重要还是算法重要,其实这两者都是重要的,没有谁比谁重要的说法。就目前而言,大众对人工智能的误解主要就是认为算法比数据更加重要,所以说,我们要想学好人工智能,就要好好的对待每一个项目和每一阶段的知识。希望这篇文章能够给大家带来帮助。

‘叁’ 数据和算法,谁更重要

数据只是基础,如何建构起有效的算法、模型比数据本身更重要,最起码对目前而言是这样的。
理想中的大数据的终极形态是不用构建模型,或者说已经构建了全模型,不用针对每次分析的目的去单独建模,数据自身会从数据特性,规律去进行逻辑性分析(非数理分析),人们只需要将所有数据输入,机器就能告诉人们这些数据中,哪些数据说明了什么问题,大数据的输出成果将不是一份报告,而是一个体系,没有一份报告能容纳如此多的结果。到了那个时候,确实是更多的数据胜过更好的算法,因为那时候已经没有了算法,没有什么是不能计算的。

‘肆’ 数据和算法,谁更重要

虽然不能这么绝对的判断一定谁比谁重要,但在实际应用中很多时候的确是数据更加重要。有几方面的原因:

在很多问题中,算法的“好坏”在没有大量有效数据的支撑下是没有意义的。换句话说,很多算法得到的结果的质量完全取决于其和真实数据的拟合程度。如果没有足够的数据支撑、检验,设计算法几乎等于闭门造车。

很多算法会有一堆可调参数。这些参数的选择并没有什么标准可依,无非是扔给大量数据,看参数的变化会带来什么样的结果的变化。大量、有效的数据成为优化这类算法的唯一可行方法。

更极端的例子是,算法本身很简单,程序的完善全靠数据训练。比如神经网络。

对于很多成熟的算法,优化算法的增量改善通常远小于增大输入数据(这是个经济性的考虑)。

比如问题中举例的 Google。在它之前的搜索引擎已经把基于网页内容的索引算法做得很好了,要想有更大的改善需要换思路。PageRank 算法的采用大大增加了输入的数据量,而且链接数据本身对于网页排名相当关键(当然他们也做了大量算法的优化)。【插话:在这样的思想指导下,Google 想要插手社交网络或微博也不足为奇了吧?实时搜索、排名没有真人的互动怎么可能。】

Netflix 挑战赛的例子中,Netflix 本身的推荐算法也是优化到极致了。再从算法本身去找改进之处,投入产出比太低。引文中的学生仅仅是加入了 IMDB 数据库关于电影分类(从而更加明确观众的偏好)就能带来比复杂算法更加显着的改善,试想如果他们能拿到 Rotten Tomatoes 的数据会怎样?

When people are equally smart, big data wins。这个结论的悲摧之处在于,在类似行业中,今后小的创业公司想要打败巨头就不那么容易。要么要改变思路,要么要改变策略。指望靠小聪明扳倒大象会很成问题。

当然这也不是绝对的。比如典型的反例(算法比数据重要)是 Google 刚被批准收购的 ITA Software。这家牛 B 烘烘(估计是现存最大的 Lisp shop)的公司的机票搜索引擎驱动着世界各大航空公司、票务中介的后台系统。它的数据来自一个各大航空公司授权的公司,其他竞争者也可以花钱(虽然不便宜)买到同样的数据。但它的牛 B 之处在于能从同样的数据里比别人更快挖出更好的结果。

‘伍’ 算法和大数据算法哪个好

两者是相辅相成的,没有谁比谁更重要,就像鸡蛋和母鸡哪个更重要一样?只有算法,没有数据,那么算法就没了存在的意义,只有数据,没有算法,得来的算法显得更加杂乱无章,哪来的生产效率?

‘陆’ 数据结构和算法 先学哪个比较好

一般大学可能会同时学,我建议先数据结构再算法,数据结构相比较算法来说其实简单一点,而且算法是需要一定数据结构支持的

‘柒’ 大数据时代:数据和算法,谁更重要

两者是相辅相成的,没有谁比谁更重要,就像鸡蛋和母鸡哪个更重要一样?只有算法,没有数据,那么算法就没了存在的意义,只有数据,没有算法,得来的算法显得更加杂乱无章,哪来的生产效率?

‘捌’ 机器学习中的数据和算法哪个重要

如果从学习的角度看,算法最重要,至少找工作时算法是必考的;从解决实际问题的角度看,懂得如何建模和求解模型是比较重要的;但是如果从挣钱的角度看,谁如果手里有别人没有的数据,那才是大爷。

‘玖’ 对于一个编程人员,数据结构更重要还是算法更重要

实际上编程就是一个以数学观点来抽象数据的过程,数学观点可以简单概括为算法,抽象的数据可以概括为数据结构,平时的编程中,是建立在很多算法基础上的,所以很多时候我们并不注重算法,换句话说,因为现在IT行业步入的是一个 “是个人会操作”就行的应用软件开发时代。但是如果说你要搞ai 算法那是相当重要的。 怎么说呢?未来的IT发展肯定要更接近"人脑“的思维方向发展。 因此算法将越来越重要。。其实整个计算机科学的核心内容就是算法。只是现代的商业发展的一个刚刚起步的应用阶断。。 如果说玩计算机,不懂编程不是太好,如果编程,不玩算法 训练逻辑思维能力。。也是玩不转的。。 如果你现在是一个新加入的程序员。加油吧。。很多东西不是站在别人肩上就能看到的。。

‘拾’ 算法和大数据算法哪个好

计算机科学在大数据出现之前,非常依赖模型以及算法。人们如果想要得到精准的结论,需要建立模型来描述问题,同时,需要理顺逻辑,理解因果,设计精妙的算法来得出接近现实的结论。因此,一个问题,能否得到最好的解决,取决于建模是否合理,各种算法的比拼成为决定成败的关键。然而,大数据的出现彻底改变了人们对于建模和算法的依赖。举例来说,假设解决某一问题有算法A 和算法B。在小量数据中运行时,算法A的结果明显优于算法B。

阅读全文

与数据和算法哪个好用相关的资料

热点内容
诺贝尔pdf 浏览:967
云服务器快速安装系统原理 浏览:788
苹果腾讯管家如何恢复加密相册 浏览:115
手机软件反编译教程 浏览:858
sqlserver编程语言 浏览:650
gpa国际标准算法 浏览:238
服务器编程语言排行 浏览:947
怎么下载快跑app 浏览:966
小红书app如何保存视频 浏览:170
如何解开系统加密文件 浏览:809
linux切换root命令 浏览:283
c编译之后界面一闪而过怎么办 浏览:880
怎么看ic卡是否加密 浏览:725
lgplc编程讲座 浏览:809
cnc手动编程铣圆 浏览:723
cad中几种命令的意思 浏览:327
oraclelinux安装目录 浏览:134
安卓系统可以安装编译器吗 浏览:572
javajson实体类 浏览:692
板加密钢筋是否取代原钢筋 浏览:69