导航:首页 > 源码编译 > 爬虫源码大全集

爬虫源码大全集

发布时间:2022-11-28 11:01:16

A. python网页解析库:用requests-html爬取网页

Python 中可以进行网页解析的库有很多,常见的有 BeautifulSoup 和 lxml 等。在网上玩爬虫的文章通常都是介绍 BeautifulSoup 这个库,我平常也是常用这个库,最近用 Xpath 用得比较多,使用 BeautifulSoup 就不大习惯,很久之前就知道 Reitz 大神出了一个叫 Requests-HTML 的库,一直没有兴趣看,这回可算歹着机会用一下了。

使用 pip install requests-html 安装,上手和 Reitz 的其他库一样,轻松简单:

这个库是在 requests 库上实现的,r 得到的结果是 Response 对象下面的一个子类,多个一个 html 的属性。所以 requests 库的响应对象可以进行什么操作,这个 r 也都可以。如果需要解析网页,直接获取响应对象的 html 属性:

不得不膜拜 Reitz 大神太会组装技术了。实际上 HTMLSession 是继承自 requests.Session 这个核心类,然后将 requests.Session 类里的 requests 方法改写,返回自己的一个 HTMLResponse 对象,这个类又是继承自 requests.Response,只是多加了一个 _from_response 的方法来构造实例:

之后在 HTMLResponse 里定义属性方法 html,就可以通过 html 属性访问了,实现也就是组装 PyQuery 来干。核心的解析类也大多是使用 PyQuery 和 lxml 来做解析,简化了名称,挺讨巧的。

元素定位可以选择两种方式:

方法名非常简单,符合 Python 优雅的风格,这里不妨对这两种方式简单的说明:

定位到元素以后势必要获取元素里面的内容和属性相关数据,获取文本:

获取元素的属性:

还可以通过模式来匹配对应的内容:

这个功能看起来比较鸡肋,可以深入研究优化一下,说不定能在 github 上混个提交。

除了一些基础操作,这个库还提供了一些人性化的操作。比如一键获取网页的所有超链接,这对于整站爬虫应该是个福音,URL 管理比较方便:

内容页面通常都是分页的,一次抓取不了太多,这个库可以获取分页信息:

结果如下:

通过迭代器实现了智能发现分页,这个迭代器里面会用一个叫 _next 的方法,贴一段源码感受下:

通过查找 a 标签里面是否含有指定的文本来判断是不是有下一页,通常我们的下一页都会通过 下一页 或者 加载更多 来引导,他就是利用这个标志来进行判断。默认的以列表形式存在全局: ['next','more','older'] 。我个人认为这种方式非常不灵活,几乎没有扩展性。 感兴趣的可以往 github 上提交代码优化。

也许是考虑到了现在 js 的一些异步加载,这个库支持 js 运行时,官方说明如下:

使用非常简单,直接调用以下方法:

第一次使用的时候会下载 Chromium,不过国内你懂的,自己想办法去下吧,就不要等它自己下载了。render 函数可以使用 js 脚本来操作页面,滚动操作单独做了参数。这对于上拉加载等新式页面是非常友好的。

B. 求《自己动手写网络爬虫(修订版)》全文免费下载百度网盘资源,谢谢~

《自己动手写网络爬虫(修订版) 》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1zsVIGi0y6tWLohjyVfelSg

?pwd=rsce 提取码: rsce
简介:主要包括从互联网获取信息与提取信息和对Web信息挖掘等内容,本书适用于有java程序设计基础的开发人员。同时也可以作为计算机相关专业本科生或研究生的参考教材

C. python怎么看源码进行网络爬虫

在我们日常上网浏览网页的时候,经常会看到一些好看的图片,我们就希望把这些图片保存下载,或者用户用来做桌面壁纸,或者用来做设计的素材。
我们最常规的做法就是通过鼠标右键,选择另存为。但有些图片鼠标右键的时候并没有另存为选项,还有办法就通过就是通过截图工具截取下来,但这样就降低图片的清晰度。好吧~!其实你很厉害的,右键查看页面源代码。
我们可以通过python 来实现这样一个简单的爬虫功能,把我们想要的代码爬取到本地。下面就看看如何使用python来实现这样一个功能。

一,获取整个页面数据

首先我们可以先获取要下载图片的整个页面信息。
getjpg.py

#coding=utf-8
import urllib

def getHtml(url):
page = urllib.urlopen(url)
html = page.read()
return html

html = getHtml("http://tieba..com/p/2738151262")

print html

Urllib 模块提供了读取web页面数据的接口,我们可以像读取本地文件一样读取www和ftp上的数据。首先,我们定义了一个getHtml()函数:
urllib.urlopen()方法用于打开一个URL地址。
read()方法用于读取URL上的数据,向getHtml()函数传递一个网址,并把整个页面下载下来。执行程序就会把整个网页打印输出。

二,筛选页面中想要的数据

Python 提供了非常强大的正则表达式,我们需要先要了解一点python 正则表达式的知识才行。
http://www.cnblogs.com/fnng/archive/2013/05/20/3089816.html

假如我们网络贴吧找到了几张漂亮的壁纸,通过到前段查看工具。找到了图片的地址,如:src=”https://gss0..com/70cFfyinKgQFm2e88IuM_a/forum......jpg”pic_ext=”jpeg”

修改代码如下:

import re
import urllib

def getHtml(url):
page = urllib.urlopen(url)
html = page.read()
return html

def getImg(html):
reg = r'src="(.+?\.jpg)" pic_ext'
imgre = re.compile(reg)
imglist = re.findall(imgre,html)
return imglist

html = getHtml("http://tieba..com/p/2460150866")
print getImg(html)

我们又创建了getImg()函数,用于在获取的整个页面中筛选需要的图片连接。re模块主要包含了正则表达式:
re.compile() 可以把正则表达式编译成一个正则表达式对象.
re.findall() 方法读取html 中包含 imgre(正则表达式)的数据。
运行脚本将得到整个页面中包含图片的URL地址。

三,将页面筛选的数据保存到本地

把筛选的图片地址通过for循环遍历并保存到本地,代码如下:

#coding=utf-8
import urllib
import re

def getHtml(url):
page = urllib.urlopen(url)
html = page.read()
return html

def getImg(html):
reg = r'src="(.+?\.jpg)" pic_ext'
imgre = re.compile(reg)
imglist = re.findall(imgre,html)
x = 0
for imgurl in imglist:
urllib.urlretrieve(imgurl,'%s.jpg' % x)
x+=1

html = getHtml("http://tieba..com/p/2460150866")

print getImg(html)

这里的核心是用到了urllib.urlretrieve()方法,直接将远程数据下载到本地。
通过一个for循环对获取的图片连接进行遍历,为了使图片的文件名看上去更规范,对其进行重命名,命名规则通过x变量加1。保存的位置默认为程序的存放目录。
程序运行完成,将在目录下看到下载到本地的文件。

D. Python爬虫如何写

先检查是否有API

API是网站官方提供的数据接口,如果通过调用API采集数据,则相当于在网站允许的范围内采集,这样既不会有道德法律风险,也没有网站故意设置的障碍;不过调用API接口的访问则处于网站的控制中,网站可以用来收费,可以用来限制访问上限等。整体来看,如果数据采集的需求并不是很独特,那么有API则应优先采用调用API的方式。

数据结构分析和数据存储

爬虫需求要十分清晰,具体表现为需要哪些字段,这些字段可以是网页上现有的,也可以是根据网页上现有的字段进一步计算的,这些字段如何构建表,多张表如何连接等。值得一提的是,确定字段环节,不要只看少量的网页,因为单个网页可以缺少别的同类网页的字段,这既有可能是由于网站的问题,也可能是用户行为的差异,只有多观察一些网页才能综合抽象出具有普适性的关键字段——这并不是几分钟看几个网页就可以决定的简单事情,如果遇上了那种臃肿、混乱的网站,可能坑非常多。

对于大规模爬虫,除了本身要采集的数据外,其他重要的中间数据(比如页面Id或者url)也建议存储下来,这样可以不必每次重新爬取id。

数据库并没有固定的选择,本质仍是将Python里的数据写到库里,可以选择关系型数据库MySQL等,也可以选择非关系型数据库MongoDB等;对于普通的结构化数据一般存在关系型数据库即可。sqlalchemy是一个成熟好用的数据库连接框架,其引擎可与Pandas配套使用,把数据处理和数据存储连接起来,一气呵成。

数据流分析

对于要批量爬取的网页,往上一层,看它的入口在哪里;这个是根据采集范围来确定入口,比如若只想爬一个地区的数据,那从该地区的主页切入即可;但若想爬全国数据,则应更往上一层,从全国的入口切入。一般的网站网页都以树状结构为主,找到切入点作为根节点一层层往里进入即可。

值得注意的一点是,一般网站都不会直接把全量的数据做成列表给你一页页往下翻直到遍历完数据,比如链家上面很清楚地写着有24587套二手房,但是它只给100页,每页30个,如果直接这么切入只能访问3000个,远远低于真实数据量;因此先切片,再整合的数据思维可以获得更大的数据量。显然100页是系统设定,只要超过300个就只显示100页,因此可以通过其他的筛选条件不断细分,只到筛选结果小于等于300页就表示该条件下没有缺漏;最后把各种条件下的筛选结果集合在一起,就能够尽可能地还原真实数据量。

明确了大规模爬虫的数据流动机制,下一步就是针对单个网页进行解析,然后把这个模式复制到整体。对于单个网页,采用抓包工具可以查看它的请求方式,是get还是post,有没有提交表单,欲采集的数据是写入源代码里还是通过AJAX调用JSON数据。

同样的道理,不能只看一个页面,要观察多个页面,因为批量爬虫要弄清这些大量页面url以及参数的规律,以便可以自动构造;有的网站的url以及关键参数是加密的,这样就悲剧了,不能靠着明显的逻辑直接构造,这种情况下要批量爬虫,要么找到它加密的js代码,在爬虫代码上加入从明文到密码的加密过程;要么采用下文所述的模拟浏览器的方式。

数据采集

之前用R做爬虫,不要笑,R的确可以做爬虫工作;但在爬虫方面,Python显然优势更明显,受众更广,这得益于其成熟的爬虫框架,以及其他的在计算机系统上更好的性能。scrapy是一个成熟的爬虫框架,直接往里套用就好,比较适合新手学习;requests是一个比原生的urllib包更简洁强大的包,适合作定制化的爬虫功能。requests主要提供一个基本访问功能,把网页的源代码给download下来。一般而言,只要加上跟浏览器同样的Requests Headers参数,就可以正常访问,status_code为200,并成功得到网页源代码;但是也有某些反爬虫较为严格的网站,这么直接访问会被禁止;或者说status为200也不会返回正常的网页源码,而是要求写验证码的js脚本等。

下载到了源码之后,如果数据就在源码中,这种情况是最简单的,这就表示已经成功获取到了数据,剩下的无非就是数据提取、清洗、入库。但若网页上有,然而源代码里没有的,就表示数据写在其他地方,一般而言是通过AJAX异步加载JSON数据,从XHR中找即可找到;如果这样还找不到,那就需要去解析js脚本了。

解析工具

源码下载后,就是解析数据了,常用的有两种方法,一种是用BeautifulSoup对树状HTML进行解析,另一种是通过正则表达式从文本中抽取数据。

BeautifulSoup比较简单,支持Xpath和CSSSelector两种途径,而且像Chrome这类浏览器一般都已经把各个结点的Xpath或者CSSSelector标记好了,直接复制即可。以CSSSelector为例,可以选择tag、id、class等多种方式进行定位选择,如果有id建议选id,因为根据HTML语法,一个id只能绑定一个标签。

正则表达式很强大,但构造起来有点复杂,需要专门去学习。因为下载下来的源码格式就是字符串,所以正则表达式可以大显身手,而且处理速度很快。

对于HTML结构固定,即同样的字段处tag、id和class名称都相同,采用BeautifulSoup解析是一种简单高效的方案,但有的网站混乱,同样的数据在不同页面间HTML结构不同,这种情况下BeautifulSoup就不太好使;如果数据本身格式固定,则用正则表达式更方便。比如以下的例子,这两个都是深圳地区某个地方的经度,但一个页面的class是long,一个页面的class是longitude,根据class来选择就没办法同时满足2个,但只要注意到深圳地区的经度都是介于113到114之间的浮点数,就可以通过正则表达式"11[3-4].\d+"来使两个都满足。

数据整理

一般而言,爬下来的原始数据都不是清洁的,所以在入库前要先整理;由于大部分都是字符串,所以主要也就是字符串的处理方式了。

字符串自带的方法可以满足大部分简单的处理需求,比如strip可以去掉首尾不需要的字符或者换行符等,replace可以将指定部分替换成需要的部分,split可以在指定部分分割然后截取一部分。

如果字符串处理的需求太复杂以致常规的字符串处理方法不好解决,那就要请出正则表达式这个大杀器。

Pandas是Python中常用的数据处理模块,虽然作为一个从R转过来的人一直觉得这个模仿R的包实在是太难用了。Pandas不仅可以进行向量化处理、筛选、分组、计算,还能够整合成DataFrame,将采集的数据整合成一张表,呈现最终的存储效果。

写入数据库

如果只是中小规模的爬虫,可以把最后的爬虫结果汇合成一张表,最后导出成一张表格以便后续使用;但对于表数量多、单张表容量大的大规模爬虫,再导出成一堆零散的表就不合适了,肯定还是要放在数据库中,既方便存储,也方便进一步整理。

写入数据库有两种方法,一种是通过Pandas的DataFrame自带的to_sql方法,好处是自动建表,对于对表结构没有严格要求的情况下可以采用这种方式,不过值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否则报错,虽然这个认为不太合理;另一种是利用数据库引擎来执行SQL语句,这种情况下要先自己建表,虽然多了一步,但是表结构完全是自己控制之下。Pandas与SQL都可以用来建表、整理数据,结合起来使用效率更高。

E. python 爬虫代码 有了爬虫代码怎么运行

F. python爬虫入门教程全集

链接:

提取码:2b6c

课程简介

毕业不知如何就业?工作效率低经常挨骂?很多次想学编程都没有学会?

Python 实战:四周实现爬虫系统,无需编程基础,二十八天掌握一项谋生技能。

带你学到如何从网上批量获得几十万数据,如何处理海量大数据,数据可视化及网站制作。

课程目录

开始之前,魔力手册 for 实战学员预习

第一周:学会爬取网页信息

第二周:学会爬取大规模数据

第三周:数据统计与分析

第四周:搭建 Django 数据可视化网站

......

G. Java源码 实现网络爬虫

//Java爬虫demo

importjava.io.File;
importjava.net.URL;
importjava.net.URLConnection;
importjava.nio.file.Files;
importjava.nio.file.Paths;
importjava.util.Scanner;
importjava.util.UUID;
importjava.util.regex.Matcher;
importjava.util.regex.Pattern;

publicclassDownMM{
publicstaticvoidmain(String[]args)throwsException{
//out为输出的路径,注意要以\结尾
Stringout="D:\JSP\pic\java\";
try{
Filef=newFile(out);
if(!f.exists()){
f.mkdirs();
}
}catch(Exceptione){
System.out.println("no");
}

Stringurl="http://www.mzitu.com/share/comment-page-";
Patternreg=Pattern.compile("<imgsrc="(.*?)"");
for(intj=0,i=1;i<=10;i++){
URLuu=newURL(url+i);
URLConnectionconn=uu.openConnection();
conn.setRequestProperty("User-Agent","Mozilla/5.0(WindowsNT6.3;WOW64;Trident/7.0;rv:11.0)likeGecko");
Scannersc=newScanner(conn.getInputStream());
Matcherm=reg.matcher(sc.useDelimiter("\A").next());
while(m.find()){
Files.(newURL(m.group(1)).openStream(),Paths.get(out+UUID.randomUUID()+".jpg"));
System.out.println("已下载:"+j++);
}
}
}
}

H. 10分钟入门爬虫-小说网站爬取

三月份到四月初花了很长的时间看了一本小说—《明朝那些事儿》,几乎一整个月的时间都在看,越看越入迷,这就是小说的魅力吧。

故事从朱元璋的乞讨要饭开始,经过不断地残酷战争,击败各种对手,建立了明朝;再到后来燕王朱棣起兵造反,接着戚继光抗击倭寇;后来又有明朝出现了最有名的内阁首辅大臣—张居正,大刀阔斧地进行改革,明朝进入鼎盛时期;最后清朝入关,明朝还是败在了崇祯的手上,准确的说是:注定会败在他的手上。正如文中写到的那样:

书讲述的不仅仅是历史, 权利、希望、痛苦、气节、孤独、残暴、邪恶、忍耐、坚持、真理、忠诚 ……在书中样样都有。在书的最后,作者写了一首诗,摘录在这里:

本文介绍的如何使用Python爬取一个网站上关于这本书的部分章节。

网站首页: https://www.kanunu8.com/

爬取主链接: https://www.kanunu8.com/files/chinese/201102/1777.html

1、章节标题

2、章节正文内容

以第一章为例:我们点击“第一章 童年”可以进入第一章的正文部分。

看看最终爬取到的数据。在 本地目录 下生成的一个文件夹:《明朝那些事儿》下面就有我们爬取到的33个章节的内容,包含前言和引子部分。

在本次爬虫中使用到的相关库

分析一下网页的规律

发现了规律:每个章节的页面都有自己的URL后缀加以区分。看下网页源码找出URL地址:

上面已经发现了每个章节的URL地址的后缀

正则写的不太好,地址还需要切片一次

首页源码返回内容解析的结果:

切片之后的有效URL地址:

I. 求《Python爬虫开发与项目实战》全文免费下载百度网盘资源,谢谢~

《Python爬虫开发与项目实战》网络网盘pdf最新全集下载:
链接:https://pan..com/s/19EBPJyIqsf42K2PjHi-WGw

?pwd=ys9q 提取码:ys9q
简介:Python爬虫开发与项目实战从基本的爬虫原理开始讲解,通过介绍Pthyon编程语言与HTML基础知识引领读者入门,之后根据当前风起云涌的云计算、大数据热潮,重点讲述了云计算的相关内容及其在爬虫中的应用,进而介绍如何设计自己的爬虫应用。

阅读全文

与爬虫源码大全集相关的资料

热点内容
java栈的元素 浏览:737
程序员与篮球事件 浏览:673
app反编译不完整 浏览:788
电脑上的文件夹怎么调整 浏览:5
服务器无响应是什么原因呀 浏览:984
wd文档里的app怎么制作 浏览:513
电脑里的文件夹没有了一般能恢复吗 浏览:418
哪里有配加密钥匙的 浏览:210
服务器开不了机怎么把数据弄出来 浏览:958
gif动态图片怎么压缩 浏览:521
黑猴子棒球压缩文件解压密码 浏览:631
如何让app适应不同的手机屏幕大小 浏览:10
苹果手机如何给安卓手机分享软件 浏览:761
苹果电脑怎么运行腾讯云服务器 浏览:59
明日之后沙石堡命令助手 浏览:261
蛋糕店用什么样的app 浏览:877
长安银行信用卡app怎么取现 浏览:635
dos命令cmd命令的 浏览:226
阿里云存档视频文件的服务器 浏览:194
ftp修改文件权限命令 浏览:491