导航:首页 > 源码编译 > 高斯算法

高斯算法

发布时间:2022-02-06 23:21:22

⑴ 高斯算法求分数

高斯混合模型GMM
首先介绍高斯分布的概率密度函数。一维高斯分布的概率密度函数如下:

多维变量X=(x1,x2,…xn)的联合概率密度函数为:

这里引用李航《统计学习方法》书中的定义

简而言之,GMM是多个高斯分布的加权和,并且权重α之和等于1 。

Sklearn
sklearn.mixture 是一个应用高斯混合模型进行非监督学习的包(支持 diagonal,spherical,tied,full 四种协方差矩阵)。GaussianMixture 对象实现了用来拟合高斯混合模型的期望最大 (EM) 算法。它还可以为多变量模型绘制置信椭圆体,同时计算 BIC(Bayesian Information Criterion,贝叶斯信息准则)来评估数据中聚类的数量。详情见Sklearn中文官网2.1. 高斯混合模型。

期望最大算法EM
这里引用周志华《机器学习》书中的定义

上面是基本概念。关于数学公式推导,真心建议直接看吴恩达老师的课件。这里给出自己推导的结果

示例演示
演示GMM的使用。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from sklearn import mixture

n_samples = 300

# generate random sample, two components
np.random.seed(0)

# generate spherical data centered on (20, 20)
shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20])

# generate zero centered stretched Gaussian data
C = np.array([[0., -0.7], [3.5, .7]])
stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C)

# concatenate the two datasets into the final training set
X_train = np.vstack([shifted_gaussian, stretched_gaussian])

# fit a Gaussian Mixture Model with two components
clf = mixture.GaussianMixture(n_components=2, covariance_type='full')
clf.fit(X_train)

# display predicted scores by the model as a contour plot
x = np.linspace(-20., 30.)
y = np.linspace(-20., 40.)
X, Y = np.meshgrid(x, y)
XX = np.array([X.ravel(), Y.ravel()]).T
Z = -clf.score_samples(XX)
Z = Z.reshape(X.shape)

CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0),
levels=np.logspace(0, 3, 10))
CB = plt.colorbar(CS, shrink=0.8, extend='both')
plt.scatter(X_train[:, 0], X_train[:, 1], .8)

plt.title('Negative log-likelihood predicted by a GMM')
plt.axis('tight')
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
运行结果

⑵ 高斯算法是什么

一次数学课上,老师让学生练习算数。于是让他们一个小时内算出1+2+3+4+5+6+……+100的得数。全班只有高斯用了不到20分钟给出了答案,因为他想到了用(1+100)+(2+99)+(3+98)……+(50+51)…………一共有50个101,所以50×101就是1加到一百的得数。后来人们把这种简便算法称作高斯算法。

具体的方法是:

首项加末项乘以项数除以2

项数的计算方法是末项减去首项除以项差(每两项之间的差)加1.

1+2+3+4+5+······+n

字母表示:n(1+n)/2

等差数列求和公式Sn=(a1+an)n/2Sn=n(2a1+(n-1)d)/2; d=公差Sn=An2+Bn; A=d/2,B=a1-(d/2)

⑶ 什么是高斯算法你能用高斯算发解决一些简单的问题吗

解决等差数列的求和问题 现实中好象在物理的打点计时里用的到

⑷ 高斯算法怎么算

高斯算法怎么算
以首项加末项乘以项数除以2用来计算“1+2+3+4+5+···+(n-1)+n”的结果。 这样的算法被称为高斯算法。

⑸ 高斯算法题

1+2+3+4+5+6+7+8+9=45

⑹ 1+3+5+...2019高斯算法

项数是:(2n-1+1)/2=n项
1+3+5+...+(2n-1)即=(2n-1+1)*n/2=n^2

⑺ 急求:高斯算法所有公式

首项加末项乘以项数除以2

⑻ 高斯算法的介绍

首项加末项乘以末项数除以2这样的算法称为高斯算法。

⑼ 用高斯算法

首尾相加,乘以项数除以2,共有400项,答案是120.2

阅读全文

与高斯算法相关的资料

热点内容
哪些系统盘文件夹大 浏览:341
pdf朗读软件手机 浏览:225
ug编程实例教程 浏览:987
cad输入命令时鼠标卡顿 浏览:795
php过滤文件 浏览:757
linux配置ip命令 浏览:903
命令的英文怎么读 浏览:353
哪个app是自己弹音乐的 浏览:655
安卓变是什么意思 浏览:612
qq五子棋在哪里找app 浏览:837
图片活码二维码生成器网站源码 浏览:186
国美手机联系人加密 浏览:883
成交量彩色源码 浏览:118
算法最根本的评价标准 浏览:366
个人资源app哪个好用 浏览:580
这也能切为什么没有安卓 浏览:675
可可64山寨源码 浏览:641
怎么自己解压和释放 浏览:991
思路与算法的区别 浏览:156
日志带源码 浏览:137