导航:首页 > 源码编译 > kmeans改进算法

kmeans改进算法

发布时间:2022-11-29 02:22:33

❶ K-means的算法缺点

① 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。这也是 K-means 算法的一个不足。有的算法是通过类的自动合并和分裂,得到较为合理的类型数目 K,例如 ISODATA 算法。关于 K-means 算法中聚类数目K 值的确定在文献中,是根据方差分析理论,应用混合 F统计量来确定最佳分类数,并应用了模糊划分熵来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵的 RPCL 算法,并逐步删除那些只包含少量训练数据的类。而文献中使用的是一种称为次胜者受罚的竞争学习规则,来自动决定类的适当数目。它的思想是:对每个输入而言,不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。
② 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响,一旦初始值选择的不好,可能无法得到有效的聚类结果,这也成为 K-means算法的一个主要问题。对于该问题的解决,许多算法采用遗传算法(GA),例如文献 中采用遗传算法(GA)进行初始化,以内部聚类准则作为评价指标。
③ 从 K-means 算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。所以需要对算法的时间复杂度进行分析、改进,提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的侯选集。而在文献中,使用的 K-means 算法是对样本数据进行聚类,无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

❷ 聚类算法--KMeans

    与分类、序列标注等任务不同,聚类是在事先并不知道任何样本标签的情况下,通过数据之间的内在关系把样本划分为若干类别,使得同类别样本之间的相似度高,不同类别之间的样本相似度低(即增大类内聚,减少类间距)。    

    聚类属于非监督学习,K均值聚类是最基础常用的聚类算法。它的基本思想是,通过迭代寻找K个簇(Cluster)的一种划分方案,使得聚类结果对应的损失函数最小。其中,损失函数可以定义为各个样本距离所属簇中心点的误差平方和。

其中 代表第i个样本, 是 所属的簇,  代表簇对应的中心点,M是样本总数。

相关概念:

    K值: 要得到的簇的个数。

    质心: 每个簇的均值向量。即向量各维取平均即可。

    距离量度: 常用欧几里得距离和余弦相似度(先标准化)。

    KMeans的主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。

    KMeans的核心目标是将给定的数据集划分成K个簇(K是超餐),并给出每个样本数据对应的中心点。具体步骤非常简单:

    (1)首先确定一个K值,即我们希望将数据集经过聚类得到k个集合。

    (2)从数据集中随机选择K个数据点作为质心。

    (3)对数据集中每一个点,计算其与每一个质心的距离(如欧式距离),离哪个质心近,就划分到哪个质心所属的集合。

    (4)把所有数据归好集合后,一共有K个集合。然后重新计算每个集合的质心。

    (5)如果新计算出来的质心和原来的质心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),我们可以认为聚类已经达到期望的结果,算法终止。

    (6)如果新质心和原质心距离变化很大,需要迭代3-5步骤。

KMeans最核心的部分是先固定中心点,调整每个样本所属的类别来减少J;再固定每个样本的类别,调整中心点继续减小J。两个过程交替循环,J单调递减直到极小值,中心点和样本划分的类别同时收敛。

KMeans的优点 :

 高效可伸缩,计算复杂度为O(NKt)接近于线性(N是数据量,K是聚类总数,t是迭代轮数)。

 收敛速度快,原理相对通俗易懂,可解释性强。

当结果簇是密集的,而簇与簇之间区别是明显时,他的效果较好。主要需要调参的参数仅仅是簇数K。

缺点 :

 受初始值和异常点影响,聚类结果可能不是全局最优而是局部最优。K-Means算法对初始选取的质心点是敏感的,不同的随机种子点得到的聚类结果完全不同,对结果影响很大。

 K是超参数,一般需要按经验选择。

 对噪音和异常点比较的敏感,用来检测异常值。

 只能发现球状的簇。在K-Means中,我们用单个点对cluster进行建模,这实际上假设各个cluster的数据是呈高维球型分布的,但是在生活中出现这种情况的概率并不算高。例如,每一个cluster是一个一个的长条状的,K-Means的则根本识别不出来这种类别( 这种情况可以用GMM )。实际上,K-Means是在做凸优化,因此处理不了非凸的分布。

根据以上特点,我们可以从下面几个角度对算法做调优。

(1)数据预处理:归一化和异常点过滤

    KMeans本质是一种基于欧式距离度量的数据划分方法,均值和方差大的维度将对数据的聚类结果产生决定性影响 。所以在聚类前对数据( 具体的说是每一个维度的特征 )做归一化和单位统一至关重要。此外,异常值会对均值计算产生较大影响,导致 中心偏移 ,这些噪声点最好能提前过滤。

(2)合理选择K值

    K值的选择一般基于实验和多次实验结果。例如采用 手肘法 ,尝试不同K值并将对应的损失函数画成折线。手肘法认为图上的 拐点就是K的最佳值 (k=3)。

为了将寻找最佳K值的过程自动化,研究人员提出了Gap Statistic方法。不需要人们用肉眼判断,只需要找到最大的Gap Statistic对应的K即可。

       损失函数记为  ,当分为K类时,Gap Statistic定义为:  。 是 的期望 ,一般由蒙特卡洛模拟产生。我们在样本所在的区域内按照均匀分布随机地产生和原始样本数一样多的随机样本,并对这个随机样本做KMeans,得到一个 ,重复多次就可以计算出 的近似值。

       的物理含义是随机样本的损失与实际样本的损失之差。Gap越大说明聚类的效果越好 。一种极端情况是,随着K的变化 几乎维持一条直线保持不变。说明这些样本间没有明显的类别关系,数据分布几乎和均匀分布一致,近似随机。此时做聚类没有意义。

(3)改进初始值的选择

    之前我们采用随机选择K个中心的做法,可能导致不同的中心点距离很近,就需要更多的迭代次数才能收敛。如果在选择初始中心点时能 让不同的中心尽可能远离 ,效果往往更好。这类算法中,以K-Means++算法最具影响力。

(4)采用核函数

    主要思想是通过一个非线性映射,将输入空间中的数据点映射到高维的特征空间中,并在新的空间进行聚类。非线性映射增加了数据点线性可分的概率(与SVM中使用核函数思想类似)对于非凸的数据分布可以达到更为准确的聚类结果。

 (1)初始的K个质心怎么选?

    最常用的方法是随机选,初始质心的选取对最终聚类结果有影响,因此算法一定要多执行几次,哪个结果更合理,就用哪个结果。当然也有一些优化的方法,第一种是选择彼此距离最远的点,具体来说就是先选第一个点,然后选离第一个点最远的当第二个点,然后选第三个点,第三个点到第一、第二两点的距离之和最小,以此类推。第二种是先根据其他聚类算法(如层次聚类)得到聚类结果,从结果中每个分类选一个点

(2)关于离群值?

    离群值就是远离整体的,非常异常、非常特殊的数据点,在聚类之前应该将这些"极大""极小"之类的离群数据都去掉,否则会对于聚类的结果有影响。但是,离散值往往自身就很有分析的价值,可以把离群值单独作为一类来分析。

(3)单位要一致!

(4)标准化

    数据中X整体都比较小,比如都是1到10之间的数,Y很大,比如都是1000以上的数,那么在计算距离的时候Y起到的作用就比X大很多,X对于距离的影响几乎可以忽略,这也有问题。因此,如果K-Means聚类中选择欧几里得距离计算距离,数据集又出现了上面所述的情况,就一定要进行数据的标准化(normalization),即将数据按比例缩放,使之落入一个小的特定区间。

    K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出 。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的K个点,用这最近的K个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到K个类别的最佳质心,从而决定样本的簇类别。当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。 两周都利用了最近邻的思想 。

❸ “聚类分析”16聚类分析之KMeans算法与K中心点算法

1.聚类

    聚类属于无监督式学习。在无监督式学习中,训练样本的标记信息是未知的,算法通过对 无标记样本 的学习来揭示蕴含于数据中的性质和规律。聚类算法的任务是根据数据特征将数据集相似的数据划分到同一簇。

2.聚类分析

    聚类分析是将物理的或者抽象的数据集合划分为多个类别的过程,聚类之后的每个类别中任意两个数据样本之间具有较高的相似度,而不同类别的数据样本之间具有较低的相似度。

3.聚类算法常用分类

①划分聚类方法

②层次聚类方法

③基于密度的聚类方法

④基于网格的聚类方法

4.聚类分析中相似度的计算方法

(1)连续型属性的相似度计算方法:欧式距离

(2)二值离散型属性的相似度计算方法

数据样本的二值离散型属性的取值情况:

(3)多值离散型属性的相似度计算方法:多值离散型属性转化为二值离散型属性  

(4)混合类型属性的相似度计算方法

    将属性按照类型分组,每个新的数据集中只包含一种类型的属性,然后对每个数据集进行单独的聚类分析,随后把混合类型的属性放在一起处理,进行一次聚类分析。

5.KMeans算法(划分法)

    KMeans也称为K均值,是一种聚类算法。它可以根据数据特征将数据集分成K个不同的簇,簇的个数K是由用户指定的。KMeans算法基于 距离 来度量实例间的相似程度(与KNN算法一样,大多数问题采用欧氏距离),然后把较为相似的实例划分到同一簇。

(1)聚类的性能度量大致有以下两类:

①外部指标:将聚类结果与某个“参考模型”进行比较。

②内部指标:直接考察聚类结果而不利于参考模型。

(2)聚类算法的过程:

①随机选择k个点作为聚类中心;

②计算各个点到这k个点的距离;

③将对应的点聚到与它最近的这个聚类中心;

④重新计算聚类中心;

⑤比较当前聚类中心与前一次聚类中心,如果是同一个点,得到聚类结果,如果不是,则重复②③④⑤。

(3)聚类算法的实现:

【注】 模型效果评估指标说明:

1)inertias_:是K-Means模型对象的属性,它作为没有真实分类结果标签下的非监督式评估指标。表示样本到最近的聚类中心的距离总和。 值越小越好,越小表示样本在类间的分布越集中。

2)兰德指数(Rand index):需要给定实际类别信息C,假设n是聚类结果,a表示在C与K中都是同类别的元素对数,b表示在C与K中都是不同类别的元素对数,则兰德指数为:

RI取值范围为[0,1], 值越大意味着聚类结果与真实情况越吻合。

对于随机结果,RI并不能保证分数接近零。为了实现“在聚类结果随机产生的情况下,指标应该接近零”,调整兰德系数(Adjusted rand index)被提出,它具有更高的区分度:

ARI取值范围为[−1,1], 值越大意味着聚类结果与真实情况越吻合。 从广义的角度来讲,ARI衡量的是两个数据分布的吻合程度。

3)同质化得分(Homogeneity):如果所有的聚类都只包含属于单个类的成员的数据点,则聚类结果满足同质性。取值范围[0,1], 值越大意味着聚类结果与真实情况越符合。

4)完整性得分(Complenteness):如果作为给定类的成员的所有数据点是相同集群的元素,则聚类结果满足完整性。取值范围[0,1], 值越大意味着聚类结果与真实情况越符合。

5)v_meansure_score:同质化和完整性之间的谐波平均值,v=2*(同质化*完整性)/(同质化+完整性),取值范围[0,1], 值越大意味着聚类结果与真实情况越符合。

6.k中心点算法

(1)原理

①随机选取k个中心点;

②遍历所有数据,将每个数据划分到最近的中心点中;

③计算每个聚类的平均值,并作为新的中心点;

④重复②③,直到这k个中线点不再变化(收敛了),或执行了足够多的迭代。

(2)与KMeans算法对比

    K-中心点聚类的 基本思想 和K-Means的思想相同,实质上是对K-means算法的优化和改进。在K-means中, 异常数据对其的算法过程会有较大的影响 。在K-means算法执行过程中,可以通过随机的方式选择初始质心,也只有初始时通过随机方式产生的质心才是实际需要聚簇集合的中心点,而后面通过不断迭代产生的新的质心很可能并不是在聚簇中的点。如果某些异常点距离质心相对较大时,很可能导致重新计算得到的质心偏离了聚簇的真实中心。

❹ K-means改进算法(一):K-means++

在普通的K-means算法中,会存在以下的缺点:

1). 只能收敛到局部最优,受到初始值较大;
2). K不确定,需自己确定;
3). 受noise影响较大。

为了改进k-means算法,出现了K-means++,ISODATA和Kernel K-means等方法。

其中K-means++算法是对初始值选择进行了改进。
普通k-means算法的步骤大概如下所示(假设k=3):

普通的K均值算法是随机选取K个点作为聚类的中心,而K-means++按照如下的思想选取K个聚类中心,其基本的思想是,K个初始聚类中心相互之间应该分得越开、离得越远越好(图片来自 https://www.cnblogs.com/yixuan-xu/p/6272208.html ):

❺ K-means原理、优化、应用

K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法。

    K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。

1、随机选择K个聚类的初始中心。

2、对任意一个样本点,求其到K个聚类中心的距离,将样本点归类到距离最小的中心的聚类。

3、每次迭代过程中,利用均值等方法更新各个聚类的中心点(质心)。

4、对K个聚类中心,利用2、3步迭代更新后,如果位置点变化很小(可以设置阈值),则认为达到稳定状态,迭代结束。(画图时,可以对不同的聚类块和聚类中心可选择不同的颜色标注)

1、原理比较简单,实现也是很容易,收敛速度快。 

2、聚类效果较优。 

3、算法的可解释度比较强。 

4、主要需要调参的参数仅仅是簇数k。

1、K值的选取不好把握 

2、对于不是凸的数据集比较难收敛 

3、如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐含类别的方差不同,则聚类效果不佳。 

4、 最终结果和初始点的选择有关,容易陷入局部最优。

5、对噪音和异常点比较的敏感。

    解决K-Means算法对 初始簇心 比较敏感的问题,二分K-Means算法是一种弱化初始质心的一种算法。

1、将所有样本数据作为一个簇放到一个队列中。

2、从队列中选择一个簇进行K-Means算法划分,划分为两个子簇,并将子簇添加到队列中。

3、循环迭代步骤2操作,直到中止条件达到(聚簇数量、最小平方误差、迭代次数等)。

4、队列中的簇就是最终的分类簇集合。

从队列中选择划分聚簇的规则一般有两种方式;分别如下:

1、对所有簇计算误差和SSE(SSE也可以认为是距离函数的一种变种),选择SSE最大的聚簇进行划分操作(优选这种策略)。

2、选择样本数据量最多的簇进行划分操作:

    由于 K-means 算法的分类结果会受到初始点的选取而有所区别,因此有提出这种算法的改进: K-means++ 。

    其实这个算法也只是对初始点的选择有改进而已,其他步骤都一样。初始质心选取的基本思路就是, 初始的聚类中心之间的相互距离要尽可能的远 。

1、随机选取一个样本作为第一个聚类中心 c1;

2、计算每个样本与当前已有类聚中心最短距离(即与最近一个聚类中心的距离),用 D(x)表示;这个值越大,表示被选取作为聚类中心的概率较大;最后,用轮盘法选出下一个聚类中心。

3、重复步骤2,知道选出 k 个聚类中心。

4、选出初始点(聚类中心),就继续使用标准的 k-means 算法了。

尽管K-Means++在聚类中心的计算上浪费了很多时间,但是在迭代过程中,k-mean 本身能快速收敛,因此算法实际上降低了计算时间。

      解决K-Means++算法缺点而产生的一种算法;主要思路是改变每次遍历时候的取样规则,并非按照K-Means++算法每次遍历只获取一个样本,而是每次获取K个样本,重复该取样操作O(logn)次 (n是样本的个数) ,然后再将这些抽样出来的样本聚类出K个点,最后使用这K个点作为K-Means算法的初始聚簇中心点。实践证明:一般5次重复采用就可以保证一个比较好的聚簇中心点。

1、在N个样本中抽K个样本,一共抽logn次,形成一个新的样本集,一共有Klogn个数据。

2、在新数据集中使用K-Means算法,找到K个聚簇中心。

3、把这K个聚簇中心放到最初的样本集中,作为初始聚簇中心。

4、原数据集根据上述初始聚簇中心,再用K-Means算法计算出最终的聚簇。

        Canopy属于一种‘粗’聚类算法,即使用一种简单、快捷的距离计算方法将数据集分为若干可重叠的子集canopy,这种算法不需要指定k值、但精度较低,可以结合K-means算法一起使用:先由Canopy算法进行粗聚类得到k个质心,再使用K-means算法进行聚类。

 1、将原始样本集随机排列成样本列表L=[x1,x2,...,xm](排列好后不再更改),根据先验知识或交叉验证调参设定初始距离阈值T1、T2,且T1>T2 。

2、从列表L中随机选取一个样本P作为第一个canopy的质心,并将P从列表中删除。

3、从列表L中随机选取一个样本Q,计算Q到所有质心的距离,考察其中最小的距离D:

如果D≤T1,则给Q一个弱标记,表示Q属于该canopy,并将Q加入其中;

如果D≤T2,则给Q一个强标记,表示Q属于该canopy,且和质心非常接近,所以将该canopy的质心设为所有强标记样本的中心位置,并将Q从列表L中删除;

 如果D>T1,则Q形成一个新的聚簇,并将Q从列表L中删除。

4、重复第三步直到列表L中元素个数为零。

1、‘粗’距离计算的选择对canopy的分布非常重要,如选择其中某个属性、其他外部属性、欧式距离等。

2、当T2<D≤T1时,样本不会从列表中被删除,而是继续参与下一轮迭代,直到成为新的质心或者某个canopy的强标记成员。

3、T1、T2的取值影响canopy的重叠率及粒度:当T1过大时,会使样本属于多个canopy,各个canopy间区别不明显;当T2过大时,会减少canopy个数,而当T2过小时,会增加canopy个数,同时增加计算时间。

4、canopy之间可能存在重叠的情况,但是不会存在某个样本不属于任何canopy的情况。

5、Canopy算法可以消除孤立点,即删除包含样本数目较少的canopy,往往这些canopy包含的是孤立点或噪音点。

    由于K-Means算法存在初始聚簇中心点敏感的问题,常用使用Canopy+K-Means算法混合形式进行模型构建。

1、先使用canopy算法进行“粗”聚类得到K个聚类中心点。

2、K-Means算法使用Canopy算法得到的K个聚类中心点作为初始中心点,进行“细”聚类。

1、执行速度快(先进行了一次聚簇中心点选择的预处理);

2、不需要给定K值,应用场景多。

3、能够缓解K-Means算法对于初始聚类中心点敏感的问题。

    Mini Batch K-Means算法是K-Means算法的一种优化变种,采用 小规模的数据子集 (每次训练使用的数据集是在训练算法的时候随机抽取的数据子集) 减少计算时间 ,同时试图优化目标函数;Mini Batch K-Means算法可以减少K-Means算法的收敛时间,而且产生的结果效果只是略差于标准K-Means算法。

1、首先抽取部分数据集,使用K-Means算法构建出K个聚簇点的模型。

2、继续抽取训练数据集中的部分数据集样本数据,并将其添加到模型中,分配给距离最近的聚簇中心点。

3、更新聚簇的中心点值。

4、循环迭代第二步和第三步操作,直到中心点稳定或者达到迭代次数,停止计算操作。

https://www.jianshu.com/p/f0727880c9c0

❻ EM算法和K-Means算法

在实际工作中,会遇到这样的问题,给机器输入大量的特征数据,并希望机器希望学习找到某种共同的特征或者结构,亦或是数据之间存在的某种关联,例如,视频网站根据用户的观看行为进行分组,从而建立不同的推荐策略,或是找到视频是否流畅与用户是否退订之间的关系等。属于无监督学习算法。

包括两大类,一:数据聚类,此类方案往往是通过数次迭代找到数据的最优分割。二:特征变量的关联规则,此类方法利用各种相关性分析找到变量之间的关系。

Kmeans的 核心 是将给定的数据集划分成K个簇,并给出每个数据对应的中心点。算法具体步骤如下:

1:数据预处理,如归一化、离散点处理等

2:随机选取K个簇中心,记为 。

3:定义代价函数: 。

4:令 为迭代步数,重复下面过程直到 收敛

4.1 对于每一个样本将其分到距离最近的簇

4.2 对于每一个类簇k,重新计算类簇的中心

K均值在迭代时,交替方向法求解,假设当前 没有达到最小值,那么首先固定簇中心 ,调整样本 所属的类别 来让 函数减小,然后再固定 ,调整中心 使 减小,这两个过程交替循环, 单调递减,当 递减到最小时, 和 同时收敛。

缺点:

1:受初始值的影响

2:异常值的影响

3:当簇分布相差很大时,不适合

优点:

大数据集, 均值聚类相对是可伸缩和高效的,计算复杂度 ,其中 是数据对象的数目, 是聚类簇数, 是迭代的轮数。尽管算法经常局部最优结束,一般情况下局部最优已经满足要求

调优方向

1:数据归一化和离散点处理

2:合理选择 值

一:手肘法:选择若干个K画均方误差的折线图肉眼查看拐点 二:Gap Statistic方法的基本思路是:引入参考的测度值,其可以通过Monte Carlo采样的方法获得。 

3:采用核函数

利用kmeans假设各个数据簇的数据具有一样的先验概率,并呈现高纬球形分布,但是实际生活中是不常见的。面对非凸的数据分布时,引入核函数来优化。核心:利用非线性核函数将样本映射到高纬空间,并在新的特征空间中进行聚类。非线性映射增加了数据的线性可分的概率。

针对对初始值敏感的改进

K-means++算法:

起步

由于 K-means 算法的分类结果会受到初始点的选取而有所区别,因此有提出这种算法的改进: K-means++ 。

算法步骤

其实这个算法也只是对初始点的选择有改进而已,其他步骤都一样。初始质心选取的基本思路就是,初始的聚类中心之间的相互距离要尽可能的远。

算法描述如下:

步骤一: 随机选取一个样本作为第一个聚类中心;

步骤二:

计算每个样本与当前已有类聚中心最短距离(即与最近一个聚类中心的距离) 这个值越大,表示被选取作为聚类中心的概率较大;

最后,用轮盘法选出下一个聚类中心;

步骤三: 重复步骤二,知道选出 k 个聚类中心 。

选出初始点后,就继续使用标准的 k-means 算法了。

      ISODATA的聚类个数是可变的,因为在聚类的过程中,对类别数有一个“合并”和“分裂”的操作。合并是当聚类结果某一类中样本数太少,或两个类间的距离太近时,将这两个类别合并成一个类别;分裂是当聚类结果中某一类的类内方差太大,将该类进行分裂,分裂成两个类别。

ISODATA分类的过程和K-Means一样,用的也是迭代的思想:先随意给定初始的类别中心,然后做聚类,通过迭代,不断调整这些类别中心,直到得到最好的聚类中心为止。

注:

初始簇个数 ,最终簇大小范围

分裂和合并的标准

每个簇的样本数最小 ,小于这个值不进行分裂

每个簇样本的最大方差 ,大于这个则进行分裂

两个簇之间的最小距离围 ,小于这个则进行合并

EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计。

算法步骤

输入:观测变量数据Y,隐变量Z,联合分布 ,条件分布

输出:模型参数

1:选择参数的初始值

2:E步:记 为第 次迭代参数 的估计值,在第 次迭代的E步,计算 函数 ,其中, 是再帮给定Y和 下隐变量数据Z的条件概率分布;

3:M步:求使 极大化的 ,确定第 次迭代的参数的估计值 ,

4:重复2,3步,直到收敛

EM算法推导

通过不断求解下界的极大化逼近求解对数似然函数的极大化的算法

含有隐变量的概率模型的极大似然估计

下面证明

利用Jensen不等式



则 即函数 增大 ,也可以使得 有尽可能的增大,选择 使得 达到极大,即 现在求 的表达式 = = = =

假设有m个观察样本,模型的参数 ,最大化对数似然函数可以写成如下的形式

当概率模型含有无法观测的隐变量时,参数的最大似然估计

因为含有不可观测的隐变量,无法通过极大似然估计求解参数,这时可以通过EM算法求解。假设 对应的分布 ,并满足 。利用Jensen不等式,可以得到,

。不等式右侧,即为 。当等式成立时,我们相当于优化的函数找到了一个逼近的下界,然后最大化这个下界

EM算法和k-means关系

1:E步骤

2:M步骤:最大化

K均值算法等价于以下隐变量求最大似然问题

相当于E步找到x当前最近的簇

在M步骤 来更新簇中心

#####引用葫芦书和李航机器学习

❼ 大数据十大经典算法之k-means

大数据十大经典算法之k-means
k均值算法基本思想:
K均值算法是基于质心的技术。它以K为输入参数,把n个对象集合分为k个簇,使得簇内的相似度高,簇间的相似度低。
处理流程:
1、为每个聚类确定一个初始聚类中心,这样就有k个初始聚类中心;
2、将样本按照最小距离原则分配到最邻近聚类
3、使用每个聚类中的样本均值作为新的聚类中心
4、重复步骤2直到聚类中心不再变化
5、结束,得到K个聚类
划分聚类方法对数据集进行聚类时的要点:
1、选定某种距离作为数据样本间的相似性度量,通常选择欧氏距离。
2、选择平价聚类性能的准则函数
用误差平方和准则函数来评价聚类性能。
3、相似度的计算分局一个簇中对象的平均值来进行
K均值算法的优点:
如果变量很大,K均值比层次聚类的计算速度较快(如果K很小);
与层次聚类相比,K均值可以得到更紧密的簇,尤其是对于球状簇;
对于大数据集,是可伸缩和高效率的;
算法尝试找出使平方误差函数值最小的k个划分。当结果簇是密集的,而簇与簇之间区别明显的时候,效果较好。
K均值算法缺点:
最后结果受初始值的影响。解决办法是多次尝试取不同的初始值。
可能发生距离簇中心m最近的样本集为空的情况,因此m得不到更新。这是一个必须处理的问题,但我们忽略该问题。
不适合发现非凸面形状的簇,并对噪声和离群点数据较敏感,因为少量的这类数据能够对均值产生较大的影响。
K均值算法的改进:
样本预处理。计算样本对象量量之间的距离,筛掉与其他所有样本那的距离和最大的m个对象。
初始聚类中心的选择。选用簇中位置最靠近中心的对象,这样可以避免孤立点的影响。
K均值算法的变种:
K众数(k-modes)算法,针对分类属性的度量和更新质心的问题而改进。
EM(期望最大化)算法
k-prototype算法
这种算法不适合处理离散型属性,但是对于连续型具有较好的聚类效果。
k均值算法用途:
图像分割;
衡量足球队的水平;
下面给出代码:
#include <iostream>
#include <vector>
//auther archersc
//JLU
namespace CS_LIB
{
using namespace std;
class Kmean
{
public:
//输入格式
//数据数量N 维度D
//以下N行,每行D个数据
istream& loadData(istream& in);
//输出格式
//聚类的数量CN
//中心维度CD
//CN行,每行CD个数据
//数据数量DN
//数据维度DD
//以下DN组,每组的第一行两个数值DB, DDis
//第二行DD个数值
//DB表示改数据属于一类,DDis表示距离改类的中心的距离
ostream& saveData(ostream& out);
//设置中心的数量
void setCenterCount(const size_t count);
size_t getCenterCount() const;
//times最大迭代次数, maxE ,E(t)表示第t次迭代后的平方误差和,当|E(t+1) - E(t)| < maxE时终止
void clustering(size_t times, double maxE);

private:
double calDistance(vector<double>& v1, vector<double>& v2);

private:
vector< vector<double> > m_Data;
vector< vector<double> > m_Center;
vector<double> m_Distance;
vector<size_t> m_DataBelong;
vector<size_t> m_DataBelongCount;
};
}
#include "kmean.h"

#include <ctime>
#include <cmath>
#include <cstdlib>
//auther archersc
//JLU

namespace CS_LIB
{
template<class T>
void swap(T& a, T& b)
{
T c = a;
a = b;
b = c;
}

istream& Kmean::loadData(istream& in)
{
if (!in){
cout << "input error" << endl;
return in;
}
size_t dCount, dDim;
in >> dCount >> dDim;
m_Data.resize(dCount);
m_DataBelong.resize(dCount);
m_Distance.resize(dCount);
for (size_t i = 0; i < dCount; ++i){
m_Data[i].resize(dDim);
for (size_t j = 0; j < dDim; ++j){
in >> m_Data[i][j];
}
}
return in;
}
ostream& Kmean::saveData(ostream& out)
{
if (!out){
cout << "output error" << endl;
return out;
}
out << m_Center.size();
if (m_Center.size() > 0)
out << << m_Center[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Center.size(); ++i){
for (size_t j = 0; j < m_Center[i].size(); ++j){
out << m_Center[i][j] << ;
}
out << endl;
}
out << endl;
out << m_Data.size();
if (m_Data.size() > 0)
out << << m_Data[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Data.size(); ++i){
out << m_DataBelong[i] << << m_Distance[i] << endl;
for (size_t j = 0; j < m_Data[i].size(); ++j){
out << m_Data[i][j] << ;
}
out << endl << endl;
}
return out;
}
void Kmean::setCenterCount(const size_t count)
{
m_Center.resize(count);
m_DataBelongCount.resize(count);
}
size_t Kmean::getCenterCount() const
{
return m_Center.size();
}
void Kmean::clustering(size_t times, double maxE)
{
srand((unsigned int)time(NULL));
//随机从m_Data中选取m_Center.size()个不同的样本点作为初始中心。
size_t *pos = new size_t[m_Data.size()];
size_t i, j, t;
for (i = 0; i < m_Data.size(); ++i){
pos[i] = i;
}
for (i = 0; i < (m_Data.size() << 1); ++i){
size_t s1 = rand() % m_Data.size();
size_t s2 = rand() % m_Data.size();
swap(pos[s1], pos[s2]);
}
for (i = 0; i < m_Center.size(); ++i){
m_Center[i].resize(m_Data[pos[i]].size());
for (j = 0; j < m_Data[pos[i]].size(); ++j){
m_Center[i][j] = m_Data[pos[i]][j];
}
}
delete []pos;
double currE, lastE;
for (t = 0; t < times; ++t){
for (i = 0; i < m_Distance.size(); ++i)
m_Distance[i] = LONG_MAX;
for (i = 0; i < m_DataBelongCount.size(); ++i)
m_DataBelongCount[i] = 0;
currE = 0.0;
for (i = 0; i < m_Data.size(); ++i){
for (j = 0; j < m_Center.size(); ++j){
double dis = calDistance(m_Data[i], m_Center[j]);
if (dis < m_Distance[i]){
m_Distance[i] = dis;
m_DataBelong[i] = j;
}
}
currE += m_Distance[i];
m_DataBelongCount[m_DataBelong[i]]++;
}
cout << currE << endl;
if (t == 0 || fabs(currE - lastE) > maxE)
lastE = currE;
else
break;
for (i = 0; i < m_Center.size(); ++i){
for (j = 0; j < m_Center[i].size(); ++j)
m_Center[i][j] = 0.0;

}
for (i = 0; i < m_DataBelong.size(); ++i){
for (j = 0; j < m_Data[i].size(); ++j){
m_Center[m_DataBelong[i]][j] += m_Data[i][j] / m_DataBelongCount[m_DataBelong[i]];
}
}
}
}
double Kmean::calDistance(vector<double>& v1, vector<double>& v2)
{
double result = 0.0;
for (size_t i = 0; i < v1.size(); ++i){
result += (v1[i] - v2[i]) * (v1[i] - v2[i]);
}
return pow(result, 1.0 / v1.size());
//return sqrt(result);
}
}
#include <iostream>
#include <fstream>
#include "kmean.h"
using namespace std;
using namespace CS_LIB;

int main()
{
ifstream in("in.txt");
ofstream out("out.txt");
Kmean kmean;
kmean.loadData(in);
kmean.setCenterCount(4);
kmean.clustering(1000, 0.000001);
kmean.saveData(out);

return 0;
}

❽ K均值算法

代价函数可以定义为各个样本距离所属簇中心点的误差平方和

K均值算法有一些缺点,例如受初值和离群点的影响每次的结果不稳定、结果 通常不是全局最优而是局部最优解、无法很好地解决数据簇分布差别比较大的情 况(比如一类是另一类样本数量的100倍)、不太适用于离散分类等。但是瑕不掩 瑜,K均值聚类的优点也是很明显和突出的,主要体现在:对于大数据集,K均值 聚类算法相对是可伸缩和高效的,它的计算复杂度是O(NKt)接近于线性,其中N是 数据对象的数目,K是聚类的簇数,t是迭代的轮数。尽管算法经常以局部最优结 束,但一般情况下达到的局部最优已经可以满足聚类的需求。
其实书中也少讲了缺点,那就是关于k的选择,当维度很高的时候,你很难判断选择k多少比较合适。
不过书中在算法调优中说了。所谓的调优其是也是变相的说那些缺点。

K均值算法的调优一般可以从以下几个角度出发。

(1)数据归一化和离群点处理。
K均值聚类本质上是一种基于欧式距离度量的数据划分方法,均值和方差大的 维度将对数据的聚类结果产生决定性的影响,所以未做归一化处理和统一单位的 数据是无法直接参与运算和比较的。同时,离群点或者少量的噪声数据就会对均 值产生较大的影响,导致中心偏移,因此使用K均值聚类算法之前通常需要对数据 做预处理。

(2)合理选择K值。
K值的选择是K均值聚类最大的问题之一,这也是K均值聚类算法的主要缺 点。实际上,我们希望能够找到一些可行的办法来弥补这一缺点,或者说找到K值 的合理估计方法。但是,K值的选择一般基于经验和多次实验结果。例如采用手肘 法,我们可以尝试不同的K值,并将不同K值所对应的损失函数画成折线,横轴 为K的取值,纵轴为误差平方和所定义的损失函数,如图5.3所示

由图可见,K值越大,距离和越小;并且,当K=3时,存在一个拐点,就像人 的肘部一样;当K (1,3)时,曲线急速下降;当K>3时,曲线趋于平稳。手肘法认 为拐点就是K的最佳值。
手肘法是一个经验方法,缺点就是不够自动化,因此研究员们又提出了一些 更先进的方法,其中包括比较有名的Gap Statistic方法[5]。Gap Statistic方法的优点 是,不再需要肉眼判断,而只需要找到最大的Gap statistic所对应的K即可,因此该 方法也适用于批量化作业。在这里我们继续使用上面的损失函数,当分为K簇时, 对应的损失函数记为Dk。Gap Statistic定义为
Gap(K)=E(logDk)−logDk

内按照均匀分布随机地产生和原始样本数一样多的随机样本,并对这个随机样本
做K均值,得到一个Dk;重复多次就可以计算出E(logDk)的近似值。那么Gap(K)有
什么物理含义呢?它可以视为随机样本的损失与实际样本的损失之差。试想实际 样本对应的最佳簇数为K,那么实际样本的损失应该相对较小,随机样本损失与实 际样本损失之差也相应地达到最小值,从而Gap(K)取得最大值所对应的K值就是最 佳的簇数。根据式(5.4)计算K =1,2,...,9所对应的Gap Statistic

(3)采用核函数。
采用核函数是另一种可以尝试的改进方向。传统的欧式距离度量方式,使得K 均值算法本质上假设了各个数据簇的数据具有一样的先验概率,并呈现球形或者 高维球形分布,这种分布在实际生活中并不常见。面对非凸的数据分布形状时, 可能需要引入核函数来优化,这时算法又称为核K均值算法,是核聚类方法的一种 [6]。核聚类方法的主要思想是通过一个非线性映射,将输入空间中的数据点映射到 高位的特征空间中,并在新的特征空间中进行聚类。非线性映射增加了数据点线 性可分的概率,从而在经典的聚类算法失效的情况下,通过引入核函数可以达到 更为准确的聚类结果。

K均值算法的主要缺点如下。
(1)需要人工预先确定初始K值,且该值和真实的数据分布未必吻合。
(2)K均值只能收敛到局部最优,效果受到初始值很大。
(3)易受到噪点的影响。
(4)样本点只能被划分到单一的类中。

■ K-means++算法
K均值的改进算法中,对初始值选择的改进是很重要的一部分。而这类算法 中,最具影响力的当属K-means++算法。原始K均值算法最开始随机选取数据集中 K个点作为聚类中心,而K-means++按照如下的思想选取K个聚类中心。假设已经 选取了n个初始聚类中心(0<n<K),则在选取第n+1个聚类中心时,距离当前n个 聚类中心越远的点会有更高的概率被选为第n+1个聚类中心。在选取第一个聚类中 心(n=1)时同样通过随机的方法。可以说这也符合我们的直觉,聚类中心当然是 互相离得越远越好。当选择完初始点后,K-means++后续的执行和经典K均值算法 相同,这也是对初始值选择进行改进的方法等共同点。

■ ISODATA算法
当K值的大小不确定时,可以使用ISODATA算法。ISODATA的全称是迭代自 组织数据分析法。在K均值算法中,聚类个数K的值需要预先人为地确定,并且在 整个算法过程中无法更改。而当遇到高维度、海量的数据集时,人们往往很难准 确地估计出K的大小。ISODATA算法就是针对这个问题进行了改进,它的思想也 很直观。当属于某个类别的样本数过少时,把该类别去除;当属于某个类别的样 本数过多、分散程度较大时,把该类别分为两个子类别。ISODATA算法在K均值 算法的基础之上增加了两个操作,一是分裂操作,对应着增加聚类中心数;二是 合并操作,对应着减少聚类中心数。ISODATA算法是一个比较常见的算法,其缺 点是需要指定的参数比较多,不仅仅需要一个参考的聚类数量Ko,还需要制定3个
阈值。下面介绍ISODATA算法的各个输入参数。
(1)预期的聚类中心数目Ko。在ISODATA运行过程中聚类中心数可以变 化,Ko是一个用户指定的参考值,该算法的聚类中心数目变动范围也由其决定。 具体地,最终输出的聚类中心数目常见范围是从Ko的一半,到两倍Ko。
(2)每个类所要求的最少样本数目Nmin。如果分裂后会导致某个子类别所包 含样本数目小于该阈值,就不会对该类别进行分裂操作。
(3)最大方差Sigma。用于控制某个类别中样本的分散程度。当样本的分散 程度超过这个阈值时,且分裂后满足(1),进行分裂操作。
(4)两个聚类中心之间所允许最小距离Dmin。如果两个类靠得非常近(即这 两个类别对应聚类中心之间的距离非常小),小于该阈值时,则对这两个类进行
合并操作。
如果希望样本不划分到单一的类中,可以使用模糊C均值或者高斯混合模型, 高斯混合模型会在下一节中详细讲述。

K均值聚类的迭代算法实际上是一种最大期望算法 (Expectation-Maximization algorithm),简称EM算法。EM算法解决的是在概率模 型中含有无法观测的隐含变量情况下的参数估计问题。
EM算法只保证收敛到局部最优解

❾ 八:聚类算法K-means(20191223-29)

学习内容:无监督聚类算法K-Means

k-means:模型原理、收敛过程、超参数的选择

聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。

不同的簇类型: 聚类旨在发现有用的对象簇,在现实中我们用到很多的簇的类型,使用不同的簇类型划分数据的结果是不同的。

基于原型的: 簇是对象的集合,其中每个对象到定义该簇的 原型 的距离比其他簇的原型距离更近,如(b)所示的原型即为中心点,在一个簇中的数据到其中心点比到另一个簇的中心点更近。这是一种常见的 基于中心的簇 ,最常用的K-Means就是这样的一种簇类型。 这样的簇趋向于球形。

基于密度的 :簇是对象的密度区域,(d)所示的是基于密度的簇,当簇不规则或相互盘绕,并且有早上和离群点事,常常使用基于密度的簇定义。

关于更多的簇介绍参考《数据挖掘导论》。

基本的聚类分析算法

     1. K均值: 基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇。

     2. 凝聚的层次距离: 思想是开始时,每个点都作为一个单点簇,然后,重复的合并两个最靠近的簇,直到尝试单个、包含所有点的簇。

     3. DBSCAN: 一种基于密度的划分距离的算法,簇的个数有算法自动的确定,低密度中的点被视为噪声而忽略,因此其不产生完全聚类。

不同的距离量度会对距离的结果产生影响,常见的距离量度如下所示:

优点:易于实现 

缺点:可能收敛于局部最小值,在大规模数据收敛慢

算法思想:

选择K个点作为初始质心 

repeat

    将每个点指派到最近的质心,形成K个簇 

    重新计算每个簇的质心  

until 簇不发生变化或达到最大迭代次数

这里的“重新计算每个簇的质心”,是根据目标函数来计算的,因此在开始时要考虑 距离度量和目标函数。

考虑欧几里得距离的数据,使用 误差平方和(Sum of the Squared Error,SSE) 作为聚类的目标函数,两次运行K均值产生的两个不同的簇集,使用SSE最小的那个。

k表示k个聚类中心,ci表示第几个中心,dist表示的是欧几里得距离。 

这里有一个问题就是为什么,我们更新质心是让所有的点的平均值,这里就是SSE所决定的。

k均值算法非常简单且使用广泛,但是其有主要的两个缺陷:

1. K值需要预先给定 ,属于预先知识,很多情况下K值的估计是非常困难的,对于像计算全部微信用户的交往圈这样的场景就完全的没办法用K-Means进行。对于可以确定K值不会太大但不明确精确的K值的场景,可以进行迭代运算,然后找出Cost Function最小时所对应的K值,这个值往往能较好的描述有多少个簇类。

2. K-Means算法对初始选取的聚类中心点是敏感的 ,不同的随机种子点得到的聚类结果完全不同

3. K均值算法并不是很所有的数据类型。 它不能处理非球形簇、不同尺寸和不同密度的簇,银冠指定足够大的簇的个数是他通常可以发现纯子簇。

4. 对离群点的数据进行聚类时,K均值也有问题 ,这种情况下,离群点检测和删除有很大的帮助。

下面对初始质心的选择进行讨论:

当初始质心是随机的进行初始化的时候,K均值的每次运行将会产生不同的SSE,而且随机的选择初始质心结果可能很糟糕,可能只能得到局部的最优解,而无法得到全局的最优解。

多次运行,每次使用一组不同的随机初始质心,然后选择一个具有最小的SSE的簇集。该策略非常的简单,但是效果可能不是很好,这取决于数据集合寻找的簇的个数。

关于更多,参考《数据挖掘导论》

为了克服K-Means算法收敛于局部最小值的问题,提出了一种 二分K-均值(bisecting K-means)

将所有的点看成是一个簇

当簇小于数目k时

    对于每一个簇

        计算总误差

        在给定的簇上进行K-均值聚类,k值为2        计算将该簇划分成两个簇后总误差

    选择是的误差最小的那个簇进行划分

在原始的K-means算法中,每一次的划分所有的样本都要参与运算,如果数据量非常大的话,这个时间是非常高的,因此有了一种分批处理的改进算法。

使用Mini Batch(分批处理)的方法对数据点之间的距离进行计算。

Mini Batch的好处:不必使用所有的数据样本,而是从不同类别的样本中抽取一部分样本来代表各自类型进行计算。n 由于计算样本量少,所以会相应的减少运行时间n 但另一方面抽样也必然会带来准确度的下降。

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集成为一个“簇”。通过这样的划分,每个簇可能对应于一些潜在的概念(也就是类别);需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇对应的概念语义由使用者来把握和命名。

聚类是无监督的学习算法,分类是有监督的学习算法。所谓有监督就是有已知标签的训练集(也就是说提前知道训练集里的数据属于哪个类别),机器学习算法在训练集上学习到相应的参数,构建模型,然后应用到测试集上。而聚类算法是没有标签的,聚类的时候,需要实现的目标只是把相似的东西聚到一起。

聚类的目的是把相似的样本聚到一起,而将不相似的样本分开,类似于“物以类聚”,很直观的想法是同一个簇中的相似度要尽可能高,而簇与簇之间的相似度要尽可能的低。

性能度量大概可分为两类: 一是外部指标, 二是内部指标 。

外部指标:将聚类结果和某个“参考模型”进行比较。

内部指标:不利用任何参考模型,直接考察聚类结果。

对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大

初学者会很容易就把K-Means和KNN搞混,其实两者的差别还是很大的。

K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。

当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。

优点:

简单, 易于理解和实现 ;收敛快,一般仅需5-10次迭代即可,高效

缺点:

    1,对K值得选取把握不同对结果有很大的不同

    2,对于初始点的选取敏感,不同的随机初始点得到的聚类结果可能完全不同

    3,对于不是凸的数据集比较难收敛

    4,对噪点过于敏感,因为算法是根据基于均值的

    5,结果不一定是全局最优,只能保证局部最优

    6,对球形簇的分组效果较好,对非球型簇、不同尺寸、不同密度的簇分组效果不好。

K-means算法简单理解,易于实现(局部最优),却会有对初始点、噪声点敏感等问题;还容易和监督学习的分类算法KNN混淆。

参考阅读:

1.《 深入理解K-Means聚类算法 》

2.《 K-Means 》

❿ Kmeans聚类算法简介

由于具有出色的速度和良好的可扩展性,Kmeans聚类算法算得上是最着名的聚类方法。Kmeans算法是一个重复移动类中心点的过程,把类的中心点,也称重心(centroids),移动到其包含成员的平均位置,然后重新划分其内部成员。k是算法计算出的超参数,表示类的数量;Kmeans可以自动分配样本到不同的类,但是不能决定究竟要分几个类。k必须是一个比训练集样本数小的正整数。有时,类的数量是由问题内容指定的。例如,一个鞋厂有三种新款式,它想知道每种新款式都有哪些潜在客户,于是它调研客户,然后从数据里找出三类。也有一些问题没有指定聚类的数量,最优的聚类数量是不确定的。后面我将会详细介绍一些方法来估计最优聚类数量。

Kmeans的参数是类的重心位置和其内部观测值的位置。与广义线性模型和决策树类似,Kmeans参数的最优解也是以成本函数最小化为目标。Kmeans成本函数公式如下:

μiμi是第kk个类的重心位置。成本函数是各个类畸变程度(distortions)之和。每个类的畸变程度等于该类重心与其内部成员位置距离的平方和。若类内部的成员彼此间越紧凑则类的畸变程度越小,反之,若类内部的成员彼此间越分散则类的畸变程度越大。求解成本函数最小化的参数就是一个重复配置每个类包含的观测值,并不断移动类重心的过程。首先,类的重心是随机确定的位置。实际上,重心位置等于随机选择的观测值的位置。每次迭代的时候,Kmeans会把观测值分配到离它们最近的类,然后把重心移动到该类全部成员位置的平均值那里。

2.1 根据问题内容确定

这种方法就不多讲了,文章开篇就举了一个例子。

2.2 肘部法则

如果问题中没有指定kk的值,可以通过肘部法则这一技术来估计聚类数量。肘部法则会把不同kk值的成本函数值画出来。随着kk值的增大,平均畸变程度会减小;每个类包含的样本数会减少,于是样本离其重心会更近。但是,随着kk值继续增大,平均畸变程度的改善效果会不断减低。kk值增大过程中,畸变程度的改善效果下降幅度最大的位置对应的kk值就是肘部。为了让读者看的更加明白,下面让我们通过一张图用肘部法则来确定最佳的kk值。下图数据明显可分成两类:

从图中可以看出,k值从1到2时,平均畸变程度变化最大。超过2以后,平均畸变程度变化显着降低。因此最佳的k是2。

2.3 与层次聚类结合

经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类。

2.4 稳定性方法

稳定性方法对一个数据集进行2次重采样产生2个数据子集,再用相同的聚类算法对2个数据子集进行聚类,产生2个具有kk个聚类的聚类结果,计算2个聚类结果的相似度的分布情况。2个聚类结果具有高的相似度说明kk个聚类反映了稳定的聚类结构,其相似度可以用来估计聚类个数。采用次方法试探多个kk,找到合适的k值。

2.5 系统演化方法

系统演化方法将一个数据集视为伪热力学系统,当数据集被划分为kk个聚类时称系统处于状态kk。系统由初始状态k=1k=1出发,经过分裂过程和合并过程,系统将演化到它的稳定平衡状态 kiki ,其所对应的聚类结构决定了最优类数 kiki 。系统演化方法能提供关于所有聚类之间的相对边界距离或可分程度,它适用于明显分离的聚类结构和轻微重叠的聚类结构。

2.6 使用canopy算法进行初始划分

基于Canopy Method的聚类算法将聚类过程分为两个阶段

(1) 聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处理;

(2) 在各个Canopy内使用传统的聚类方法(如Kmeans),不属于同一Canopy的对象之间不进行相似性计算。

从这个方法起码可以看出两点好处:首先,Canopy不要太大且Canopy之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于Kmeans这样的聚类方法是需要人为指出K的值的,通过(1)得到的Canopy个数完全可以作为这个k值,一定程度上减少了选择k的盲目性。

其他方法如贝叶斯信息准则方法(BIC)可参看文献[4]。

选择适当的初始质心是基本kmeans算法的关键步骤。常见的方法是随机的选取初始中心,但是这样簇的质量常常很差。处理选取初始质心问题的一种常用技术是:多次运行,每次使用一组不同的随机初始质心,然后选取具有最小SSE(误差的平方和)的簇集。这种策略简单,但是效果可能不好,这取决于数据集和寻找的簇的个数。

第二种有效的方法是,取一个样本,并使用层次聚类技术对它聚类。从层次聚类中提取kk个簇,并用这些簇的质心作为初始质心。该方法通常很有效,但仅对下列情况有效:(1)样本相对较小,例如数百到数千(层次聚类开销较大);(2) kk相对于样本大小较小。

第三种选择初始质心的方法,随机地选择第一个点,或取所有点的质心作为第一个点。然后,对于每个后继初始质心,选择离已经选取过的初始质心最远的点。使用这种方法,确保了选择的初始质心不仅是随机的,而且是散开的。但是,这种方法可能选中离群点。此外,求离当前初始质心集最远的点开销也非常大。为了克服这个问题,通常该方法用于点样本。由于离群点很少(多了就不是离群点了),它们多半不会在随机样本中出现。计算量也大幅减少。

第四种方法就是上面提到的canopy算法。

常用的距离度量方法包括:欧几里得距离和余弦相似度。两者都是评定个体间差异的大小的。

欧氏距离是最常见的距离度量,而余弦相似度则是最常见的相似度度量,很多的距离度量和相似度度量都是基于这两者的变形和衍生,所以下面重点比较下两者在衡量个体差异时实现方式和应用环境上的区别。

借助三维坐标系来看下欧氏距离和余弦相似度的区别:

从图上可以看出距离度量衡量的是空间各点间的绝对距离,跟各个点所在的位置坐标(即个体特征维度的数值)直接相关;而余弦相似度衡量的是空间向量的夹角,更加的是体现在方向上的差异,而不是位置。如果保持A点的位置不变,B点朝原方向远离坐标轴原点,那么这个时候余弦相似cosθ是保持不变的,因为夹角不变,而A、B两点的距离显然在发生改变,这就是欧氏距离和余弦相似度的不同之处。

根据欧氏距离和余弦相似度各自的计算方式和衡量特征,分别适用于不同的数据分析模型:欧氏距离能够体现个体数值特征的绝对差异,所以更多的用于需要从维度的数值大小中体现差异的分析,如使用用户行为指标分析用户价值的相似度或差异;而余弦相似度更多的是从方向上区分差异,而对绝对的数值不敏感,更多的用于使用用户对内容评分来区分用户兴趣的相似度和差异,同时修正了用户间可能存在的度量标准不统一的问题(因为余弦相似度对绝对数值不敏感)。

因为欧几里得距离度量会受指标不同单位刻度的影响,所以一般需要先进行标准化,同时距离越大,个体间差异越大;空间向量余弦夹角的相似度度量不会受指标刻度的影响,余弦值落于区间[-1,1],值越大,差异越小。但是针对具体应用,什么情况下使用欧氏距离,什么情况下使用余弦相似度?

从几何意义上来说,n维向量空间的一条线段作为底边和原点组成的三角形,其顶角大小是不确定的。也就是说对于两条空间向量,即使两点距离一定,他们的夹角余弦值也可以随意变化。感性的认识,当两用户评分趋势一致时,但是评分值差距很大,余弦相似度倾向给出更优解。举个极端的例子,两用户只对两件商品评分,向量分别为(3,3)和(5,5),这两位用户的认知其实是一样的,但是欧式距离给出的解显然没有余弦值合理。

我们把机器学习定义为对系统的设计和学习,通过对经验数据的学习,将任务效果的不断改善作为一个度量标准。Kmeans是一种非监督学习,没有标签和其他信息来比较聚类结果。但是,我们还是有一些指标可以评估算法的性能。我们已经介绍过类的畸变程度的度量方法。本节为将介绍另一种聚类算法效果评估方法称为轮廓系数(Silhouette Coefficient)。轮廓系数是类的密集与分散程度的评价指标。它会随着类的规模增大而增大。彼此相距很远,本身很密集的类,其轮廓系数较大,彼此集中,本身很大的类,其轮廓系数较小。轮廓系数是通过所有样本计算出来的,计算每个样本分数的均值,计算公式如下:

aa是每一个类中样本彼此距离的均值,bb是一个类中样本与其最近的那个类的所有样本的距离的均值。

输入:聚类个数k,数据集XmxnXmxn。

输出:满足方差最小标准的k个聚类。

(1) 选择k个初始中心点,例如c[0]=X[0] , … , c[k-1]=X[k-1];

(2) 对于X[0]….X[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i;

(3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的样本的每个特征的均值};

(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值或者达到最大迭代次数。

Kmeans的时间复杂度:O(tkmn),空间复杂度:O((m+k)n)。其中,t为迭代次数,k为簇的数目,m为样本数,n为特征数。

7.1 优点

(1). 算法原理简单。需要调节的超参数就是一个k。

(2). 由具有出色的速度和良好的可扩展性。

7.2 缺点

(1). 在 Kmeans 算法中 kk 需要事先确定,这个 kk 值的选定有时候是比较难确定。

(2). 在 Kmeans 算法中,首先需要初始k个聚类中心,然后以此来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响,一旦初始值选择的不好,可能无法得到有效的聚类结果。多设置一些不同的初值,对比最后的运算结果,一直到结果趋于稳定结束。

(3). 该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。

(4). 对离群点很敏感。

(5). 从数据表示角度来说,在 Kmeans 中,我们用单个点来对 cluster 进行建模,这实际上是一种最简化的数据建模形式。这种用点来对 cluster 进行建模实际上就已经假设了各 cluster的数据是呈圆形(或者高维球形)或者方形等分布的。不能发现非凸形状的簇。但在实际生活中,很少能有这种情况。所以在 GMM 中,使用了一种更加一般的数据表示,也就是高斯分布。

(6). 从数据先验的角度来说,在 Kmeans 中,我们假设各个 cluster 的先验概率是一样的,但是各个 cluster 的数据量可能是不均匀的。举个例子,cluster A 中包含了10000个样本,cluster B 中只包含了100个。那么对于一个新的样本,在不考虑其与A cluster、 B cluster 相似度的情况,其属于 cluster A 的概率肯定是要大于 cluster B的。

(7). 在 Kmeans 中,通常采用欧氏距离来衡量样本与各个 cluster 的相似度。这种距离实际上假设了数据的各个维度对于相似度的衡量作用是一样的。但在 GMM 中,相似度的衡量使用的是后验概率 αcG(x|μc,∑c)αcG(x|μc,∑c) ,通过引入协方差矩阵,我们就可以对各维度数据的不同重要性进行建模。

(8). 在 Kmeans 中,各个样本点只属于与其相似度最高的那个 cluster ,这实际上是一种 hard clustering 。

针对Kmeans算法的缺点,很多前辈提出了一些改进的算法。例如 K-modes 算法,实现对离散数据的快速聚类,保留了Kmeans算法的效率同时将Kmeans的应用范围扩大到离散数据。还有K-Prototype算法,可以对离散与数值属性两种混合的数据进行聚类,在K-prototype中定义了一个对数值与离散属性都计算的相异性度量标准。当然还有其它的一些算法,这里我 就不一一列举了。

Kmeans 与 GMM 更像是一种 top-down 的思想,它们首先要解决的问题是,确定 cluster 数量,也就是 k 的取值。在确定了 k 后,再来进行数据的聚类。而 hierarchical clustering 则是一种 bottom-up 的形式,先有数据,然后通过不断选取最相似的数据进行聚类。

阅读全文

与kmeans改进算法相关的资料

热点内容
pythonoa项目 浏览:307
android杜比音效 浏览:341
杀手47为什么连接不了服务器 浏览:108
静态路径命令 浏览:533
一直编译不过怎么办 浏览:829
汽车串联并联算法 浏览:458
助眠解压的声音音频小哥哥 浏览:277
pythoncmd换行 浏览:376
linux取消行号 浏览:355
安卓原生系统官网是什么 浏览:444
底部主图源码 浏览:878
服务器崩了有什么提示 浏览:780
远程海康服务器用什么浏览器 浏览:232
解压报纸图片 浏览:956
python微信公众号开发平台 浏览:895
知识付费网站java源码 浏览:255
方舟怎么做命令管理 浏览:849
linux流量异常 浏览:676
单片机如何给电脑加密码 浏览:519
如何删掉多余的服务器 浏览:221