Ⅰ 排序算法如何实现 C++
一、简单排序算法
由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境
下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么
问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。
1.冒泡法:
这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:
#include <iostream.h>
void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
{
for(int j=Count-1;j>=i;j--)
{
if(pData[j]<pData[j-1])
{
iTemp = pData[j-1];
pData[j-1] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换, 显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。 写成公式就是1/2*(n-1)*n。 现在注意,我们给出O方法的定义:
若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没 学好数学呀,对于编程数学是非常重要的!!!)
现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n) =O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。 再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的 有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换), 复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的 原因,我们通常都是通过循环次数来对比算法。
2.交换法:
交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
for(int j=i+1;j<Count;j++)
{
if(pData[j]<pData[i])
{
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样 也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以 只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。
3.选择法:
现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下) 这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中 选择最小的与第二个交换,这样往复下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
iTemp = pData[i];
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp)
{
iTemp = pData[j];
iPos = j;
}
}
pData[iPos] = pData[i];
pData[i] = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次
其他:
第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。 我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n 所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。
4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData[i];
iPos = i-1;
while((iPos>=0) && (iTemp<pData[iPos]))
{
pData[iPos+1] = pData[iPos];
iPos--;
}
pData[iPos+1] = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次
其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次
上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是, 因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<= 1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单 排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似 选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’ 而这里显然多了一些,所以我们浪费了时间。
最终,我个人认为,在简单排序算法中,选择法是最好的。
二、高级排序算法:
高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。 它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后 把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使 用这个过程(最容易的方法——递归)。
1.快速排序:
#include <iostream.h>
void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中间值
do{
while((pData[i]<middle) && (i<right))//从左扫描大于中值的数
i++;
while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
j--;
if(i<=j)//找到了一对值
{
//交换
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)
//当左边部分有值(left<j),递归左半边
if(left<j)
run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变 成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全 不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。 如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢 于快速排序(因为要重组堆)。
三、其他排序
1.双向冒泡:
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。 代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。 写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。 反正我认为这是一段有趣的代码,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
int iTemp;
int left = 1;
int right =Count -1;
int t;
do {
//正向的部分
for(int i=right;i>=left;i--)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
left = t+1;
//反向的部分
for(i=left;i<right+1;i++)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
right = t-1;
}while(left<=right);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
2.SHELL排序
这个排序非常复杂,看了程序就知道了。 首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。 工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序,以次类推。
#include <iostream.h>
void ShellSort(int* pData,int Count)
{
int step[4];
step[0] = 9;
step[1] = 5;
step[2] = 3;
step[3] = 1;
int i,Temp;
int k,s,w;
for(int i=0;i<4;i++)
{
k = step[i];
s = -k;
for(int j=k;j<Count;j++)
{
iTemp = pData[j];
w = j-k;//求上step个元素的下标
if(s ==0)
{
s = -k;
s++;
pData[s] = iTemp;
}
while((iTemp<pData[w]) && (w>=0) && (w<=Count))
{
pData[w+k] = pData[w];
w = w-k;
}
pData[w+k] = iTemp;
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
ShellSort(data,12);
for (int i=0;i<12;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
呵呵,程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0 步长造成程序异常而写的代码。这个代码我认为很值得一看。 这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因 避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并 “超出本书讨论范围”的原因(我也不知道过程),我们只有结果了
Ⅱ 排序算法概述
十大排序算法:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序、希尔排序、计数排序,基数排序,桶排序
稳定 :如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
不稳定 :如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,前一个键排序的结果可以为后一个键排序所用。
算法的复杂度往往取决于数据的规模大小和数据本身分布性质。
时间复杂度 : 一个算法执行所耗费的时间。
空间复杂度 :对一个算法在运行过程中临时占用存储空间大小的量度。
常见复杂度由小到大 :O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)
在各种不同算法中,若算法中语句执行次数(占用空间)为一个常数,则复杂度为O(1);
当一个算法的复杂度与以2为底的n的对数成正比时,可表示为O(log n);
当一个算法的复杂度与n成线性比例关系时,可表示为O (n),依次类推。
冒泡、选择、插入排序需要两个for循环,每次只关注一个元素,平均时间复杂度为
(一遍找元素O(n),一遍找位置O(n))
快速、归并、堆基于分治思想,log以2为底,平均时间复杂度往往和O(nlogn)(一遍找元素O(n),一遍找位置O(logn))相关
而希尔排序依赖于所取增量序列的性质,但是到目前为止还没有一个最好的增量序列 。例如希尔增量序列时间复杂度为O(n²),而Hibbard增量序列的希尔排序的时间复杂度为 , 有人在大量的实验后得出结论;当n在某个特定的范围后希尔排序的最小时间复杂度大约为n^1.3。
从平均时间来看,快速排序是效率最高的:
快速排序中平均时间复杂度O(nlog n),这个公式中隐含的常数因子很小,比归并排序的O(nlog n)中的要小很多,所以大多数情况下,快速排序总是优于合并排序的。
而堆排序的平均时间复杂度也是O(nlog n),但是堆排序存在着重建堆的过程,它把根节点移除后,把最后的叶子结点拿上来后需要重建堆,但是,拿上的值是要比它的两个叶子结点要差很多的,一般要比较很多次,才能回到合适的位置。堆排序就会有很多的时间耗在堆调整上。
虽然快速排序的最坏情况为排序规模(n)的平方关系,但是这种最坏情况取决于每次选择的基准, 对于这种情况,已经提出了很多优化的方法,比如三取样划分和Dual-Pivot快排。
同时,当排序规模较小时,划分的平衡性容易被打破,而且频繁的方法调用超过了O(nlog n)为
省出的时间,所以一般排序规模较小时,会改用插入排序或者其他排序算法。
一种简单的排序算法。它反复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。这个工作重复地进行直到没有元素再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为元素会经由交换慢慢“浮”到数列的顶端。
1.从数组头开始,比较相邻的元素。如果第一个比第二个大(小),就交换它们两个;
2.对每一对相邻元素作同样的工作,从开始第一对到尾部的最后一对,这样在最后的元素应该会是最大(小)的数;
3.重复步骤1~2,重复次数等于数组的长度,直到排序完成。
首先,找到数组中最大(小)的那个元素;
其次,将它和数组的第一个元素交换位置(如果第一个元素就是最大(小)元素那么它就和自己交换);
再次,在剩下的元素中找到最大(小)的元素,将它与数组的第二个元素交换位置。如此往复,直到将整个数组排序。
这种方法叫做选择排序,因为它在不断地选择剩余元素之中的最大(小)者。
对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
为了给要插入的元素腾出空间,我们需要将插入位置之后的已排序元素在都向后移动一位。
插入排序所需的时间取决于输入中元素的初始顺序。例如,对一个很大且其中的元素已经有序(或接近有序)的数组进行排序将会比对随机顺序的数组或是逆序数组进行排序要快得多。
总的来说,插入排序对于部分有序的数组十分高效,也很适合小规模数组。
一种基于插入排序的快速的排序算法。简单插入排序对于大规模乱序数组很慢,因为元素只能一点一点地从数组的一端移动到另一端。例如,如果主键最小的元素正好在数组的尽头,要将它挪到正确的位置就需要N-1 次移动。
希尔排序为了加快速度简单地改进了插入排序,也称为缩小增量排序,同时该算法是突破O(n^2)的第一批算法之一。
希尔排序是把待排序数组按一定数量的分组,对每组使用直接插入排序算法排序;然后缩小数量继续分组排序,随着数量逐渐减少,每组包含的元素越来越多,当数量减至 1 时,整个数组恰被分成一组,排序便完成了。这个不断缩小的数量,就构成了一个增量序列。
在先前较大的增量下每个子序列的规模都不大,用直接插入排序效率都较高,尽管在随后的增量递减分组中子序列越来越大,由于整个序列的有序性也越来越明显,则排序效率依然较高。
从理论上说,只要一个数组是递减的,并且最后一个值是1,都可以作为增量序列使用。有没有一个步长序列,使得排序过程中所需的比较和移动次数相对较少,并且无论待排序列记录数有多少,算法的时间复杂度都能渐近最佳呢?但是目前从数学上来说,无法证明某个序列是“最好的”。
常用的增量序列
希尔增量序列 :{N/2, (N / 2)/2, ..., 1},其中N为原始数组的长度,这是最常用的序列,但却不是最好的
Hibbard序列:{2^k-1, ..., 3,1}
Sedgewick序列:{... , 109 , 41 , 19 , 5,1} 表达式为
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。
对于给定的一组数据,利用递归与分治技术将数据序列划分成为越来越小的半子表,在对半子表排序后,再用递归方法将排好序的半子表合并成为越来越大的有序序列。
为了提升性能,有时我们在半子表的个数小于某个数(比如15)的情况下,对半子表的排序采用其他排序算法,比如插入排序。
若将两个有序表合并成一个有序表,称为2-路归并,与之对应的还有多路归并。
快速排序(Quicksort)是对冒泡排序的一种改进,也是采用分治法的一个典型的应用。
首先任意选取一个数据(比如数组的第一个数)作为关键数据,我们称为基准数(Pivot),然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序,也称为分区(partition)操作。
通过一趟快速排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数组变成有序序列。
为了提升性能,有时我们在分割后独立的两部分的个数小于某个数(比如15)的情况下,会采用其他排序算法,比如插入排序。
基准的选取:最优的情况是基准值刚好取在无序区数值的中位数,这样能够最大效率地让两边排序,同时最大地减少递归划分的次数,但是一般很难做到最优。基准的选取一般有三种方式,选取数组的第一个元素,选取数组的最后一个元素,以及选取第一个、最后一个以及中间的元素的中位数(如4 5 6 7, 第一个4, 最后一个7, 中间的为5, 这三个数的中位数为5, 所以选择5作为基准)。
Dual-Pivot快排:双基准快速排序算法,其实就是用两个基准数, 把整个数组分成三份来进行快速排序,在这种新的算法下面,比经典快排从实验来看节省了10%的时间。
许多应用程序都需要处理有序的元素,但不一定要求他们全部有序,或者不一定要一次就将他们排序,很多时候,我们每次只需要操作数据中的最大元素(最小元素),那么有一种基于二叉堆的数据结构可以提供支持。
所谓二叉堆,是一个完全二叉树的结构,同时满足堆的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。在一个二叉堆中,根节点总是最大(或者最小)节点。
堆排序算法就是抓住了这一特点,每次都取堆顶的元素,然后将剩余的元素重新调整为最大(最小)堆,依次类推,最终得到排序的序列。
推论1:对于位置为K的结点 左子结点=2 k+1 右子结点=2 (k+1)
验证:C:2 2 2+1=5 2 (2+1)=6
推论2:最后一个非叶节点的位置为 (N/2)-1,N为数组长度。
验证:数组长度为6,(6/2)-1=2
计数排序对一定范围内的整数排序时候的速度非常快,一般快于其他排序算法。但计数排序局限性比较大,只限于对整数进行排序,而且待排序元素值分布较连续、跨度小的情况。
计数排序是一个排序时不比较元素大小的排序算法。
如果一个数组里所有元素都是整数,而且都在0-K以内。对于数组里每个元素来说,如果能知道数组里有多少项小于或等于该元素,就能准确地给出该元素在排序后的数组的位置。
桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,利用某种函数的映射关系将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序)。
桶排序利用函数的映射关系,减少了几乎所有的比较工作。实际上,桶排序的f(k)值的计算,其作用就相当于快排中划分,已经把大量数据分割成了基本有序的数据块(桶)。然后只需要对桶中的少量数据做排序即可。
常见的数据元素一般是由若干位组成的,比如字符串由若干字符组成,整数由若干位0~9数字组成。基数排序按照从右往左的顺序,依次将每一位都当做一次关键字,然后按照该关键字对数组排序,同时每一轮排序都基于上轮排序后的结果;当我们将所有的位排序后,整个数组就达到有序状态。基数排序不是基于比较的算法。
基数是什么意思?对于十进制整数,每一位都只可能是0~9中的某一个,总共10种可能。那10就是它的基,同理二进制数字的基为2;对于字符串,如果它使用的是8位的扩展ASCII字符集,那么它的基就是256。
基数排序 vs 计数排序 vs 桶排序
基数排序有两种方法:
MSD 从高位开始进行排序
LSD 从低位开始进行排序
这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:
基数排序:根据键值的每位数字来分配桶
计数排序:每个桶只存储单一键值
桶排序:每个桶存储一定范围的数值
有时,待排序的文件很大,计算机内存不能容纳整个文件,这时候对文件就不能使用内部排序了(我们一般的排序都是在内存中做的,所以称之为内部排序,而外部排序是指待排序的内容不能在内存中一下子完成,它需要做内外存的内容交换),外部排序常采用的排序方法也是归并排序,这种归并方法由两个不同的阶段组成:
采用适当的内部排序方法对输入文件的每个片段进行排序,将排好序的片段(成为归并段)写到外部存储器中(通常由一个可用的磁盘作为临时缓冲区),这样临时缓冲区中的每个归并段的内容是有序的。
利用归并算法,归并第一阶段生成的归并段,直到只剩下一个归并段为止。
例如要对外存中4500个记录进行归并,而内存大小只能容纳750个记录,在第一阶段,我们可以每次读取750个记录进行排序,这样可以分六次读取,进行排序,可以得到六个有序的归并段
每个归并段的大小是750个记录,并将这些归并段全部写到临时缓冲区(由一个可用的磁盘充当)内了,这是第一步的排序结果。
完成第二步该怎么做呢?这时候归并算法就有用处了。
Ⅲ 排序算法(九):桶排序
桶排序是将待排序集合中处于同一个值域的元素存入同一个桶中,也就是根据元素值特性将集合拆分为多个区域,则拆分后形成的多个桶,从值域上看是处于有序状态的。对每个桶中元素进行排序,则所有桶中元素构成的集合是已排序的。
step 1:
遍历集合可得,最大值为: ,最小值为: ,待申请桶的个数为:
step 2:
遍历待排序集合,依次添加各元素到对应的桶中。
step 3:
对每一个桶中元素进行排序,并移动回原始集合中,即完成排序过程。
第一个循环作用为将待排序集合中元素移动到对应的桶中,复杂度为 ;第二个循环的作用为对每个桶中元素进行排序,并移动回初始集合中,若桶个数为 ,平均每个桶中元素个数为 ,则复杂度为 。当 时,即桶排序向计数排序方式演化,则堆排序不发挥作用,复杂度为 ,只需要将元素移动回初始集合即可。当 时,即桶排序向比较性质排序算法演化,对集合进行堆排序,并将元素移动回初始集合,复杂度为 。
由算法过程可知,桶排序的时间复杂度为 ,其中 表示桶的个数。由于需要申请额外的空间来保存元素,并申请额外的数组来存储每个桶,所以空间复杂度为 。算法的稳定性取决于对桶中元素排序时选择的排序算法。由桶排序的过程可知,当待排序集合中存在元素值相差较大时,对映射规则的选择是一个挑战,可能导致元素集中分布在某一个桶中或者绝大多数桶是空桶的现象,对算法的时间复杂度或空间复杂度有较大影响,所以同计数排序一样,桶排序适用于元素值分布较为集中的序列。
Ⅳ 编一程序用简单选择排序方法对n个整数排序(从大到小)。 对n个数进行降序排列,简单选择排序的算法思
#include<stdio.h>
int main()
{int i,j,t,n,a[100];
printf("请输入有几个整数(<=100):");
scanf("%d",&n);
printf("请输入这%d个整数: ");
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=0;i<n-1;i++)
{k=i;
for(j=i+1;j<n;j++)
if(a[j]<a[k])
k=j;
t=a[i];a[i]=a[k];a[k]=t;
}
printf("排序以后的数: ");
for(i=0;i<n;i++)
printf("%d ",a[i]);
printf(" ");
return 0;
}
(4)考虑这样一个排序算法对于待排序扩展阅读:
在简单选择排序过程中,所需移动记录的次数比较少。最好情况下,即待排序记录初始状态就已经是正序排列了,则不需要移动记录。
最坏情况下,即待排序记录初始状态是按第一条记录最小,之后的记录从小到大顺序排列,则需要移动记录的次数最多为3(n-1)。
简单选择排序过程中需要进行的比较次数与初始状态下待排序的记录序列的排列情况无关。当i=1时,需进行n-1次比较;当i=2时,需进行n-2次比较;依次类推,共需要进行的比较次数是(n-1)+(n-2)+…+2+1=n(n-1)/2,即进行比较操作的时间复杂度为O(n^2),进行移动操作的时间复杂度为O(n)。
Ⅳ 计数排序(count sorting)
我认为这是桶排不知对不对。
program tpx;
var b:array[0..100] of integer;
k:0..100;
i:integer;
begin
write('Enter date:(0-100)');
for i:=0 to 100 do b[i]:=0;
for i:= 1 to n do
begin
read(k);
b[k]:=b[k]+1;
end;
writeln('Output data:');
for i:=0 to 100 do
while b[i]>0 do begin write(i:6);b[i]:=b[i]-1 end;
writeln;
end.
Ⅵ 对同一个基本有序的待排序列分别进行堆排序、快速排序和冒泡排序,最省时间的算法是什么
对同一个基本有序的待排序列分别进行堆排序、快速排序和冒泡排序,最省时间的算法是冒泡排序。
冒泡排序的最好比较次数为n次,最差比较次数为n^2次,最差比较次数为0次,最差比较次数为n^2次,最差比较次数为1次,最差比较次数为1次。
快速排序的最好比较次数为nlogn次,最差比较次数为n^2次,最差比较次数为logn次,最差比较次数为n次,最差比较次数为logn次,最差比较次数为n次。
堆排序的最好比较次数为nlogn次,最差比较次数为nlogn次,最差比较次数为nlogn次,最差比较次数为nlogn次,最差比较次数为1次,最差比较次数为1次。
(6)考虑这样一个排序算法对于待排序扩展阅读:
冒泡排序(BubbleSort)重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小、首字母从Z到A)错误就把他们交换过来。走访元素的工作是重复地进行直到没有相邻元素需要交换,也就是说该元素列已经排序完成。
由于冒泡排序比较是相邻的两个元素,交换也发生在这两个元素之间。所以,如果两个元素相等,是不会再交换的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
Ⅶ 交换类排序算法
根据排序时数据所占用存储器的不同,可将排序分为两类,一类是整个排序过程完全在内存中进行,成为内部排序。另一类是由于待排序记录数据太大,内存无法容纳全部数据,需要借助外部存储才能完成,称为外部排序。
按照方法可以分为交换类排序和插入类排序。
算法思想:
从待排序记录序列中选取一个记录(通常是第一个)作为枢轴,其关键字设为K1,然后将其余关键字小于K1的记录移动到前面,关键字大于K1的移动到后面,结果将待排序记录分成两个子表,最后将关键字为K1的记录插到分界线的位置处。这个过程称为一趟快速排序。
算法步骤:
假设待划分序列为r,r,....,r,具体实现过程,可以设两个指针i和j,它们的初值分别是left和right。首先将基准记录r移至变量x中,然后反复进行下两步,直到i和j相遇。
1、i从左向右扫描直到r>x时,将r移至空单元r,此时r相当于空单元。
2、j从右向左扫描直到r<x时,将r移至空单元r,此时r相当于空单元。
当i和j相遇的时候,给空单元赋值x,然后对于左右形成的两个子表采用同样的方法进一步划分。
Ⅷ 基本排序算法原理
算法原理:每次对相邻的两个元素进行比较,若前者大于后者则进行交换,如此一趟下来最后一趟的就是最大元素,重复以上的步骤,除了已经确定的元素 。
算法原理:每次对相邻的两个元素进行比较,若前者大于后者则进行交换,如此一趟下来最后一趟的就是最大元素,重复以上的步骤,除了已经确定的元素
算法步骤
1) 设置两个变量i、j,排序开始的时候:i=0,j=n-1;
2)第一个数组值作为比较值,首先保存到temp中,即temp=A[0];
3)然后j-- ,向前搜索,找到小于temp后,因为s[i]的值保存在temp中,所以直接赋值,s[i]=s[j]
4)然后i++,向后搜索,找到大于temp后,因为s[j]的值保存在第2步的s[i]中,所以直接赋值,s[j]=s[i],然后j--,避免死循环
5)重复第3、4步,直到i=j,最后将temp值返回s[i]中
6) 然后采用“二分”的思想,以i为分界线,拆分成两个数组 s[0,i-1]、s[i+1,n-1]又开始排序
排序图解
算法原理:从第一个元素开始,左边视为已排序数组,右边视为待排序数组,从左往右依次取元素,插入左侧已排序数组,对插入新元素的左侧数组重新生成有序数组 。需要注意的是,在往有序数组插入一个新元素的过程中,我们可以采用按 顺序循环 比较,也可以通过 折半查找法 来找到新元素的位置,两种方式的效率 取决于数组的数据量
算法原理:希尔排序也是利用插入排序的思想来排序。希尔排序通过将比较的全部元素分为几个区域来提升插入排序的性能。这样可以让一个元素可以一次性地朝最终位置前进一大步。然后算法再取越来越小的步长进行排序,算法的最后一步就是普通的插入排序,但是到了这步,需排序的数据几乎是已排好的了,插入效率比较高。
排序图解
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。
归并排序,顾名思义就是一种 “递归合并” 的排序方法(这个理解很重要)。对于一个数列,我们把它进行二分处理,依次递归下去,然后将小范围的数进行排序,最后将其合并在一起。就实现了归并排序。
这实际上是运用了 分治思想 ,显然,想要把一个数列排好序,最终达到的目的就是它的任何一部分都是有序的。这样的话,我们可以考虑分别把数列分成N多个部分,让每个部分分别有序,然后再将其统一,变成所有的东西都有序。这样就实现了排序。这个想法就叫分治思想。
排序图解
排序图解
Ⅸ 排序法都有哪些
一、插入排序(InsertionSort)
1.基本思想:
每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。
2.排序过程:
【示例】:
[初始关键字][49]38659776132749
J=2(38)[3849]659776132749
J=3(65)[384965]9776132749
J=4(97)[38496597]76132749
J=5(76)[3849657697]132749
J=6(13)[133849657697]2749
J=7(27)[13273849657697]49
J=8(49)[1327384949657697]