导航:首页 > 源码编译 > 启发式算法的特点是

启发式算法的特点是

发布时间:2022-11-28 03:18:06

① 启发式算法介绍 启发式算法简介

1、启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。

2、启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。

② 采用准确优化技术和启发式优化技术解决一个问题会存在什么不同

采用准确优化技术和启发式优化技术解决一个问题会存在的不同之处:

①确定性算法和随机性算法是目前求解优化问题的方法。随机性算法一般是对社会行为和自然现象的模拟,具有对优化函数的解析性质要求低的特点,甚至对无显示解析表达式的问题也可以求解,能较好解决优化中的噪声、不可微、高维等问题。

②启发式算法作为随机性算法的一种,其良好的应用更加快了人们对各种优化方法的探索脚步。 近些年来不断有学者将分形应用于优化中来,试图运用分形思想来处理复杂的优化问题。

③其中,分形算法通过对可行域的分形分割来寻优,是一种新颖的确定性算法,但其局限性较大,只适用于低维简单的问题,对于当今社会中高维复杂问题则几乎无能为力,也使得该算法的影响力微乎其微。

④启发式技术是基于特征值扫描技术上的升级,与传统反病毒特征值扫描技术相比,优点在于对未知病毒的防御.是特征值识别技术质的飞跃。


(2)启发式算法的特点是扩展阅读

启发式:简化虚拟机和简化行为判断引擎的结合 Heuristic(启发式技术=启发式扫描+启发式监控) 重点在于特征值识别技术上的更新、解决单一特征码比对的缺陷.目的不在于检测所有的未知病毒,只是对特征值扫描技术的补充.主要针对:木马、间谍、后门、下载者、已知病毒(PE病毒)的变种。

一、启发式发展方向

现代启发式算法的研究,在理论方面还处于不断发展中,新思想和新方法仍不断出现。分析目前的现状和发展方向,其发展方向有如下几个方面:

①整理归纳分散的研究成果,建立统一的算法体系结构。

②在现有的数学方法(模式定理、编码策略、马尔可夫链理论、维数分析理论、复制遗传算法理论、二次动力系统理论、傅立叶分析理论、分离函数理论、Walsh函数分析理论)的基础上寻求新的数学工具。

③开发新的混合式算法及开展现有算法改进方面的研究。

④研究高效并行或分布式优化算法。

二、启发式算法算法机制特点

现代启发式算法在优化机制方面存在一定的差异,但在优化流程上却具有较大的相似性,均是一种“邻域搜索”结构。算法都是从一个(一组)初始解出发,在算法的关键参数的控制下通过邻域函数产生若干邻域解,按准则(确定性、概率性或混沌方式)更新当前状态,而后按关键参数修改准则调整关键参数,一直优化到最优结果。

③ 深度学习算法与启发式算法的区别

算法导向不同,包含内容不同。
深度学习算法包含回归算法,基于实例的算法,正则化方法,贝叶斯方法,人工神经网络五类算法。启发式算法通常是以问题为导向的(ProblemSpecific),也就是说,没有一个通用的框架,每个不同的问题通常设计一个不同的启发式算法,通常被用来解组合优化问题。

④ 计算复杂性理论的理论与实践

计算复杂性的初衷是理解不同算法问题的难度,特别的是一些重要算法问题的困难性。为了确切的描述一个问题的困难性,计算复杂性的第一步抽象是认为多项式时间是有效的,非多项式时间是困难的。这基于指数函数增长速度的“违反直觉”的特性:如果一个算法的时间复杂性为2,取输入的规模是100,在运算速度是10每秒(关于CPU速度,参见Instructions per second,其中报告截止2009年,主流个人电脑的运算速度可以看作是每秒

的情况下,该程序将会运行年,几乎是宇宙年龄。这为多项式时间被看作是有效时间提供了直观上的证据。
然而多项式的指数很大的时候,算法在实践中也不能看作是有效的。如n的多项式算法,取问题规模大小为1000,那么几乎就是2的大小。另一方面,即便一个问题没有多项式算法,它可能会有近似比很好的近似算法(参见近似算法),或有很好的启发式算法(heuristics)。启发式算法的特点是在理论上没有精确的行为的分析,或者可以表明存在很坏的输入,在这些输入上运行很慢。然而在大多数时候,它都能快速解决问题。计算复杂性中对应的理论分析是平均复杂性理论(average-case complexity theory)和光滑分析(smooth analysis)。实际中的例子包括en:Presburger arithmetic、布尔可满足性问题(参见SAT solver)和背包问题。

⑤ 元启发式算法和启发式算法有什么区别

启发式算法与元启发式算法对区别在于是否存在“随机因素”。 对一个同样的问题,启发式算法(heuristics)只要给定了一个输入,那么算法执行的步骤就固定下来了,输出也因此固定,多次运算结果保持一致。

而元启发式算法(meta-heuristics)里面包括了随机因素,如GA中的交叉因子,模拟退火中的metropolis准则,这些随机因素也使得算法有一定概率跳出局部最优解而去尝试全局最优解,因此元启发式算法在固定的输入下,而输出是不固定的。

启发式算法(Heuristic Algorigthm)是一种基于直观或经验构造的算法,在可接受的花费(指计算时间、计算空间等)给出待解决优化问题的每一实例的一个可行解,该可行解与与最优解的偏离程度一般不可以事先预计。

启发式算法是一种技术,这种算法可以在可接受的计算费用内找到最好的解,但不一定能保证所得到解的可行性及最优性,甚至大多数情况下无法阐述所得解与最优解之间的近似程度。

元启发式算法(MetaHeuristic Algorigthm)是启发式算法的改进,它是随机算法与局部搜索算法相结合的产物,常见的启发式算法包括遗传算法、模拟退火算法、禁忌搜索算法及神经网络算法等。

新兴的元启发式算法有、粒子群优化算法、差分进化算法,蚁群优化算法、萤火虫算法、布谷鸟算法、和声搜索算法、差分进化算法、随机蛙跳算法、细菌觅食算法、蝙蝠算法的算法等。

⑥ 在什么样的情境下,人们喜欢用启发法解决问题,并举例说明

针对模型求解方法而言的,一种逐次逼近最优解的方法,这种方法对所求得的解进行反复判断实践修正直至满意为止。启发法的特点是模型简单,需要进行方案组合的个数少,因此便于找出最终答案。此方法虽不能保证得到最优解,但只要处理得当,可获得决策者满意的近似最优解。

一般步骤包括:定义一个计算总费用的方法;报定判别准则;规定方案改选的途径;建立相应的模型;送代求解。



(6)启发式算法的特点是扩展阅读

计算机科学的两大基础目标,就是发现可证明其执行效率良好且可得最佳解或次佳解的算法。而启发式算法则试图一次提供一或全部目标。 例如它常能发现很不错的解,但也没办法证明它不会得到较坏的解;它通常可在合理时间解出答案,但也没办法知道它是否每次都可以这样的速度求解。

有时候人们会发现在某些特殊情况下,启发式算法会得到很坏的答案或效率极差,然而造成那些特殊情况的数据组合,也许永远不会在现实世界出现。因此现实世界中启发式算法常用来解决问题。启发式算法处理许多实际问题时通常可以在合理时间内得到不错的答案。

⑦ 对 启发式算法的理解

启发式算法是一种能在可接受的费用内寻找最好的解的技术,但不一定能保证所得解的可行性和最优性,甚至在多数情况下,无法阐述所得解同最优解的近似程度

⑧ 启发式算法

什么是算法?从枚举到贪心再到启发式(上)
目标 :要优化的东西
决策 :根据目标做出的决策
约束 :进行决策时必须遵循的条件
算例 :问题参数的具体化

枚举法 :将问题所有的解一一枚举出来,挨个去评价,选出最好的那个
1.枚举法能够找到问题的最优解
2.枚举法求解时间随问题规模增长而呈爆炸式增长

贪心法 :利用“构造”的方式生成解,速度相对而言会非常快,同时不会随着问题规模的增长而大幅度增加,是平缓的线性增长
什么是算法?从枚举到贪心再到启发式(下)
启发式算法 :在一个合理的求解资源范围内(合理的时间,合理的内存开销等)求得一个较为满意的解。目前主要包括邻域搜索和群体仿生两大类。
解空间 :所有该问题的解的集合,包括可行解和不可行解
局部搜索 :不完全遍历解空间,只选择一部分进行遍历,进而大大降低搜索需要的资源。为了提高局部搜索的质量,大部分局部搜索算法都会在搜索的时候不断地抓取多个区域进行搜索,直到满足算法终止条件。
邻域 :在邻域结构定义下的解的集合,它是一个相对的概念,即邻域肯定是基于某个解产生的
邻居解 :邻域内某个解的称呼
邻域结构 :定义了一个解的邻域
邻域结构的设计在启发式算法中非常重要,它直接决定了搜索的范围,对最终的搜索结构有着重要的影响,直接决定了最终结果质量的好坏
搜索过程

不断重复步骤2-步骤5,直到满足终止条件,最后输出全局最优解

所有的启发式找到的都是满意解,不能说是最优解(即便真的是),因为它遍历的是解空间的局部。
一般情况下,启发式算法的时间是随着问题规模增长而呈线性增长的
干货 | 想学习优化算法,不知从何学起?
邻域搜索类
迭代局部搜索算法
模拟退火算法
变邻域搜索算法
禁忌搜索
自适应大邻域搜索
群体仿生类
遗传算法
蚁群算法
粒子群算法
人工鱼群算法
算法应用
禁忌搜索算法求解带时间窗的车辆路径问题
基于树表示法的变邻域搜索算法求解考虑后进先出的取派货旅行商问题
变邻域搜索算法求解Max-Mean dispersion problem
遗传算法求解混合流水车间调度问题

⑨ 什么是启发式算法(转)

启发式方法(试探法)是一种帮你寻求答案的技术,但它给出的答案是具有偶然性的(subjecttochance),因为启发式方法仅仅告诉你该如何去找,而没有告诉你要找什么。它并不告诉你该如何直接从A点到达B点,它甚至可能连A点和B点在哪里都不知道。实际上,启发式方法是穿着小丑儿外套的算法:它的结果不太好预测,也更有趣,但不会给你什么30
天无效退款的保证。
驾驶汽车到达某人的家,写成算法是这样的:沿167
号高速公路往南行至Puyallup;从SouthHillMall出口出来后往山上开4.5
英里;在一个杂物店旁边的红绿灯路口右转,接着在第一个路口左转;从左边褐色大房子的车道进去,就是NorthCedar路714号。
用启发式方法来描述则可能是这样:找出上一次我们寄给你的信,照着信上面的寄出地址开车到这个镇;到了之后你问一下我们的房子在哪里。这里每个人都认识我们——肯定有人会很愿意帮助你的;如果你找不到人,那就找个公共电话亭给我们打电话,我们会出来接你。
从上面的启发式算法的解释可以看出,启发式算法的难点是建立符合实际问题的一系列启发式规则。启发式算法的优点在于它比盲目型的搜索法要高效,一个经过仔细设计的启发函数,往往在很快的时间内就可得到一个搜索问题的最优解,对于NP问题,亦可在多项式时间内得到一个较优解。

⑩ 有关启发式算法(Heuristic Algorithm)的一些总结

节选自维基网络:

启发法 ( heuristics ,源自古希腊语的εὑρίσκω,又译作:策略法、助发现法、启发力、捷思法)是指 依据有限的知识 (或“不完整的信息”)在短时间内找到问题解决方案的一种技术。

它是一种依据 关于系统的有限认知 和 假说 从而得到关于此系统的结论的分析行为。由此得到的解决方案有可能会偏离最佳方案。通过与最佳方案的对比,可以确保启发法的质量。

计算机科学的两大基础目标,就是 发现可证明其运行效率良好 且可 得最佳解或次佳解 的算法。

而启发式算法则 试图一次提供一个或全部目标 。例如它常能发现很不错的解, 但也没办法证明它不会得到较坏的解 ; 它通常可在合理时间解出答案,但也没办法知道它是否每次都可以这样的速度求解。

有时候人们会发现在某些特殊情况下,启发式算法会得到很坏的答案或效率极差, 然而造成那些特殊情况的数据结构,也许永远不会在现实世界出现

因此现实世界中启发式算法很常用来解决问题。启发式算法处理许多实际问题时通常可以在合理时间内得到不错的答案。

有一类的 通用启发式策略称为元启发式算法(metaheuristic) ,通常使用随机数搜索技巧。他们可以应用在非常广泛的问题上,但不能保证效率。

节选自网络:

启发式算法可以这样定义:一个 基于直观或经验构造 的算法, 在 可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解 , 该可行解与最优解的偏离程度一般不能被预计。 现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。

目前比较通用的启发式算法一般有模拟退火算法(SA)、遗传算法(GA)、蚁群算法(ACO)。

模拟退火算法(Simulated Annealing, SA)的思想借鉴于固体的退火原理,当固体的温度很高的时候,内能比较大,固体的内部粒子处于快速无序运动,当温度慢慢降低的过程中,固体的内能减小,粒子的慢慢趋于有序,最终,当固体处于常温时,内能达到最小,此时,粒子最为稳定。模拟退火算法便是基于这样的原理设计而成。

求解给定函数的最小值:其中,0<=x<=100,给定任意y的值,求解x为多少的时候,F(x)最小?

遗传算法(Genetic Algorithm, GA)起源于对生物系统所进行的计算机模拟研究。它是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种 高效、并行、全局搜索 的方法,能在搜索过程中自动获取和积累有关搜索空间的知识,并 自适应 地控制搜索过程以求得最佳解。

给定一组五个基因,每一个基因可以保存一个二进制值 0 或 1。这里的适应度是基因组中 1 的数量。如果基因组内共有五个 1,则该个体适应度达到最大值。如果基因组内没有 1,那么个体的适应度达到最小值。该遗传算法希望 最大化适应度 ,并提供适应度达到最大的个体所组成的群体。

想象有一只蚂蚁找到了食物,那么它就需要将这个食物待会蚂蚁穴。对于这只蚂蚁来说,它并不知道应该怎么回到蚂蚁穴。

这只蚂蚁有可能会随机选择一条路线,这条路可能路程比较远,但是这只蚂蚁在这条路上留下了记号(一种化学物质,信息素)。如果这只蚂蚁继续不停地搬运食物的时候,有其它许多蚂蚁一起搬运的话,它们总会有运气好的时候走到更快返回蚂蚁穴的路线。当蚂蚁选择的路线越优,相同时间内蚂蚁往返的次数就会越多,这样就在这条路上留下了更多的信息素。

这时候,蚂蚁们就会选择一些路径上信息素越浓的,这些路径就是较优的路径。当蚂蚁们不断重复这个过程,蚂蚁们就会更多地向更浓的信息素的路径上偏移,这样最终会确定一条路径,这条路径就是最优路径。

阅读全文

与启发式算法的特点是相关的资料

热点内容
如何让app适应不同的手机屏幕大小 浏览:8
苹果手机如何给安卓手机分享软件 浏览:759
苹果电脑怎么运行腾讯云服务器 浏览:59
明日之后沙石堡命令助手 浏览:261
蛋糕店用什么样的app 浏览:877
长安银行信用卡app怎么取现 浏览:635
dos命令cmd命令的 浏览:226
阿里云存档视频文件的服务器 浏览:194
ftp修改文件权限命令 浏览:491
周易八卦梅花算法 浏览:676
java组织机构 浏览:953
h5大转盘游戏源码 浏览:592
学校服务器地址查询 浏览:109
pythontutorial下载 浏览:524
pythonswampy示例 浏览:95
有没有什么语音讲书看书的app 浏览:995
文件夹怎么做标题 浏览:33
腾讯云服务器如何防止被攻击 浏览:881
六棱柱的体积算法 浏览:935
淘宝什么云服务器好用 浏览:340