RLE(Run- Length Encoding 行程长度编码)压缩算法是Windows 系统中使用的一种图像文件压缩方法, 其基本思想是: 将一扫描行中颜色值相同的相邻像素用两个字节来表示, 第一个字节是一个计数值, 用于指定像素重复的次数; 第二个字节是具体像素的值[2]。主要通过压缩除掉数据中的冗余字节或字节中的冗余位,从而达到减少文件所占空间的目的。例如, 有一表示颜色像素值的字符串RRRRRGGBBBBBB,用 RLE 压缩方法压缩后可用 5R2G6B 来代替,显然后者的串长度比前者的串长度小得多。译码时按照与编码时采用的相同规则进行, 还原后得到的数据与压缩前的数据完全相同。因此, RLE 是无损压缩技术。
Ⅱ 什么是RLE compression
Run-length_encoding compression
运行长度编码
From Wikipedia, the free encyclopedia维基网络,自由的网络全书
Run-length encoding ( RLE ) is a very simple form of data compression in which runs of data (that is, sequences in which the same data value occurs in many consecutive data elements) are stored as a single data value and count, rather than as the original run. 运行长度编码(RLE)是一个非常简单的表格数据压缩 ,其数据运行的(即,序列中相同的数据值的元素出现在许多连续的数据)比作为一个单一的数据存储和计算值,而作为原来运行。 This is most useful on data that contains many such runs: for example, relatively simple graphic images such as icons, line drawings, and animations.这是最的数据,其中包含许多这样的运行有用的:例如,如图标相对简单的图形图像,线条图和动画。 It is not useful with files that don't have many runs as it could potentially double the file size.这不是与文件有用,因为它没有可能的文件大小的两倍多运行。
RLE also refers to a little-used image format in Windows 3.x , with the extension .rle, which is a Run Length Encoded Bitmap, used to compress the Windows 3.1 startup screen.游程还提到使用的图像格式在小视窗3超延伸,与。游程编码,它是一个运行长度编码位图,使用压缩的Windows 3.1的启动画面。
For example, consider a screen containing plain black text on a solid white background.例如,考虑一个屏幕,其中包含了坚实的纯白色背景上的黑色文本。 There will be many long runs of white pixels in the blank space, and many short runs of black pixels within the text.将有许多白色长运行的像素的空白空间,黑色像素许多短期内运行的文本。 Let us take a hypothetical single scan line , with B representing a black pixel and W representing white:让我们以一个假设的单一扫描线 ,与B代表黑色像素和W代表白:
WWWWWWWWWWWW B WWWWWWWWWWWW BBB WWWWWWWWWWWWWWWWWWWWWWWW B WWWWWWWWWWWWWW WWWWWWWWWWWW 乙 WWWWWWWWWWWW 血脑屏障 WWWWWWWWWWWWWWWWWWWWWWWW 乙 WWWWWWWWWWWWWW
If we apply the run-length encoding (RLE) data compression algorithm to the above hypothetical scan line, we get the following:如果我们应用运行长度编码(RLE)的数据压缩算法,扫描线以上假设,我们得到以下几点:
12W1B12W3B24W1B14W
Interpret this as twelve W's, one B, twelve W's, three B's, etc.解释为12 W的,一架B,这12 W的,3个B的,等等
The run-length code represents the original 67 characters in only 18.在运行长度代码代表在原有67个字符只有18岁。 Of course, the actual format used for the storage of images is generally binary rather than ASCII characters like this, but the principle remains the same.当然,实际的图像格式用于存储二进制,而不是一般的ASCII字符喜欢这个,但原理是一样的。 Even binary data files can be compressed with this method; file format specifications often dictate repeated bytes in files as padding space.即使二进制数据文件可以被压缩使用此方法;文件格式规范,往往必须重复文件作为填充字节的空间。 However, newer compression methods such as DEFLATE often use LZ77 -based algorithms, a generalization of run-length encoding that can take advantage of runs of strings of characters (such as BWWBWWBWWBWW).然而,新的压缩方法,如紧缩经常使用的LZ77为基础的算法,一BWWBWWBWWBWW推广的运行长度编码,可以作为采取这种优势(运行的字符的字符串)。
Run-length encoding performs lossless data compression and is well suited to palette -based iconic images.运行长度编码进行数据压缩无损 ,是非常适合的调色板的标志性形象。 It does not work well at all on continuous-tone images such as photographs, although JPEG uses it quite effectively on the coefficients that remain after transforming and quantizing image blocks.它不工作,以及在所有图像连续色调,如照片,尽管JPEG格式使用改造后,它仍然是相当有效的系数的量化图像块。
Common formats for run-length encoded data include Truevision TGA , PackBits , PCX and ILBM .长度为通用格式编码的运行数据包括Truevision热重 , PackBits , PCX和ILBM 。
Run-length encoding is used in fax machines (combined with other techniques into Modified Huffman coding ).运行长度编码是用在传真技术结合到其他机器( 改性哈夫曼编码 )。 It is relatively efficient because most faxed documents are mostly white space, with occasional interruptions of black.这是比较有效,因为大多数的传真文件大多是白色的空间,黑色偶尔中断。
Data that have long sequential runs of bytes (such as lower-quality sound samples ) can be RLE compressed after applying a predictive filter such as delta encoding .已经运行的数据的字节长的顺序(如低质量的声音样本 )可游程压缩在应用过滤器,如预测三角洲编码 。
Ⅲ 求用C语言实现RLE算法,最好有讲解..
程序设计如下:
#include <stdio.h>
#include <stdlib.h>
#pragma hdrstop
#include <tchar.h>
#pragma argsused
void compress(char *sourcefile,char *destinfile)
{
FILE *source,*destin;
char cur_char,cur_seq;
register int seq_len;
if((source=fopen(sourcefile,"rb"))==NULL)
{
printf("Unable to open %s.",sourcefile);
exit(0);
}
if((destin=fopen(destinfile,"wb"))==NULL)
{
printf("Unable to open %s.",destinfile);
exit(0);
}
cur_char=fgetc(source);
cur_seq=cur_char;
seq_len=1;
while(!feof(source))
{
cur_char=fgetc(source);
if(cur_char==cur_seq)
{
seq_len++;
}
else
{
fputc(seq_len,destin);
fputc(cur_seq,destin);
cur_seq=cur_char;
seq_len=1;
}
}
fclose(source);
fclose(destin);
}
int _tmain(int argc, _TCHAR* argv[])
{
char source[20],destin[20];
printf("the file to compress:\n");
scanf("%s",source);
printf("the compressed file is located at:\n");
scanf("%s",destin);
compress(source,destin);
return 0;
}
解压缩程序如下:
#include <stdio.h>
#include <stdlib.h>
#pragma hdrstop
#include <tchar.h>
#pragma argsused
void compress(char *sourcefile,char *destinfile)
{
FILE *source,*destin;
char cur_char,cur_seq;
register int seq_len;
if((source=fopen(sourcefile,"rb"))==NULL)
{
printf("Unable to open %s.",sourcefile);
exit(0);
}
if((destin=fopen(destinfile,"wb"))==NULL)
{
printf("Unable to open %s.",destinfile);
exit(0);
}
cur_char=fgetc(source);
cur_seq=cur_char;
seq_len=1;
while(!feof(source))
{
cur_char=fgetc(source);
if(cur_char==cur_seq)
{
seq_len++;
}
else
{
fputc(seq_len,destin);
fputc(cur_seq,destin);
cur_seq=cur_char;
seq_len=1;
}
}
fclose(source);
fclose(destin);
}
void decompress(char *sourcefile,char *destinfile)
{
FILE *source,*destin;
char cur_char;
register int i,seq_len;
if((source=fopen(sourcefile,"rb"))==NULL)
{
printf("Unable to open %s.",sourcefile);
exit(0);
}
if((destin=fopen(destinfile,"wb"))==NULL)
{
printf("Unable to open %s.",destinfile);
exit(0);
}
while(!feof(source))
{
seq_len=fgetc(source);
cur_char=fgetc(source);
for(i=0;i<seq_len;i++)
{
fputc(cur_char,destin);
}
}
fclose(source);
fclose(destin);
}
int _tmain(int argc, _TCHAR* argv[])
{
char source[20],destin[20];
printf("the file to compress:\n");
scanf("%s",source);
printf("the compressed file is located at:\n");
scanf("%s",destin);
compress(source,destin);
printf("the file to decompress:\n");
scanf("%s",source);
printf("the decompressed file is located at:\n");
scanf("%s",destin);
decompress(source,destin);
return 0;
}
抄的,希望对你有帮助^_^
详细请看参考资料。
Ⅳ RLE编码的算法举例
假设一个图像的像素色彩值是这样排列的:红红红红红红红红红红红红蓝蓝蓝蓝蓝蓝绿绿绿绿,经过RLE压缩后就成为了:红12蓝6绿4。这样既保证了压缩的可行性,而且不会有损失。而且可以看到,当颜色数越少时,压缩效率会更高。由于Microsoft RLE仅仅支持256色,而且没有抖动算法,在色彩处理方面,FLC明显的比Microsoft RLE要好很多。当然这也不表示Microsoft RLE一无是处,和FLC一样,Microsoft RLE在处理相邻像素时也没有色染,可以清晰的表现网格。因此同样可以优秀的表现单色字体和线条。只要色彩不是很复杂,FLC能做的,Microsoft RLE也可以做到。
Ⅳ rle编码遇到大范围重复颜色
RLE编码方法不适用于自然图像的压缩,很容易就出现了大范围重复颜色的情况。
RLE编码是微软开发为AVI格式开发的一种编码,文件扩展名为AVI,使用了RLE压缩算法,这是一种无损的压缩算法,我们常见的tga格式的图像文件就使用了RLE算法。
Ⅵ 计算机是如何显示一张图像的呢
计算机如何显示一张图像的:
不同图片格式的压缩方式是不同的。
bmp文件
bmp(bitmap的缩写)文件格式是windows本身的位图文件格式,所谓本身是指windows内部存储位图即采用这种格式。一个.bmp格式的文件通常有.bmp的扩展名,但有一些是以.rle为扩展名的,rle的意思是行程长度编码(runlengthencoding)。这样的文件意味着其使用的数据压缩方法是.bmp格式文件支持的两种rle方法中的一种。
bmp文件可用每象素1、4、8、16或24位来编码颜色信息,这个位数称作图象的颜色深度,它决定了图象所含的最大颜色数。一幅1-bpp(位每象素,bitperpixel)的图象只能有两种颜色。而一幅24-bpp的图象可以有超过16兆种不同的颜色。
下一页的图说明了一个典型.bmp文件的结构。它是以256色也就是8-bpp为例的,文件被分成四个主要的部分:一个位图文件头,一个位图信息头,一个色表和位图数据本身。位图文件头包含关于这个文件的信息。如从哪里开始是位图数据的定位信息,位图信息头含有关于这幅图象的信息,例如以象素为单位的宽度和高度。色表中有图象颜色的rgb值。对显示卡来说,如果它不能一次显示超过256种颜色,读取和显示.bmp文件的程序能够把这些rgb值转换到显示卡的调色板来产生准确的颜色。
bmp文件的位图数据格式依赖于编码每个象素颜色所用的位数。对于一个256色的图象来说,每个象素占用文件中位图数据部分的一个字节。象素的值不是rgb颜色值,而是文件中色表的一个索引。所以在色表中如果第一个r/g/b值是255/0/0,那么象素值为0表示它是鲜红色,象素值按从左到右的顺序存储,通常从最后一行开始。所以在一个256色的文件中,位图数据中第一个字节就是图象左下角的象素的颜色索引,第二个就是它右边的那个象素的颜色索引。如果位图数据中每行的字节数是奇数,就要在每行都加一个附加的字节来调整位图数据边界为16位的整数倍。
并不是所有的bmp文件结构都象表中所列的那样,例如16和24-bpp,文件就没有色表,象素值直接表示rgb值,另外文件私有部分的内部存储格式也是可以变化的。例如,在16和256色.bmp文件中的位图数据采用rle算法来压缩,这种算法用颜色加象素个数来取代一串颜色相同的序列,而且,windows还支持os/2下的.bmp文件,尽管它使用了不同的位图信息头和色表格式。
pcx文件
.pcx是在pc上成为位图文件存储标准的第一种图象文件格式。它最早出现在zsoft公司的paintbrush软件包中,在80年代早期授权给微软与其产品捆绑发行,而后转变为microsoftpaintbrush,并成为windows的一部分。虽然使用这种格式的人在减少,但这种带有.pcx扩展名的文件在今天仍是十分常见的。
pcx文件分为三部分,依次为:pcx文件头,位图数据和一个可选的色表。文件头长达128个字节,分为几个域,包括图象的尺寸和每个象素颜色的编码位数。位图数据用一种简单的rle算法压缩,最后的可选色表有256个rgb值,pcx格式最初是为cga和ega来设计的,后来经过修改也支持vga和真彩色显示卡,现在pcx图象可以用1、4、8或24-bpp来对颜色数据进行编码。
tiff文件
pcx格式是所有位图文件格式中最简单的,而tiff(taggedimagefileformat)则是最难的一种。
tiff文件含有.tif的扩展名。它以8字节长的图象文件头开始(ifh),这个文件头中最重要的成员是一个指向名为图象文件目录(ifd)的数据结构的指针。ifd是一个名为标记(tag)的用于区分一个或多个可变长度数据块的表,标记中含有关于图象的信息。tiff文件格式定义70多种不同类型的标记,有的用来存放以象素为单位的图象宽度和高度,有的用来存放色表(如果需要的话),当然还必须有用来存放位图数据的标记,一个tiff格式文件完全为它的标记所决定,而且这种文件结构极易扩展,因为你要附加一些特征只须增加一些额外的标记。
究竟是什么使tiff文件如此复杂?一方面,要写一种能够识别所用不同标记的软件非常困难。大多数tiff的阅读程序只能识别一部分标记,所以会出现这种情况:有时一个应用程序创建的tiff文件,另一个应用程序却不能使用。创建tiff文件的程序还可能会在文件中加一些只有它自己认识的标记,虽然tiff的阅读程序可以跳过那些它们不认得的标记,但这样做总是有可能影响到图象的质量。
另一方面,一个tiff文件可以包含多个图象,每个图象都有自己的ifd和一系列标记。tiff文件中的位图数据可能会用好几种方法来压缩,所以一个完备的tiff阅读程序应该有rle解压缩程序,lzw解压缩程序和其他一些算法的解压缩程序。然而更糟的是使用lzw的解码必须得到unisys公司的同意,且通常是需要付版税的。所以即使是一些相当不错的tiff阅读程序在它们遇到lzw算法压缩的图象时也是无能为力的。
尽管tiff是那么的复杂,但仍是一种最好的跨平台格式。因为它非常灵活,无论在视觉上还是其他方面,都能把任何图象编码成二进制形式而不丢失任何属性。
gif文件
当许多图象方面的权威一想到lzw的时候,他们也会想到gif(graphicsinterchangeformat,读作jiff)这是一种常用的跨平台的位图文件格式,最初为compuserve公司所创。gif文件通常带有.gif的扩展名,而且在compuseve上大量存在。
gif文件的结构取决于它属于哪一个版本,目前的两种版本分别是gif87a和gif89a,前者较简单。无论是哪个版本,它都以一个长13字节的文件头开始,文件头中包含判定此文件是gif文件的标记、版本号和其他的一些信息。如果这个文件只有一幅图象,文件头后紧跟一个全局色表来定义图象中的颜色。如果含有多幅图象(gif和tiff格式一样,允许在一个文件里编码多个图象),那么全局色表就被各个图象自带的局部色表所替代。
在gif87a文件中,文件头和全局色表之后是图象,它可能会是头尾相接的一串图象中的第一个,每个图象由三部分组成,一个10字节长的图象描述,一个可选的局部色表和位图数据。为有效利用空间,位图数据用lzw算法来压缩。
gif89a结构与此类似,但它还包括可选的扩展块来存放每个图象的附加信息。gif89a详细定义了四种扩展块:图象控制扩展块,它用来描述图象怎样被显示(例如,显示是应该象一个透明物去覆盖上一个图象,还是简单的替换它);简单文本扩展块,它包含显示在图象中的文本;注释扩展块,它以ascii文本形式存放注释;应用扩展块,它存放生成该文件的应用程序的私有数据。这些扩展块可以出现在文件中全局色表的任何地方。
gif最显着的优点是它的广泛使用和它的紧密性。但它有两个弱点,一个是用gif格式存放的文件最多只能含有256种颜色。另一个可能更重要,就是那些使用了gif格式的软件开发者必须征得compuserve的同意,他们每卖出一个拷贝都要向compuserve付版税。这个政策是compuserve仿效unisys公司作出的,它抑制了那些程序员在他的图象应用程序中支持gif文件。
png文件
png(portablenetworkgraphic,发音做ping)文件格式是作为gif的替代品开发的,它能够避免使用gif文件所遇到的常见问题。它从gif那里继承了许多特征,而且支持真彩色图象。更重要的是,在压缩位图数据时它采用了一种颇受好评的lz77算法的一个变种,lz77则是lzw的前身,而且可以免费使用。由于篇幅所限,在这里就不花时间来具体讨论png格式了。
jpeg文件
jpeg(jointphotographicexpertsgroup,发音做jay-peg)文件格式最初由c-cubemicrosystems推出,是为了提供一种存储深度位象素的有效方法,例如对于照片扫描,颜色很多而且差别细微(有时也不细微)。jpeg和这里讨论的其他格式的最大区别是jpeg使用一种有损压缩算法,无损压缩算法能在解压后准确再现压缩前的图象,而有损压缩则牺牲了一部分的图象数据来达到较高的压缩率。但是这种损失很小以至于人们很难察觉。
jpeg图象压缩是一个复杂的过程,经常需要专门的硬件来帮助。首先图象以象素为单位分成8*8的块。然后,每个块分三个步骤被压缩。第一步使用dct(discretecosinetransform)离散余弦变换把8*8的象素矩阵变成8*8的频率(也就是颜色改变的速度)矩阵。第二步对频率矩阵中的值用量化矩阵进行量化,滤掉那些总体上对图象不重要的部分。第三步,也就是最后一步,对量化后的频率矩阵使用无损压缩。
因为被量化后的频率矩阵缺了许多高频信息,通常能被压缩到一半甚至更少。无损压缩一般根本不能压缩真正的照片图象,所以50%的压缩率已是相当不错了,但另一方面,无损压缩能把一些图象文件尺寸减少90%,这样的图象文件就不适合用jpeg来压缩。
jpeg的有损部分产生在第二步,量化矩阵的值越高,从图象中丢掉的信息就越多,从而压缩率就越高,可是同时图象的质量就越差。在jpeg压缩时可以选择一个量化因子,这个因子的值决定了量化矩阵中的数值。理想的量化因子要在压缩率和图象质量间达到平衡,所以对不同的图象要选择不同的量化因子,通常要经过若干次尝试后方可确定。
Ⅶ 行程长度编码的RLE特点
从前面所给的例子中我们不难看出RLE所能获得的压缩比有多大,这主要是取决于图像本身的特点。如果图像中具有相同颜色的图像块越大,图像块数目越少,获得的压缩比就越高。反之, RLE对颜色丰富的自然图像就显得力不从心,在同一行上具有相同颜色的连续像素往往很少,而连续几行都具有相同颜色值的连续行数就更少。如果仍然使用RLE编码方法,不仅不能压缩图像数据,反而可能使原来的图像数据变得更大。因此,具体实现时,需要和其它的压缩编码技术联合应用。
--------------------
重复次数即行程(Run-Length)
一种可行的方案是,将数据流中各数值分为两类:其中一类数值行程小于
或等于128,按原值输出;另一类数值行程大于128,此类
数值加上128后输出。综上所述,改进后的行程编
码算法如下:
①对行程小于或等于2的数值按原值输出;
②对行程大于2的数值,将其加上128后输
出,并在其后相邻位置输出行程大小。
RLE算法的局限性
在RLE数据压缩中,只有当重复的字节数大于
3时才可以起到压缩作用,并且还需要一个特殊的
字符用作标志位,因此在采用RLE压缩方法时,必
须处理以下几个制约压缩比的问题[8]。
(1)在原始图像数据中,除部分背景图像的像素
值相同外,没有更多连续相同的像素。因此如何提
高图像中相同数据值的问题是提高数据压缩比的关
键;
(2)如何寻找一个特殊的字符,使它在处理的图
像中不用或很少使用的问题;
(3)在有重复字节的情况下,如何提高重复字节
数(最多为255)受限的问题。
Ⅷ 求RLE算法的简单代码
答案应该是: 83A84C2DE
算法主要是:
all data = [block] + [block] + ... + [block]
a block = [header] + [data]
-----------------------------------------------
用Java语言说,利用String.equals(anotherStr)
循环字符串,填写data,
data[0]:[10000011][A]
data[1]:[10000101][C]
data[2]:[00000010][DE]
---------------------------------------------------
找到两篇介绍RLE算法的文章,结合着看,理解了这个算法的目的是压缩重复的字节。大量应用在图形压缩上的原因,是因为图片中通常有很多相同颜色的区域(比如一片全黑的背景)。
RLE的基本思路是,把数据分两种情况对待:
A1.一些连续的重复字节
A2.一些连续的,不相重复的字节
RLE压缩最常见的一种算法思路:
将全部的数据分成很多块,这些块的长度各不一样:
all data = [block] + [block] + ... + [block]
每一块由两部分顺序组成:
a block = [header] + [data]
其中header部分占2字节16位,这16位中的最高位,标志了这个block的属性,是属于上面的A1还是A2。对应于A1和A2,剩下的15位以及后面的Data部分的意义又分为两种:
A1: block的剩下15位记录重复的次数,取值范围[0,32767];data段仅含一个字节,即重复的那个字节
A2: block的剩下15位记录data段有多少个字节;data段则是一系列不相重复的字节。
举例:(来自《汉化基础教程——压缩篇》)
文本字符串:A A A A A B C D E F F F。编码后得到:85 A 4 B C D E 83 F(85H= 10000101B、4H= 00000100B、83H= 10000011B)
Ⅸ 什么是视频编码的算法 它有哪几种典型的算法 试比较各种典型的视频编码算法。 谢谢了!
1、无声时代的FLC
FLC、FLI是Autodesk开发的一种视频格式,仅仅支持256色,但支持色彩抖动技术,因此在很多情况下很真彩视频区别不是很大,不支持音频信号,现在看来这种格式已经毫无用处,但在没有真彩显卡没有声卡的DOS时代确实是最好的也是唯一的选择。最重要的是,Autodesk的全系列的动画制作软件都提供了对这种格式的支持,包括着名的3D Studio X,因此这种格式代表了一个时代的视频编码水平。直到今日,仍旧有不少视频编辑软件可以读取和生成这种格式。但毕竟廉颇老矣,这种格式已经被无情的淘汰。
2、载歌载舞的AVI
AVI——Audio Video Interleave,即音频视频交叉存取格式。1992年初Microsoft公司推出了AVI技术及其应用软件VFW(Video for Windows)。在AVI文件中,运动图像和伴音数据是以交织的方式存储,并独立于硬件设备。这种按交替方式组织音频和视像数据的方式可使得读取视频数据流时能更有效地从存储媒介得到连续的信息。构成一个AVI文件的主要参数包括视像参数、伴音参数和压缩参数等。AVI文件用的是AVI RIFF形式,AVI RIFF形式由字串“AVI”标识。所有的AVI文件都包括两个必须的LIST块。这些块定义了流和数据流的格式。AVI文件可能还包括一个索引块。
只要遵循这个标准,任何视频编码方案都可以使用在AVI文件中。这意味着AVI有着非常好的扩充性。这个规范由于是由微软制定,因此微软全系列的软件包括编程工具VB、VC都提供了最直接的支持,因此更加奠定了AVI在PC上的视频霸主地位。由于AVI本身的开放性,获得了众多编码技术研发商的支持,不同的编码使得AVI不断被完善,现在几乎所有运行在PC上的通用视频编辑系统,都是以支持AVI为主的。AVI的出现宣告了PC上哑片时代的结束,不断完善的AVI格式代表了多媒体在PC上的兴起。
说到AVI就不能不提起英特尔公司的Indeo video系列编码,Indeo编码技术是一款用于PC视频的高性能的、纯软件的视频压缩/解压解决方案。Indeo音频软件能提供高质量的压缩音频,可用于互联网、企业内部网和多媒体应用方案等。它既能进行音乐压缩也能进行声音压缩,压缩比可达8:1而没有明显的质量损失。Indeo技术能帮助您构建内容更丰富的多媒体网站。目前被广泛用于动态效果演示、游戏过场动画、非线性素材保存等用途,是目前使用最广泛的一种AVI编码技术。现在Indeo编码技术及其相关软件产品已经被Ligos Technology 公司收购。随着MPEG的崛起,Indeo面临着极大的挑战。
3、容量与质量兼顾的MPEG系列编码
和AVI相反,MPEG不是简单的一种文件格式,而是编码方案。
MPEG-1(标准代号ISO/IEC11172)制定于1991年底,处理的是标准图像交换格式(standard interchange format,SIF)或者称为源输入格式(Source Input Format,SIF)的多媒体流。是针对1.5Mbps以下数据传输率的数字存储媒质运动图像及其伴音编码(MPEG-1 Audio,标准代号ISO/IEC 11172-3)的国际标准,伴音标准后来衍生为今天的MP3编码方案。MPEG-1规范了PAL制(352*288,25帧/S)和NTSC制(为352*240,30帧/S)模式下的流量标准, 提供了相当于家用录象系统(VHS)的影音质量,此时视频数据传输率被压缩至1.15Mbps,其视频压缩率为26∶1。使用MPEG-1的压缩算法,可以把一部120分钟长的多媒体流压缩到1.2GB左右大小。常见的VCD就是MPEG-1编码创造的杰作。MPEG-1编码也不一定要按PAL/NTSC规范的标准运行,你可以自由设定影像尺寸和音视频流量。随着光头拾取精度的提高,有人把光盘的信息密度加大,并适度降低音频流流量,于是出现了只要一张光盘就存放一部电影的DVCD。DVCD碟其实是一种没有行业标准,没有国家标准,更谈不上是国际标准的音像产品。
当VCD开始向市场普及时,电脑正好进入了486时代,当年不少朋友都梦想拥有一块硬解压卡,来实现在PC上看VCD的夙愿,今天回过头来看看,觉得真有点不可思议,但当时的现状就是486的系统不借助硬解压是无法流畅播放VCD的,上万元的486系统都无法流畅播放的MPEG-1被打上了贵族的标志。随着奔腾的发布,PC开始奔腾起来,直到后来Windows Media Player也直接提供了MPEG-1的支持,至此MPEG-1使用在PC上已经完全无障碍了。
MPEG-2(标准代号IOS/IEC13818)于1994年发布国际标准草案(DIS),在视频编码算法上基本和MPEG-1相同,只是有了一些小小的改良,例如增加隔行扫描电视的编码。它追求的是大流量下的更高质量的运动图象及其伴音效果。MPEG-2的视频质量看齐PAL或NTSC的广播级质量,事实上MPEG-1也可以做到相似效果,MPEG-2更多的改进来自音频部分的编码。目前最常见的MPEG-2相关产品就是DVD了,SVCD也是采用的MPEG-2的编码。MPEG-2还有一个更重要的用处,就是让传统的电视机和电视广播系统往数码的方向发展。
MPEG-3最初为HDTV制定,由于MPEG-2的快速发展,MPEG-3还未彻底完成便宣告淘汰。
MPEG-4于1998年公布,和MPEG-2所针对的不同,MPEG-4追求的不是高品质而是高压缩率以及适用于网络的交互能力。MPEG-4提供了非常惊人的压缩率,如果以VCD画质为标准,MPEG-4可以把120分钟的多媒体流压缩至300M。MPEG-4标准主要应用于视像电话(Video Phone),视像电子邮件(Video Email)和电子新闻(Electronic News)等,其传输速率要求较低,在4800-64000bits/sec之间,分辨率为176X144。MPEG-4利用很窄的带宽,通过帧重建技术,压缩和传输数据,以求以最少的数据获得最佳的图象质量。
MJPEG,这并不是专门为PC准备的,而是为专业级甚至广播级的视频采集与在设备端回放的准备的,所以MJPEG包含了为传统模拟电视优化的隔行扫描电视的算法,如果在PC上播放MJPEG编码的文件,效果会很难看(如果你的显卡不支持MJPEG的动态补偿),但一旦输出到电视机端,你立刻会发现这种算法的好处。
4、属于网络的流媒体
RealNetworks RealVideo,采用的是 RealNetworks 公司自己开发的 Real G2 Codec,它具有很多先进的设计,例如,SVT (Scalable Video Technology);双向编码(Two—Encoding,类似于VBR)。RealMedia 音频部分采用的是 RealAudio ,可以接纳很多音频编码方案,可实现声音在单声道、立体声音乐不同速率下的压缩。最新的RealAudio竟然采用ATRAC3编码方案,以挑战日益成熟的MP3。
Windows Media,视频编码采用的是非常先进的 MPEG-4 视频压缩技术,被称作 Microsoft MPEG-4 Video Codec,音频编码采用的是微软自行开发的一种编码方案,目前没有公布技术资料,在低流量下提供了令人满意的音质和画质。最新的Windows Media Encoding Utility V8.0将流技术推向到一个新的高度,我们常见的ASF、WMV、WMA就是微软的流媒体文件。
事实上我们常见的MPG文件,也具有流媒体的最大特征——边读边放。
二、常见的编码与常见的文件格式的对应关系及其常用用途
1、Audodesk FLC
这是一种古老的编码方案,常见的文件后缀为FLC和FLI。由于FLC仅仅支持256色的调色板,因此它会在编码过程中尽量使用抖动算法(也可以设置不抖动),以模拟真彩的效果。这种算法在色彩值差距不是很大的情况下几乎可以达到乱真的地步,例如红色A(R:255,G:0,B:0)到红色B(R:255,G:128,B:0)之间的抖动。这种格式现在已经很少被采用了,但当年很多这种格式被保留下来,这种格式在保存标准256色调色板或者自定义256色调色板是是无损的,这种格式可以清晰到像素,非常适合保存线框动画,例如CAD模型演示。现在这种格式很少见了。
2、Microsoft RLE
这是微软开发为AVI格式开发的一种编码,文件扩展名为AVI,使用了RLE压缩算法,这是一种无损的压缩算法,我们常见的tga格式的图像文件就使用了RLE算法。
什么是RLE算法呢?这是一种很简单的算法,举一个很简单的例子:
假设一个图像的像素色彩值是这样排列的:红红红红红红红红红红红红蓝蓝蓝蓝蓝蓝绿绿绿绿,经过RLE压缩后就成为了:红12蓝6绿4。这样既保证了压缩的可行性,而且不会有损失。而且可以看到,但颜色数越少时,压缩效率会更高。由于Microsoft RLE仅仅支持256色,而且没有抖动算法,在色彩处理方面,FLC明显的比Microsoft RLE要好很多。当然这也不表示Microsoft RLE一无是处,和FLC一样,Microsoft RLE在处理相邻像素时也没有色染,可以清晰的表现网格。因此同样可以优秀的表现单色字体和线条。只要色彩不是很复杂,FLC能做的,Microsoft RLE也可以做到。由于AVI可以拥有一个音频流,而且Windows系统给与了直接的支持,Microsoft RLE最常用的用途是,在256色显示模式下,通过配合抓屏生成AVI的工具制作一个软件的操作演示过程,以达到图文并茂,形声兼备的效果。
3、Microsoft Video1
这也是由微软提供的一个AVI编码,任何Windows系统都自带了了它的Codec,这个编码支持真彩,画面质量很不错,Microsoft Video1的压缩效率非常低下,编码后的文件庞大得让人受不了。这个Microsoft Video1究竟有什么用呢?一般被用在保存一些没有渐变的小型视频素材方面。
4、Indeo video R3.2
这个编码由intel架构实验室开发,对应的文件格式是AVI,相对之前的流行的编码,Indeo video R3.2最大的特点就是高压缩比(当然,比起现在的压缩方案,实在是不值得一提),intel声称压缩比可达8:1而没有明显的质量损失,解码速度也非常快,对系统要求不高,由于Windows9X中自带Indeo video R3.2的Codec,所以Indeo video R3.2一度成为了最流行的AVI编码方案。有不少游戏的过场动画和启动动画都是Indeo video R3.2编码的。Indeo video R3.2同样不适合高要求的环境,在要表现细线条或大色彩值变化的渐变时,Indeo video R3.2会表现得非常糟糕。如果画面的色彩值差异不是很大,也没有明显的色彩区域界限,Indeo video R3.2还是合适的,例如海天一色的场景。Indeo video R3.2已经基本被淘汰,如果不是为了播放以前遗留的一些Indeo video R3.2编码视频,恐怕Windows ME/2000都不会有Indeo video R3.2的Codec了。
5、Indeo video 5.10
这个编码方案同样也是intel架构实验室开发的,它继承了Indeo video R3.2的优点,对应的文件格式仍然是AVI,解码速度同样非常快。Windows ME/2000自带了Indeo video 5.1的Codec,很多游戏也适用Indeo video 5.10来编码自己的演示动画。在没有DivX普及前,这几乎是最流行的AVI编码了,由于微软和intel的同时支持,这种编码方案被广泛采用。
6、None
顾名思义,这是一个没有损失的视频编码方案,对应的文件扩展名为AVI。这种编码几乎是不压缩的,文件大得惊人!那么这种编码有什么用途呢?用途就是保存视频素材,因为是无损的,保存素材非常合适,代价就是大量的存储空间。
7、MPEG1
我们熟知的VCD就是MPEG1编码的,对应的文件扩展名为MPG、MPEG或者DAT。事实上MPEG1可以工作于非PAL制和非NTSC制标准下。它可以自由设置数据流量和画面尺寸,只是这样非标准的文件无法直接刻录成VCD。
8、MPEG2
DVD的视频部分就是采用的MPEG2,SVCD同样也采用了MPEG2编码。对应的文件扩展名一般为VOB、MPG。MPEG2的设计目标就是提供接近广播级的高品质输出。
9、DivX
DivX是近2年开始被大家认识的,DivX 视频编码技术可以说是一种对 DVD 造成威胁的新生视频压缩格式(有人说它是 DVD 杀手)对应的文件扩展名为AVI或者DivX,它由 Microsoft mpeg-4v3 修改而来,使用 MPEG-4 压缩算法。据说是美国禁止出口的编码技术。DivX最大的特点就是高压缩比和不错的画质,更可贵的是,DivX的对系统要求也不高,只要主频300的CPU就基本可以很流畅的播放了,因此从DivX诞生起,立刻吸引了大家的注意力。DivX拥有比Indeo video 5.10高太多的压缩效率,编码质量也远远比Indeo video 5.10好,我实在想不出Indeo video 5.10还会有什么前途。
10、PICVideo MJPEG
MJPEG是很多视频卡支持的一种视频编码,随卡提供了Codec,安装完成后可以象使用其它编码一样生成AVI文件。MJPEG编码常用于非线性系统,批上了一层很专业的外衣。MJPEG的编码质量是相当高的,是一种以质量为最高要求的编码,这种编码的设置比较复杂,可以得到很高的压缩比,但牺牲了解码速度,如果要保证解码速度,编码后的压缩比确不是很理想,如果您希望从专业的非线性系统上捕捉视频,然后自行进行处理,这种格式是很有必要去了解一些的。
11、RealNetworks RealVideo
REAL VIDEO(RA、RAM)格式由Real Networks公司开发的,一开始就定位在视频流应用方面的,也可以说是视频流技术的始创者。它可以在用 56K MODEM 拨号上网的条件实现不间断的视频播放。从RealVideo的定位来看,就是牺牲画面质量来换取可连续观看性。其实RealVideo也可以实现不错的画面质量,由于RealVideo可以拥有非常高的压缩效率,很多人把VCD编码成RealVideo格式的,这样一来,一张光盘上可以存放好几部电影。REAL VIDEO存在颜色还原不准确的问题,RealVideo就不太适合专业的场合,但RealVideo出色的压缩效率和支持流式播放的特征,使得RealVideo在网络和娱乐场合占有不错的市场份额。
12、Windows Media video
Windows Media video就是微软为了和现在的Real Networks的RealVideo竞争而发展出来的一种可以直接在网上观看视频节目的文件压缩格式!由于它使用了MPEG4的压缩算法,所以压缩率和图像的质量都很不错。我们经常看到的ASF和WMV就是Windows Media video。Windows Media video的编码质量明显好于RealVideo,因为Windows Media video是微软的杰作,所以Windows系统给Windows Media video给与了很好的支持,Windows Media Player可以直接播放这些文件。
各种主流音频编码(或格式)的介绍
1、PCM编码
PCM 脉冲编码调制是Pulse Code Molation的缩写。前面的文字我们提到了PCM大致的工作流程,我们不需要关心PCM最终编码采用的是什么计算方式,我们只需要知道PCM编码的音频流的优点和缺点就可以了。PCM编码的最大的优点就是音质好,最大的缺点就是体积大。我们常见的Audio CD就采用了PCM编码,一张光盘的容量只能容纳72分钟的音乐信息。
2、WAVE
这是一种古老的音频文件格式,由微软开发。WAV是一种文件格式,符合 PIFF Resource Interchange File Format规范。所有的WAV都有一个文件头,这个文件头音频流的编码参数。WAV对音频流的编码没有硬性规定,除了PCM之外,还有几乎所有支持ACM规范的编码都可以为WAV的音频流进行编码。很多朋友没有这个概念,我们拿AVI做个示范,因为AVI和WAV在文件结构上是非常相似的,不过AVI多了一个视频流而已。我们接触到的AVI有很多种,因此我们经常需要安装一些Decode才能观看一些AVI,我们接触到比较多的DivX就是一种视频编码,AVI可以采用DivX编码来压缩视频流,当然也可以使用其他的编码压缩。同样,WAV也可以使用多种音频编码来压缩其音频流,不过我们常见的都是音频流被PCM编码处理的WAV,但这不表示WAV只能使用PCM编码,MP3编码同样也可以运用在WAV中,和AVI一样,只要安装好了相应的Decode,就可以欣赏这些WAV了。
在Windows平台下,基于PCM编码的WAV是被支持得最好的音频格式,所有音频软件都能完美支持,由于本身可以达到较高的音质的要求,因此,WAV也是音乐编辑创作的首选格式,适合保存音乐素材。因此,基于PCM编码的WAV被作为了一种中介的格式,常常使用在其他编码的相互转换之中,例如MP3转换成WMA。
3、 MP3编码
请参阅 MP3全攻略 一文
4、OGG编码
网络上出现了一种叫Ogg Vorbis的音频编码,号称MP3杀手!Ogg Vorbis究竟什么来头呢?OGG是一个庞大的多媒体开发计划的项目名称,将涉及视频音频等方面的编码开发。整个OGG项目计划的目的就是向任何人提供完全免费多媒体编码方案!OGG的信念就是:OPEN!FREE!Vorbis这个词汇是特里·普拉特柴特的幻想小说《Small Gods》中的一个"花花公子"人物名。这个词汇成为了OGG项目中音频编码的正式命名。目前Vorbis已经开发成功,并且开发出了编码器。
Ogg Vorbis是高质量的音频编码方案,官方数据显示:Ogg Vorbis可以在相对较低的数据速率下实现比MP3更好的音质!Ogg Vorbis这种编码也远比90年代开发成功的MP3先进,她可以支持多声道,这意味着什么?这意味着Ogg Vorbis在SACD、DTSCD、DVD AUDIO抓轨软件(目前这种软件还没有)的支持下,可以对所有的声道进行编码,而不是MP3只能编码2个声道。多声道音乐的兴起,给音乐欣赏带来了革命性的变化,尤其在欣赏交响时,会带来更多临场感。这场革命性的变化是MP3无法适应的。
和MP3一样,Ogg Vorbis是一种灵活开放的音频编码,能够在编码方案已经固定下来后还能对音质进行明显的调节和新算法的改良。因此,它的声音质量将会越来越好,和MP3相似,Ogg Vorbis更像一个音频编码框架,可以不断导入新技术逐步完善。和MP3一样,OGG也支持VBR。
5、MPC 编码
MPC是又是另外一个令人刮目相看的实力派选手,它的普及过程非常低调,也没有什么复杂的背景故事,她的出现目的就只有一个,更小的体积更好的音质!MPC以前被称作MP+,很显然,可以看出她针对的竞争对手是谁。但是,只要用过这种编码的人都会有个深刻的印象,就是她出众的音质。
6、mp3PRO 编码
2001年6月14日,美国汤姆森多媒体公司(Thomson Multimedia SA)与佛朗赫弗协会(Fraunhofer Institute)于6月14日发布了一种新的音乐格式版本,名称为mp3PRO,这是一种基于mp3编码技术的改良方案,从官方公布的特征看来确实相当吸引人。从各方面的资料显示,mp3PRO并不是一种全新的格式,完全是基于传统mp3编码技术的一种改良,本身最大的技术亮点就在于SBR(Spectral Band Replication 频段复制),这是一种新的音频编码增强算法。它提供了改善低位率情况下音频和语音编码的性能的可能。这种方法可在指定的位率下增加音频的带宽或改善编码效率。SBR最大的优势就是在低数据速率下实现非常高效的编码,与传统的编码技术不同的是,SBR更像是一种后处理技术,因此解码器的算法的优劣直接影响到音质的好坏。高频实际上是由解码器(播放器)产生的,SBR编码的数据更像是一种产生高频的命令集,或者称为指导性的信号源,这有点駇idi的工作方式。我们可以看到,mp3PRO其实是一种mp3信号流和SBR信号流的混合数据流编码。有关资料显示,SBR技术可以改善低数据流量下的高频音质,改善程度约为30%,我们不管这个30%是如何得来的,但可以事先预知这种改善可以让64kbps的mp3达到128kbps的mp3的音质水平(注:在相同的编码条件下,数据速率的提升和音质的提升不是成正比的,至少人耳听觉上是这样的),这和官方声称的64kbps的mp3PRO可以媲美128kbps的mp3的宣传基本是吻合的。
7、WMA
WMA就是Windows Media Audio编码后的文件格式,由微软开发,WMA针对的不是单机市场,是网络!竞争对手就是网络媒体市场中着名的Real Networks。微软声称,在只有64kbps的码率情况下,WMA可以达到接近CD的音质。和以往的编码不同,WMA支持防复制功能,她支持通过Windows Media Rights Manager 加入保护,可以限制播放时间和播放次数甚至于播放的机器等等。WMA支持流技术,即一边读一边播放,因此WMA可以很轻松的实现在线广播,由于是微软的杰作,因此,微软在Windows中加入了对WMA的支持,WMA有着优秀的技术特征,在微软的大力推广下,这种格式被越来越多的人所接受。
8、RA
RA就是RealAudio格式,这是各位网虫接触得非常多的一种格式,大部分音乐网站的在线试听都是采用了RealAudio,这种格式完全针对的就是网络上的媒体市场,支持非常丰富的功能。最大的闪烁点就是这种格式可以根据听众的带宽来控制自己的码率,在保证流畅的前提下尽可能提高音质。RA可以支持多种音频编码,包括ATRAC3。和WMA一样,RA不但都支持边读边放,也同样支持使用特殊协议来隐匿文件的真实网络地址,从而实现只在线播放而不提供下载的欣赏方式。这对唱片公司和唱片销售公司很重要,在各方的大力推广下,RA和WMA是目前互联网上,用于在线试听最多的音频媒体格.
Ⅹ 怎么下载网络在线使用的音频资料
1、无声时代的FLC
FLC、FLI是Autodesk开发的一种视频格式,仅仅支持256色,但支持色彩抖动技术,因此在很多情况下很真彩视频区别不是很大,不支持音频信号,现在看来这种格式已经毫无用处,但在没有真彩显卡没有声卡的DOS时代确实是最好的也是唯一的选择。最重要的是,Autodesk的全系列的动画制作软件都提供了对这种格式的支持,包括着名的3D Studio X,因此这种格式代表了一个时代的视频编码水平。直到今日,仍旧有不少视频编辑软件可以读取和生成这种格式。但毕竟廉颇老矣,这种格式已经被无情的淘汰。
2、载歌载舞的AVI
AVI——Audio Video Interleave,即音频视频交叉存取格式。1992年初Microsoft公司推出了AVI技术及其应用软件VFW(Video for Windows)。在AVI文件中,运动图像和伴音数据是以交织的方式存储,并独立于硬件设备。这种按交替方式组织音频和视像数据的方式可使得读取视频数据流时能更有效地从存储媒介得到连续的信息。构成一个AVI文件的主要参数包括视像参数、伴音参数和压缩参数等。AVI文件用的是AVI RIFF形式,AVI RIFF形式由字串“AVI”标识。所有的AVI文件都包括两个必须的LIST块。这些块定义了流和数据流的格式。AVI文件可能还包括一个索引块。
只要遵循这个标准,任何视频编码方案都可以使用在AVI文件中。这意味着AVI有着非常好的扩充性。这个规范由于是由微软制定,因此微软全系列的软件包括编程工具VB、VC都提供了最直接的支持,因此更加奠定了AVI在PC上的视频霸主地位。由于AVI本身的开放性,获得了众多编码技术研发商的支持,不同的编码使得AVI不断被完善,现在几乎所有运行在PC上的通用视频编辑系统,都是以支持AVI为主的。AVI的出现宣告了PC上哑片时代的结束,不断完善的AVI格式代表了多媒体在PC上的兴起。
说到AVI就不能不提起英特尔公司的Indeo video系列编码,Indeo编码技术是一款用于PC视频的高性能的、纯软件的视频压缩/解压解决方案。Indeo音频软件能提供高质量的压缩音频,可用于互联网、企业内部网和多媒体应用方案等。它既能进行音乐压缩也能进行声音压缩,压缩比可达8:1而没有明显的质量损失。Indeo技术能帮助您构建内容更丰富的多媒体网站。目前被广泛用于动态效果演示、游戏过场动画、非线性素材保存等用途,是目前使用最广泛的一种AVI编码技术。现在Indeo编码技术及其相关软件产品已经被Ligos Technology 公司收购。随着MPEG的崛起,Indeo面临着极大的挑战。
3、容量与质量兼顾的MPEG系列编码
和AVI相反,MPEG不是简单的一种文件格式,而是编码方案。
MPEG-1(标准代号ISO/IEC11172)制定于1991年底,处理的是标准图像交换格式(standard interchange format,SIF)或者称为源输入格式(Source Input Format,SIF)的多媒体流。是针对1.5Mbps以下数据传输率的数字存储媒质运动图像及其伴音编码(MPEG-1 Audio,标准代号ISO/IEC 11172-3)的国际标准,伴音标准后来衍生为今天的MP3编码方案。MPEG-1规范了PAL制(352*288,25帧/S)和NTSC制(为352*240,30帧/S)模式下的流量标准, 提供了相当于家用录象系统(VHS)的影音质量,此时视频数据传输率被压缩至1.15Mbps,其视频压缩率为26∶1。使用MPEG-1的压缩算法,可以把一部120分钟长的多媒体流压缩到1.2GB左右大小。常见的VCD就是MPEG-1编码创造的杰作。MPEG-1编码也不一定要按PAL/NTSC规范的标准运行,你可以自由设定影像尺寸和音视频流量。随着光头拾取精度的提高,有人把光盘的信息密度加大,并适度降低音频流流量,于是出现了只要一张光盘就存放一部电影的DVCD。DVCD碟其实是一种没有行业标准,没有国家标准,更谈不上是国际标准的音像产品。
当VCD开始向市场普及时,电脑正好进入了486时代,当年不少朋友都梦想拥有一块硬解压卡,来实现在PC上看VCD的夙愿,今天回过头来看看,觉得真有点不可思议,但当时的现状就是486的系统不借助硬解压是无法流畅播放VCD的,上万元的486系统都无法流畅播放的MPEG-1被打上了贵族的标志。随着奔腾的发布,PC开始奔腾起来,直到后来Windows Media Player也直接提供了MPEG-1的支持,至此MPEG-1使用在PC上已经完全无障碍了。
MPEG-2(标准代号IOS/IEC13818)于1994年发布国际标准草案(DIS),在视频编码算法上基本和MPEG-1相同,只是有了一些小小的改良,例如增加隔行扫描电视的编码。它追求的是大流量下的更高质量的运动图象及其伴音效果。MPEG-2的视频质量看齐PAL或NTSC的广播级质量,事实上MPEG-1也可以做到相似效果,MPEG-2更多的改进来自音频部分的编码。目前最常见的MPEG-2相关产品就是DVD了,SVCD也是采用的MPEG-2的编码。MPEG-2还有一个更重要的用处,就是让传统的电视机和电视广播系统往数码的方向发展。
MPEG-3最初为HDTV制定,由于MPEG-2的快速发展,MPEG-3还未彻底完成便宣告淘汰。
MPEG-4于1998年公布,和MPEG-2所针对的不同,MPEG-4追求的不是高品质而是高压缩率以及适用于网络的交互能力。MPEG-4提供了非常惊人的压缩率,如果以VCD画质为标准,MPEG-4可以把120分钟的多媒体流压缩至300M。MPEG-4标准主要应用于视像电话(Video Phone),视像电子邮件(Video Email)和电子新闻(Electronic News)等,其传输速率要求较低,在4800-64000bits/sec之间,分辨率为176X144。MPEG-4利用很窄的带宽,通过帧重建技术,压缩和传输数据,以求以最少的数据获得最佳的图象质量。
MJPEG,这并不是专门为PC准备的,而是为专业级甚至广播级的视频采集与在设备端回放的准备的,所以MJPEG包含了为传统模拟电视优化的隔行扫描电视的算法,如果在PC上播放MJPEG编码的文件,效果会很难看(如果你的显卡不支持MJPEG的动态补偿),但一旦输出到电视机端,你立刻会发现这种算法的好处。
4、属于网络的流媒体
RealNetworks RealVideo,采用的是 RealNetworks 公司自己开发的 Real G2 Codec,它具有很多先进的设计,例如,SVT (Scalable Video Technology);双向编码(Two—Encoding,类似于VBR)。RealMedia 音频部分采用的是 RealAudio ,可以接纳很多音频编码方案,可实现声音在单声道、立体声音乐不同速率下的压缩。最新的RealAudio竟然采用ATRAC3编码方案,以挑战日益成熟的MP3。
Windows Media,视频编码采用的是非常先进的 MPEG-4 视频压缩技术,被称作 Microsoft MPEG-4 Video Codec,音频编码采用的是微软自行开发的一种编码方案,目前没有公布技术资料,在低流量下提供了令人满意的音质和画质。最新的Windows Media Encoding Utility V8.0将流技术推向到一个新的高度,我们常见的ASF、WMV、WMA就是微软的流媒体文件。
事实上我们常见的MPG文件,也具有流媒体的最大特征——边读边放。
二、常见的编码与常见的文件格式的对应关系及其常用用途
1、Audodesk FLC
这是一种古老的编码方案,常见的文件后缀为FLC和FLI。由于FLC仅仅支持256色的调色板,因此它会在编码过程中尽量使用抖动算法(也可以设置不抖动),以模拟真彩的效果。这种算法在色彩值差距不是很大的情况下几乎可以达到乱真的地步,例如红色A(R:255,G:0,B:0)到红色B(R:255,G:128,B:0)之间的抖动。这种格式现在已经很少被采用了,但当年很多这种格式被保留下来,这种格式在保存标准256色调色板或者自定义256色调色板是是无损的,这种格式可以清晰到像素,非常适合保存线框动画,例如CAD模型演示。现在这种格式很少见了。
2、Microsoft RLE
这是微软开发为AVI格式开发的一种编码,文件扩展名为AVI,使用了RLE压缩算法,这是一种无损的压缩算法,我们常见的tga格式的图像文件就使用了RLE算法。
什么是RLE算法呢?这是一种很简单的算法,举一个很简单的例子:
假设一个图像的像素色彩值是这样排列的:红红红红红红红红红红红红蓝蓝蓝蓝蓝蓝绿绿绿绿,经过RLE压缩后就成为了:红12蓝6绿4。这样既保证了压缩的可行性,而且不会有损失。而且可以看到,但颜色数越少时,压缩效率会更高。由于Microsoft RLE仅仅支持256色,而且没有抖动算法,在色彩处理方面,FLC明显的比Microsoft RLE要好很多。当然这也不表示Microsoft RLE一无是处,和FLC一样,Microsoft RLE在处理相邻像素时也没有色染,可以清晰的表现网格。因此同样可以优秀的表现单色字体和线条。只要色彩不是很复杂,FLC能做的,Microsoft RLE也可以做到。由于AVI可以拥有一个音频流,而且Windows系统给与了直接的支持,Microsoft RLE最常用的用途是,在256色显示模式下,通过配合抓屏生成AVI的工具制作一个软件的操作演示过程,以达到图文并茂,形声兼备的效果。
3、Microsoft Video1
这也是由微软提供的一个AVI编码,任何Windows系统都自带了了它的Codec,这个编码支持真彩,画面质量很不错,Microsoft Video1的压缩效率非常低下,编码后的文件庞大得让人受不了。这个Microsoft Video1究竟有什么用呢?一般被用在保存一些没有渐变的小型视频素材方面。
4、Indeo video R3.2
这个编码由intel架构实验室开发,对应的文件格式是AVI,相对之前的流行的编码,Indeo video R3.2最大的特点就是高压缩比(当然,比起现在的压缩方案,实在是不值得一提),intel声称压缩比可达8:1而没有明显的质量损失,解码速度也非常快,对系统要求不高,由于Windows9X中自带Indeo video R3.2的Codec,所以Indeo video R3.2一度成为了最流行的AVI编码方案。有不少游戏的过场动画和启动动画都是Indeo video R3.2编码的。Indeo video R3.2同样不适合高要求的环境,在要表现细线条或大色彩值变化的渐变时,Indeo video R3.2会表现得非常糟糕。如果画面的色彩值差异不是很大,也没有明显的色彩区域界限,Indeo video R3.2还是合适的,例如海天一色的场景。Indeo video R3.2已经基本被淘汰,如果不是为了播放以前遗留的一些Indeo video R3.2编码视频,恐怕Windows ME/2000都不会有Indeo video R3.2的Codec了。
5、Indeo video 5.10
这个编码方案同样也是intel架构实验室开发的,它继承了Indeo video R3.2的优点,对应的文件格式仍然是AVI,解码速度同样非常快。Windows ME/2000自带了Indeo video 5.1的Codec,很多游戏也适用Indeo video 5.10来编码自己的演示动画。在没有DivX普及前,这几乎是最流行的AVI编码了,由于微软和intel的同时支持,这种编码方案被广泛采用。
6、None
顾名思义,这是一个没有损失的视频编码方案,对应的文件扩展名为AVI。这种编码几乎是不压缩的,文件大得惊人!那么这种编码有什么用途呢?用途就是保存视频素材,因为是无损的,保存素材非常合适,代价就是大量的存储空间。
7、MPEG1
我们熟知的VCD就是MPEG1编码的,对应的文件扩展名为MPG、MPEG或者DAT。事实上MPEG1可以工作于非PAL制和非NTSC制标准下。它可以自由设置数据流量和画面尺寸,只是这样非标准的文件无法直接刻录成VCD。
8、MPEG2
DVD的视频部分就是采用的MPEG2,SVCD同样也采用了MPEG2编码。对应的文件扩展名一般为VOB、MPG。MPEG2的设计目标就是提供接近广播级的高品质输出。
9、DivX
DivX是近2年开始被大家认识的,DivX 视频编码技术可以说是一种对 DVD 造成威胁的新生视频压缩格式(有人说它是 DVD 杀手)对应的文件扩展名为AVI或者DivX,它由 Microsoft mpeg-4v3 修改而来,使用 MPEG-4 压缩算法。据说是美国禁止出口的编码技术。DivX最大的特点就是高压缩比和不错的画质,更可贵的是,DivX的对系统要求也不高,只要主频300的CPU就基本可以很流畅的播放了,因此从DivX诞生起,立刻吸引了大家的注意力。DivX拥有比Indeo video 5.10高太多的压缩效率,编码质量也远远比Indeo video 5.10好,我实在想不出Indeo video 5.10还会有什么前途。
10、PICVideo MJPEG
MJPEG是很多视频卡支持的一种视频编码,随卡提供了Codec,安装完成后可以象使用其它编码一样生成AVI文件。MJPEG编码常用于非线性系统,批上了一层很专业的外衣。MJPEG的编码质量是相当高的,是一种以质量为最高要求的编码,这种编码的设置比较复杂,可以得到很高的压缩比,但牺牲了解码速度,如果要保证解码速度,编码后的压缩比确不是很理想,如果您希望从专业的非线性系统上捕捉视频,然后自行进行处理,这种格式是很有必要去了解一些的。
11、RealNetworks RealVideo
REAL VIDEO(RA、RAM)格式由Real Networks公司开发的,一开始就定位在视频流应用方面的,也可以说是视频流技术的始创者。它可以在用 56K MODEM 拨号上网的条件实现不间断的视频播放。从RealVideo的定位来看,就是牺牲画面质量来换取可连续观看性。其实RealVideo也可以实现不错的画面质量,由于RealVideo可以拥有非常高的压缩效率,很多人把VCD编码成RealVideo格式的,这样一来,一张光盘上可以存放好几部电影。REAL VIDEO存在颜色还原不准确的问题,RealVideo就不太适合专业的场合,但RealVideo出色的压缩效率和支持流式播放的特征,使得RealVideo在网络和娱乐场合占有不错的市场份额。
12、Windows Media video
Windows Media video就是微软为了和现在的Real Networks的RealVideo竞争而发展出来的一种可以直接在网上观看视频节目的文件压缩格式!由于它使用了MPEG4的压缩算法,所以压缩率和图像的质量都很不错。我们经常看到的ASF和WMV就是Windows Media video。Windows Media video的编码质量明显好于RealVideo,因为Windows Media video是微软的杰作,所以Windows系统给Windows Media video给与了很好的支持,Windows Media Player可以直接播放这些文件。
各种主流音频编码(或格式)的介绍
1、PCM编码
PCM 脉冲编码调制是Pulse Code Molation的缩写。前面的文字我们提到了PCM大致的工作流程,我们不需要关心PCM最终编码采用的是什么计算方式,我们只需要知道PCM编码的音频流的优点和缺点就可以了。PCM编码的最大的优点就是音质好,最大的缺点就是体积大。我们常见的Audio CD就采用了PCM编码,一张光盘的容量只能容纳72分钟的音乐信息。
2、WAVE
这是一种古老的音频文件格式,由微软开发。WAV是一种文件格式,符合 PIFF Resource Interchange File Format规范。所有的WAV都有一个文件头,这个文件头音频流的编码参数。WAV对音频流的编码没有硬性规定,除了PCM之外,还有几乎所有支持ACM规范的编码都可以为WAV的音频流进行编码。很多朋友没有这个概念,我们拿AVI做个示范,因为AVI和WAV在文件结构上是非常相似的,不过AVI多了一个视频流而已。我们接触到的AVI有很多种,因此我们经常需要安装一些Decode才能观看一些AVI,我们接触到比较多的DivX就是一种视频编码,AVI可以采用DivX编码来压缩视频流,当然也可以使用其他的编码压缩。同样,WAV也可以使用多种音频编码来压缩其音频流,不过我们常见的都是音频流被PCM编码处理的WAV,但这不表示WAV只能使用PCM编码,MP3编码同样也可以运用在WAV中,和AVI一样,只要安装好了相应的Decode,就可以欣赏这些WAV了。
在Windows平台下,基于PCM编码的WAV是被支持得最好的音频格式,所有音频软件都能完美支持,由于本身可以达到较高的音质的要求,因此,WAV也是音乐编辑创作的首选格式,适合保存音乐素材。因此,基于PCM编码的WAV被作为了一种中介的格式,常常使用在其他编码的相互转换之中,例如MP3转换成WMA。
3、 MP3编码
请参阅 MP3全攻略 一文
4、OGG编码
网络上出现了一种叫Ogg Vorbis的音频编码,号称MP3杀手!Ogg Vorbis究竟什么来头呢?OGG是一个庞大的多媒体开发计划的项目名称,将涉及视频音频等方面的编码开发。整个OGG项目计划的目的就是向任何人提供完全免费多媒体编码方案!OGG的信念就是:OPEN!FREE!Vorbis这个词汇是特里·普拉特柴特的幻想小说《Small Gods》中的一个"花花公子"人物名。这个词汇成为了OGG项目中音频编码的正式命名。目前Vorbis已经开发成功,并且开发出了编码器。
Ogg Vorbis是高质量的音频编码方案,官方数据显示:Ogg Vorbis可以在相对较低的数据速率下实现比MP3更好的音质!Ogg Vorbis这种编码也远比90年代开发成功的MP3先进,她可以支持多声道,这意味着什么?这意味着Ogg Vorbis在SACD、DTSCD、DVD AUDIO抓轨软件(目前这种软件还没有)的支持下,可以对所有的声道进行编码,而不是MP3只能编码2个声道。多声道音乐的兴起,给音乐欣赏带来了革命性的变化,尤其在欣赏交响时,会带来更多临场感。这场革命性的变化是MP3无法适应的。
和MP3一样,Ogg Vorbis是一种灵活开放的音频编码,能够在编码方案已经固定下来后还能对音质进行明显的调节和新算法的改良。因此,它的声音质量将会越来越好,和MP3相似,Ogg Vorbis更像一个音频编码框架,可以不断导入新技术逐步完善。和MP3一样,OGG也支持VBR。
5、MPC 编码
MPC是又是另外一个令人刮目相看的实力派选手,它的普及过程非常低调,也没有什么复杂的背景故事,她的出现目的就只有一个,更小的体积更好的音质!MPC以前被称作MP+,很显然,可以看出她针对的竞争对手是谁。但是,只要用过这种编码的人都会有个深刻的印象,就是她出众的音质。
6、mp3PRO 编码
2001年6月14日,美国汤姆森多媒体公司(Thomson Multimedia SA)与佛朗赫弗协会(Fraunhofer Institute)于6月14日发布了一种新的音乐格式版本,名称为mp3PRO,这是一种基于mp3编码技术的改良方案,从官方公布的特征看来确实相当吸引人。从各方面的资料显示,mp3PRO并不是一种全新的格式,完全是基于传统mp3编码技术的一种改良,本身最大的技术亮点就在于SBR(Spectral Band Replication 频段复制),这是一种新的音频编码增强算法。它提供了改善低位率情况下音频和语音编码的性能的可能。这种方法可在指定的位率下增加音频的带宽或改善编码效率。SBR最大的优势就是在低数据速率下实现非常高效的编码,与传统的编码技术不同的是,SBR更像是一种后处理技术,因此解码器的算法的优劣直接影响到音质的好坏。高频实际上是由解码器(播放器)产生的,SBR编码的数据更像是一种产生高频的命令集,或者称为指导性的信号源,这有点駇idi的工作方式。我们可以看到,mp3PRO其实是一种mp3信号流和SBR信号流的混合数据流编码。有关资料显示,SBR技术可以改善低数据流量下的高频音质,改善程度约为30%,我们不管这个30%是如何得来的,但可以事先预知这种改善可以让64kbps的mp3达到128kbps的mp3的音质水平(注:在相同的编码条件下,数据速率的提升和音质的提升不是成正比的,至少人耳听觉上是这样的),这和官方声称的64kbps的mp3PRO可以媲美128kbps的mp3的宣传基本是吻合的。
7、WMA
WMA就是Windows Media Audio编码后的文件格式,由微软开发,WMA针对的不是单机市场,是网络!竞争对手就是网络媒体市场中着名的Real Networks。微软声称,在只有64kbps的码率情况下,WMA可以达到接近CD的音质。和以往的编码不同,WMA支持防复制功能,她支持通过Windows Media Rights Manager 加入保护,可以限制播放时间和播放次数甚至于播放的机器等等。WMA支持流技术,即一边读一边播放,因此WMA可以很轻松的实现在线广播,由于是微软的杰作,因此,微软在Windows中加入了对WMA的支持,WMA有着优秀的技术特征,在微软的大力推广下,这种格式被越来越多的人所接受。
8、RA
RA就是RealAudio格式,这是各位网虫接触得非常多的一种格式,大部分音乐网站的在线试听都是采用了RealAudio,这种格式完全针对的就是网络上的媒体市场,支持非常丰富的功能。最大的闪烁点就是这种格式可以根据听众的带宽来控制自己的码率,在保证流畅的前提下尽可能提高音质。RA可以支持多种音频编码,包括ATRAC3。和WMA一样,RA不但都支持边读边放,也同样支持使用特殊协议来隐匿文件的真实网络地址,从而实现只在线播放而不提供下载的欣赏方式。这对唱片公司和唱片销售公司很重要,在各方的大力推广下,RA和WMA是目前互联网上,用于在线试听最多的音频媒体格式。
9、APE
APE是Monkey's Audio提供的一种无损压缩格式。Monkey's Audio提供了Winamp的插件支持,因此这就意味着压缩后的文件不再是单纯的压缩格式,而是和MP3一样可以播放的音频文件格式。这种格式的压缩比远低于其他格式,但能够做到真正无损,因此获得了不少发烧用户的青睐。在现有不少无损压缩方案种,APE是一种有着突出性能的格式,令人满意的压缩比以及飞快的压缩速度,成为了不少朋友私下交流发烧音乐的唯一选择。