导航:首页 > 源码编译 > 滤波输出算法

滤波输出算法

发布时间:2022-11-29 02:19:32

① 频率域快速数字滤波方法

1.频率域滤波的步骤

(1)对已知地震记录道进行频谱分析

设已知地震记录x(t),如图9-2-1,包含了有效波s(t)和干扰波n(t)。对此地震记录道进行频谱分析,有效波频率成分在ω1~ω2范围,干扰波在ω3~ω4范围,两者基本上是分开的。见图9-2-2。

(2)设计合适的滤波器

为了滤去干扰波的频谱成分,需要设计一个带通滤波器(图9-2-3),即在频率ω1~ω2范围|H(ω)|=1,在其他频率范围|H(ω)|=0,这个滤波器可表示如下:

物探数字信号分析与处理技术

(3)进行滤波运算

根据滤波方程,对地震记录道x(t)进行滤波,相当于令x(t)的谱X(ω)与滤波器的频率特性H(ω)相乘,得到 ,相乘后的谱 中消除了干扰波成分,见图9-2-4。

图9-2-1 滤波前地震记录道

图9-2-2 地震记录的频谱

(4)对输出信号谱 进行傅立叶反变换,得到滤波后的输出 ,见图9-2-5。频率滤波的过程可以归纳为以下的数学运算:

物探数字信号分析与处理技术

图9-2-3 带通滤波器

图9-2-4 滤波后地震记录道频谱

图9-2-5 滤波后地震记录道

可见,要进行频率滤波,必须进行两次傅立叶变换,即正、反傅立叶变换。由于采用了快速算法,运算时间大大减少,频率域滤波得到广泛应用。

2.用快速傅立叶变换进行滤波的几个问题

(1)周期性

已知正、反离散傅立叶变换(DFT)公式如式(9-2-2)和(9-2-3)

物探数字信号分析与处理技术

式中N是时间域抽样点个数,也是计算出的频率抽样个数,由连续傅立叶变换过渡到离散傅立叶变换时使用了

物探数字信号分析与处理技术

则(9-2-2)和(9-2-3)可以写成一种形式,即

物探数字信号分析与处理技术

(9-2-4)是完成一对DFT的条件,否则就不能进行正、反傅立叶变换的对应计算。可以看出,N就是傅立叶变换的频率抽样点周期,由(9-2-2)式可写出

物探数字信号分析与处理技术

由于

所以

物探数字信号分析与处理技术

(9-2-6)表示X(m)确是以N为频率抽样点数的周期,它表示应用(9-2-2)式计算X(m)时,如果给定的x(n)是N个值,那么只要计算N个X(m)就行了,再多计算就重复

了。见图9-2-6。例如N=50时,

X(0)=X(50)

X(1)=X(51)

……………………

X(49)=X(99)

图9-2-6 频谱图形

在m=0~49一段是计算出的X(m)值,由于以N=50为周期,m=50~99一段与m=0~49是重复的,这就出现了因离散而出现的伪门现象。因此公式(9-2-4)中的参数N,在编制程序时要选择好,应既是x(n)的抽样个数,也是计算X(m)的个数,又是频率抽样个数的周期。它必须满足条件 ,即在编制程序计算X(m)或x(n)时,选择参数Δt,Δf和N必须满足式(9-2-4)。同时周期性告诉我们,在进行快速傅立叶变换时,只要计算N个值就行了,再多计算就重复了。

(2)对称性

对称性是指当x(n)是实数序列时,计算出的频谱满足

物探数字信号分析与处理技术

证明:由式(9-2-2)可知

物探数字信号分析与处理技术

由于

所以得到

物探数字信号分析与处理技术

此式表明,N-m点处的频率对应的频谱值X(N-m)和m点处频率对应的频谱值是共轭关系,X(m)与X(N-m)共轭,其模是相等的

物探数字信号分析与处理技术

例如当N=50时,m=26~50一段的|X(m)|值与m=0~24一段的|X(m)|形状对称。这说明当x(n)取实数序列时,复变谱共轭,振幅谱对称于N/2点处,见图9-12的频谱图形。

3.用FFT算法实现频率域数字滤波的具体方法

1)首先确定理想滤波器的频率特性,起始频率ω1和终止频率ω2,对ω1和ω2要求是在频率间隔的整数倍处;

2)对给定的记录x(n),(n=0,1,…,N-1),取N=2m的离散点数做FFT,计算复变谱X(m)(m=1,1,2,…,N-1),在内存中开辟两个区,一个区存入复变谱的实部,一个区存入复变谱的虚部;

3)按照滤波器的起始频率和频带宽度,对给定的复变谱实部和虚部将要滤去的频率成分充零,得到新的复变谱 的实部和虚部;

物探数字信号分析与处理技术

4)再对 做反傅立叶变换,得到滤波后的地震记录

物探数字信号分析与处理技术

下面举例说明以上步骤。例如,有一时间序列x(n)(n=0,0,1,1,1,1,0,0),抽样间隔为Δt=10ms,N=8,要求用频率滤波滤去0,12.5Hz分量,求x^(n)。

①对x(n)做正傅立叶变换FFT,见表9-2-1。

表9-2-1 对x(n)做正变换数据

由于时间抽样间隔Δt的倒数和频率抽样间隔Δf相差N倍,所以此处重排时要被N除。由此得到xn的复变谱X(m),见图9-2-7,由于N=8,Δt=0.01ms,所以Δf=12.5Hz。

②对复变谱X(m)进行频率滤波,为了滤去0、12.5Hz的频率分量,将0、12.5Hz及87.5Hz对应的X(m)值充零,得到滤波后的频谱 ,见表9-2-2。

表9-2-2 滤波后的频谱

根据表9-2-2计算出的振幅谱见图9-2-8。

图9-2-7 x(n)的离散复变谱

图9-2-8 滤波后的振幅谱

③对滤波后的频谱 做反傅立叶变换得到所要求的输出 ,见表9-2-3。

根据表9-2-3作出的振动图形见图9-2-9。

表9-2-3 输出 的数据

④为了验证 与 的对应关系,再对 做一次正傅立叶变换FFT,根据表9-3计算振幅谱作图9-2-9与图9-2-8相同。

由以上例子可以得到以下几点:

a.FFT全部是复数运算;

b.计算出的复变谱以N/2为中心,有共轭关系;

c.频率滤波时,对滤去的频率分量fk充0,同时对fN-k的频率分量也要充0,否则不能进行反变换。

图9-2-9 滤波后的振动图形

② 简述数字滤波技术,其算法有哪些

1、定义
所谓数字滤波,
就是通过一定的计算或判断程序减少干扰在有用信号中的比重。
故实质上它是一种程序滤波。
2、算法
算术平均值法、
中位值滤波法、
限幅滤波法、
惯性滤波法。

③ FIR滤波器算法

FIR滤波器(有限长度冲击响应)是全零点型滤波器,其实现形式如下:
y[n] = a0*x[n] + a1*x[n-1] + ... + a10*x[n-10];
这里 x 是输入序列,y 是输出序列。里面的 a0 到 a10 对应你的11个系数。你要求第500个点对应的输出,那么 n 取500,系数应该乘以自输入点起,最近的11个值,即 x[500],x[499],x[498]...而不是500两侧的11个数。
通过 matlab 的 help 你能得到更全面的解释。
希望对你有帮助

④ 开关电源输出滤波电容容值如何计算

该问题涉及到一个算法问题,简单思考一下 (多谢二楼的提出)
首先我们确定纹波电流,假设纹波电流为输出电流的20%(开关电源常用此参数),得出
纹波电流 I= 1A*0.2 =200MA
纹波电压,一般为输出电压的0.3%-0.4%左右,得出
纹波电压 V= 7.5V*(0.3%-0.5%) =22.5-37.5mV
电容阻抗:ESR=V/I=0.1125-0.1875
假设开关的工作频率为100-200KHz,实际上此电路只需选用1000uF左右的电容就可以了

显然原电路设计比较合理,按1000U与220U并联,尽量减少电路中电容的ESR,实际的纹波在23.4mV(理想状态)

补充,细节问题会在网络HI与你说明

⑤ 滤波在数学上是如何实现的

单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。

采用数字滤波算法克服随机干扰的误差具有以下优点:

1、数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。
2、数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统开支。
3、只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这对于滤除低频干扰和随机信号会有较大的效果。
4、在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤波法、加权平均滤波法、滑动平均滤波等。

(1)限幅滤波算法

该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则取上次采样值作为本次数据的样本。

算法的程序代码如下:

#defineA //允许的最大差值
chardata; //上一次的数据
char filter()
{
chardatanew; //新数据变量
datanew=get_data(); //获得新数据变量
if((datanew-data)>A||(data-datanew>A))
return data;
else
returndatanew;
}

说明:限幅滤波法主要用于处理变化较为缓慢的数据,如温度、物体的位置等。使用时,关键要选取合适的门限制A。通常这可由经验数据获得,必要时可通过实验得到。

(2)中值滤波算法

该运算的过程是对某一参数连续采样N次(N一般为奇数),然后把N次采样的值按从小到大排列,再取中间值作为本次采样值,整个过程实际上是一个序列排序的过程。

算法的程序代码如下:
#define N11 //定义获得的数据个数
char filter()
{
charvalue_buff[N]; //定义存储数据的数组
char count,i,j,temp;
for(count=0;count
{
value_buf[count]=get_data();
delay(); //如果采集数据比较慢,那么就需要延时或中断
}
for(j=0;j
{
for(value_buff[i]>value_buff[i+1]
{
temp=value_buff[i];
value_buff[i]=value_buff[i+1];
value_buff[i+1]=temp;
}
}
returnvalue_buff[(N-1)/2];
}

说明:中值滤波比较适用于去掉由偶然因素引起的波动和采样器不稳定而引起的脉动干扰。若被测量值变化比较慢,采用中值滤波法效果会比较好,但如果数据变化比较快,则不宜采用此方法。

(3)算术平均滤波算法

该算法的基本原理很简单,就是连续取N次采样值后进行算术平均。
算法的程序代码如下:
char filter()
{
int sum=0;
for(count=0;count
{
sum+=get_data();
delay():
}
return (char)(sum/N);
}

说明:算术平均滤波算法适用于对具有随机干扰的信号进行滤波。这种信号的特点是有一个平均值,信号在某一数值附近上下波动。信号的平均平滑程度完全到决于N值。当N较大时,平滑度高,灵敏度低;当N较小时,平滑度低,但灵敏度高。为了方便求平均值,N一般取4、8、16、32之类的2的整数幂,以便在程序中用移位操作来代替除法。

(4)加权平均滤波算法

由于前面所说的“算术平均滤波算法”存在平滑度和灵敏度之间的矛盾。为了协调平滑度和灵敏度之间的关系,可采用加权平均滤波。它的原理是对连续N次采样值分别乘上不同的加权系数之后再求累加,加权系数一般先小后大,以突出后面若干采样的效果,加强系统对参数变化趋势的认识。各个加权系数均小于1的小数,且满足总和等于1的结束条件。这样加权运算之后的累加和即为有效采样值。其中加权平均数字滤波的数学模型是:

式中:D为N个采样值的加权平均值:XN-i为第N-i次采样值;N为采样次数;Ci为加权系数。加权系数Ci体现了各种采样值在平均值中所占的比例。一般来说采样次数越靠后,取的比例越大,这样可增加新采样在平均值中所占的比重。加权平均值滤波法可突出一部分信号抵制另一部分信号,以提高采样值变化的灵敏度。

样例程序代码如下:

char codejq[N]={1,2,3,4,5,6,7,8,9,10,11,12}; //code数组为加权系数表,存在程序存储区
char codesum_jq=1+2+3+4+5+6+7+8+9+10+11+12;
char filter()
{
char count;
char value_buff[N];
int sum=0;
for(count=0;count
{
value_buff[count]=get_data();
delay();
}
for(count=0;count
sum+=value_buff[count]*jq[count];
return(char)(sum/sum_jq);
}

(5)滑动平均滤波算法

以上介绍和各种平均滤波算法有一个共同点,即每获取一个有效采样值必须连续进行若干次采样,当采速度慢时,系统的实时得不到保证。这里介绍的滑动平均滤波算法只采样一次,将一次采样值和过去的若干次采样值一起求平均,得到的有效采样值即可投入使用。如果取N个采样值求平均,存储区中必须开辟N个数据的暂存区。每新采集一个数据便存入暂存区中,同时去掉一个最老数据,保存这N个数据始终是最新更新的数据。采用环型队列结构可以方便地实现这种数据存放方式。

程序代码如下:
char value_buff[N];
char i=0;
char filter()
{
char count;
int sum=0;
value_buff[i++]=get_data();
if(i==N)
i=0;
for(count=0;count
sum=value_buff[count];
return (char)(sum/N);
}

(6)低通滤波

将普通硬件RC低通滤波器的微分方程用差分方程来表求,变可以采用软件算法来模拟硬件滤波的功能,经推导,低通滤波算法如下:

Yn=a* Xn+(1-a) *Yn-1
式中 Xn——本次采样值
Yn-1——上次的滤波输出值;
,a——滤波系数,其值通常远小于1;
Yn——本次滤波的输出值。

由上式可以看出,本次滤波的输出值主要取决于上次滤波的输出值(注意不是上次的采样值,这和加权平均滤波是有本质区别的),本次采样值对滤波输出的贡献是比较小的,但多少有些修正作用,这种算法便模拟了具体有教大惯性的低通滤波器功能。滤波算法的截止频率可用以下式计算:

fL=a/2Pit pi为圆周率3.14…
式中 a——滤波系数;
, t——采样间隔时间;
例如:当t=0.5s(即每秒2次),a=1/32时;
fL=(1/32)/(2*3.14*0.5)=0.01Hz

当目标参数为变化很慢的物理量时,这是很有效的。另外一方面,它不能滤除高于1/2采样频率的干搅信号,本例中采样频率为2Hz,故对1Hz以上的干搅信号应采用其他方式滤除,

低通滤波算法程序于加权平均滤波相似,但加权系数只有两个:a和1-a。为计算方便,a取一整数,1-a用256-a,来代替,计算结果舍去最低字节即可,因为只有两项,a和1-a,均以立即数的形式编入程序中,不另外设表格。虽然采样值为单元字节(8位A/D)。为保证运算精度,滤波输出值用双字节表示,其中一个字节整数,一字节小数,否则有可能因为每次舍去尾数而使输出不会变化。
设Yn-1存放在30H(整数)和31H(小数)两单元中,Yn存放在32H(整数)和33H(小数)中。滤波程序如下:
虽千万里,吾往矣。

⑥ 图像处理之双边滤波算法

双边滤波是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折中处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的,具有简单、非迭代、局部处理的特点。之所以能够达到保边去噪的滤波效果是因为滤波器由两个函数构成:

一个函数是像素欧式距离决定滤波器模板的系数,另一个是由像素的灰度差值决定滤波器模板的系数。

其综合了高斯滤波器(Gaussian Filter)和α-截尾均值滤波器(Alpha-Trimmed mean Filter)的特点。高斯滤波器只考虑像素间的欧式距离,其使用的模板系数随着和窗口中心的距离增大而减小;Alpha截尾均值滤波器则只考虑了像素灰度值之间的差值,去掉α%的最小值和最大值后再计算均值。

双边滤波器使用二维高斯函数生成距离模板,使用一维高斯函数生成值域模板。

双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,其公式如下:

其中(k,l)为模板窗口的中心坐标;(i,j)为模板窗口的其他系数的坐标;σd为高斯函数的标准差。 使用该公式生成的滤波器模板和高斯滤波器使用的模板是没有区别的。

值域模板系数的生成公式如下:

其中,函数f(x,y)表示要处理的图像,f(x,y)表示图像在点(x,y)处的像素值;(k,l)为模板窗口的中心坐标;(i,j)为模板窗口的其他系数的坐标;σr为高斯函数的标准差。

将上述两个模板相乘就得到了双边滤波器的模板,其公式如下:

⑦ 低通滤波器的设计和计算

低通滤波器设计原理是:容许低于截止频率的信号通过, 但高于截止频率的信号不能通过。

低通滤波器概念有许多不同的形式,包括电子线路(如音频设备中使用的hiss 滤波器)、平滑数据的数字算法、音障、图像模糊处理等等,这两个工具都通过剔除短期波动、保留长期发展趋势提供了信号的平滑形式。它信号处理中的作用等同于其它领域如金融领域中移动平均数所起的作用。

计算:低通滤波器允许从直流到某个截止频率的信号通过。将通用滤波器二阶传递函数的高通和带通系数均设为零,即得到一个二阶低通滤波器传递公式:对于高于f0的频率,信号按该频率平方的速率下降。在频率f0处,阻尼值使输出信号衰减。

假定设计要求一个截止频率为10kHz的四阶贝塞尔(Bessel) 低通滤波器。每部分的转降频率分别为16.13及18.19 kHz,阻尼值分别为1.775及0.821,并且这两个滤波器分区的高通、带通和低通系数分别为0、0与1。

(7)滤波输出算法扩展阅读:

低通滤波器应用实例:

1、一个固体屏障就是一个声波的低通滤波器。当另外一个房间中播放音乐时,很容易听到音乐的低音,但是高音部分大部分被过滤掉了。

2、电子低通滤波器用来驱动重低音喇叭(subwoofer)和其它类型的扩音器、并且阻塞它们不能有效传播的高音节拍。

3、无线电发射机使用低通滤波器阻塞可能引起与其它通信发生干扰的谐波发射。

4、DSL分离器使用低通和高通滤波器分离共享使用双绞线的DSL和POTS信号。

5、低通滤波器也在如Roland公司这样的模拟合成器(synthesiser)合成的电子音乐声音处理中发挥着重要的作用。

⑧ 平滑滤波的滤波方法

图像的噪声滤波器有很多种,常用的有线性滤波器,非线性滤波器。采用线性滤波如邻域平滑滤波,对受到噪声污染而退化的图像复原,在很多情况下是有效的。但大多数线性滤波器具有低通特性,去除噪声的同时也使图像的边缘变模糊了。而另一种非线性滤波器如中值滤波,在一定程度上可以克服线性滤波器所带来的图像模糊问题,在滤除噪声的同时,较好地保留了图像的边缘信息。
邻域平滑滤波原理
邻域平均法[2]是一种利用Box模版对图像进行模版操作(卷积运算)的图像平滑方法,所谓Box模版是指模版中所有系数都取相同值的模版,常用的3×3和5×5模版如下:
邻域平均法的数学含义是:
(式4-1)
式中:x,y=0,1,…,N-1;S是以(x,y)为中心的邻域的集合,M是S内的点数。
邻域平均法的思想是通过一点和邻域内像素点求平均来去除突变的像素点,从而滤掉一定噪声,其优点是算法简单,计算速度快,其代价会造成图像在一定程度上的模糊。

中值滤波原理
中值滤波[2]就是用一个奇数点的移动窗口,将窗口的中心点的值用窗口内的各点中值代替。假设窗口内有五点,其值为80、90、200、110和120,那么此窗口内各点的中值及为110。
设有一个一维序列f1,f2,…,fn,取窗口长度(点数)为m(m为奇数),对其进行中值滤波,就是从输入序列中相继抽出m个数fi-v,…,fi-1,fi,fi+1,…,fi+v(其中fi为窗口中心值,v=(m-1)/2),再将这m个点按其数值大小顺序排序,取其序号的中心点的那个数作为滤波输出。数学公式表示为:
Yi=Med{fi-v,…,fi-1,fi,fi+1,…,fi+v} i∈N v=(m-1)/2 (式4-2)
Yi称为序列fi-v,…,fi-1,fi,fi+1,…,fi+v的中值
例如,有一序列{0,3,4,0,7},重新排序后为{0,0,3,4,7}则Med{0,0,3,4,7}=3。此列若用平滑滤波,窗口也取5,那么平滑滤波输出为(0+3+4+0+7)/5=2.8。
把一个点的特定长度或形状的邻域称作窗口。在一维情况下,中值滤波器是一个含有奇数个像素的滑动窗口。中值滤波很容易推广到二维,此时可以利用二维形式的窗口。
对于平面图像采用的二维中值滤波可以由下式表示:
(式4-3)
式中:A为窗口,{fij}为二维数据序列,即数字图像各点的灰度值。
对于本系统,由于采集到的是24位真彩色图像,每个像素点分别有R、G、B三个灰度分量,故要在窗口内分别找到这三个分量的中值,分别用这三个中值去代替窗口中心像素点的R、G、B三个灰度分量的值。

⑨ 软件滤波的算法

1、限幅滤波法(又称程序判断滤波法)
A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效。如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值
B、优点:能有效克服因偶然因素引起的脉冲干扰。
C、缺点:无法抑制那种周期性的干扰,平滑度差。
2、中位值滤波法
A、方法:连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。
B、优点:能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。
C、缺点:对流量、速度等快速变化的参数不宜。
3、算术平均滤波法
A、方法:连续取N个采样值进行算术平均运算。N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高。N值的选取:一般流量,N=12;压力:N=4
B、优点:适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。
C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM。
4、递推平均滤波法(又称滑动平均滤波法)
A、方法:把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则),把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4
B、优点:对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统。
C、缺点:灵敏度低 ,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
A、方法:相当于“中位值滤波法”+“算术平均滤波法”。连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。N值的选取:3~14
B、优点:融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
C、缺点:测量速度较慢,和算术平均滤波法一样,比较浪费RAM。
6、限幅平均滤波法
A、方法:相当于“限幅滤波法”+“递推平均滤波法”,每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理。
C、缺点:比较浪费RAM。
7、一阶滞后滤波法
A、方法:取a=0~1,本次滤波结果=(1-a)*本次采样值+a*上次滤波结果。
B、优点:对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合。
C、缺点: 相位滞后,灵敏度低,滞后程度取决于a值大小,不能消除滤波频率高于采样频率的1/2的干扰信号。
8、加权递推平均滤波法
A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权。通常是,越接近现时刻的数据,权取得越大。给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。
B、优点:适用于有较大纯滞后时间常数的对象和采样周期较短的系统。
C、缺点:对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号不能迅速反应系统当前所受干扰的严重程度,滤波效果差。
9、消抖滤波法
A、方法:设置一个滤波计数器将每次采样值与当前有效值比较:如果采样值=当前有效值,则计数器清零如果采样值<>当前有效判断计数器是否>=上限N(溢出),如果计数器溢出,则将本次值替换当前有效值,并清计数器 。
B、优点:对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。
C、缺点:对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。
10、限幅消抖滤波法
A、方法:相当于“限幅滤波法”+“消抖滤波法” 先限幅,后消抖。
B、优点: 继承了“限幅”和“消抖”的优点改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统。
C、缺点:对于快速变化的参数不宜。
11、IIR 数字滤波器
A. 方法:确定信号带宽, 滤之。 Y(n) = a1*Y(n-1) + a2*Y(n-2) + . + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X(n-2) + . + bk*X(n-k)。
B. 优点:高通,低通,带通,带阻任意。设计简单(用matlab)
C. 缺点:运算量大。

⑩ 什么是滤波算法

卡尔曼滤波器(Kalman Filter)是一个最优化自回归数据处理算法(optimal recursive data processing algorithm)。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:

X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

Y(k) = H(k)·X(k)+N(k)

其中

X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

F(k,k-1)为状态转移矩阵

U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵

H(k)为k时刻观测矩阵

N(k)为k时刻观测噪声

则卡尔曼滤波的算法流程为:

预估计X(k)^= F(k,k-1)·X(k-1)

计算预估计协方差矩阵
C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
Q(k) = U(k)×U(k)'

计算卡尔曼增益矩阵
K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
R(k) = N(k)×N(k)'

更新估计
X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]

计算更新后估计协防差矩阵
C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'

X(k+1) = X(k)~
C(k+1) = C(k)~

阅读全文

与滤波输出算法相关的资料

热点内容
文件夹怎么做标题 浏览:31
腾讯云服务器如何防止被攻击 浏览:879
六棱柱的体积算法 浏览:933
淘宝什么云服务器好用 浏览:340
pythonoa项目 浏览:307
android杜比音效 浏览:341
杀手47为什么连接不了服务器 浏览:108
静态路径命令 浏览:533
一直编译不过怎么办 浏览:829
汽车串联并联算法 浏览:458
助眠解压的声音音频小哥哥 浏览:277
pythoncmd换行 浏览:376
linux取消行号 浏览:355
安卓原生系统官网是什么 浏览:444
底部主图源码 浏览:878
服务器崩了有什么提示 浏览:780
远程海康服务器用什么浏览器 浏览:232
解压报纸图片 浏览:956
python微信公众号开发平台 浏览:895
知识付费网站java源码 浏览:255