导航:首页 > 源码编译 > android源码解读

android源码解读

发布时间:2022-11-29 06:43:56

❶ 从零开始仿写一个抖音App——android绘制机制以及Surface家族源码全解析

本篇文章分为以下章节,读者可以按需阅读

阅读须知

图1就是 Android 屏幕显示的抽象示意图,这里我来解释一下:

Android 的两种常用绘图机制:

其实源码的主要流程都在图3中,我下面讲的东西算是对图3的补充和说明。另外强烈建议结合 Android 源码阅读本章节。

**这里我们以 View 的创建流程为例,讲述一下 Surface 在这个过程中的创建流程,Surface 的创建流程如图5所示。 **

我们都知道 Surface 可以通过 lockCanvas 和 unlockCanvasAndPost 这两个 api 来再通过 Canvas 来绘制图像,这一节我就通过这两个 api 来讲讲 Surface 的绘制流程,整个流程如图6所示。

图7是 ST 与 Surface、SV、TV 等等组件结合的概览图,我这里简单解释一下:

我将根据图8的流程来讲解 ST 的创建与使用

和前面一样,本小节接下来的分析也都是顺着图9来的

❷ Android源码解析RPC系列(一)---Binder原理

看了几天的Binder,决定有必要写一篇博客,记录一下学习成果,Binder是Android中比较综合的一块知识了,目前的理解只限于java层。首先Binder是干嘛用的?不用说,跨进程通信全靠它,操作系统的不同进程之间,数据不共享,对于每个进程来说,它都天真地以为自己独享了整个系统,完全不知道其他进程的存在,进程之间需要通信需要某种系统机制才能完成,在Android整个系统架构中,采用了大量的C/S架构的思想,所以Binder的作用就显得非常重要了,但是这种机制为什么是Binder呢?在Linux中的RPC方式有管道,消息队列,共享内存等,消息队列和管道采用存储-转发方式,即数据先从发送方缓存区拷贝到内核开辟的缓存区中,然后再从内核缓存区拷贝到接收方缓存区,这样就有两次拷贝过程。共享内存不需要拷贝,但控制复杂,难以使用。Binder是个折中的方案,只需要拷贝一次就行了。其次Binder的安全性比较好,好在哪里,在下还不是很清楚,基于安全性和传输的效率考虑,选择了Binder。Binder的英文意思是粘结剂,Binder对象是一个可以跨进程引用的对象,它的实体位于一个进程中,这个进程一般是Server端,该对象提供了一套方法用以实现对服务的请求,而它的引用却遍布于系统的各个进程(Client端)之中,这样Client通过Binder的引用访问Server,所以说,Binder就像胶水一样,把系统各个进程粘结在一起了,废话确实有点多。

为了从而保障了系统的安全和稳定,整个系统被划分成内核空间和用户空间
内核空间:独立于普通的应用程序,可以访问受保护的内存空间,有访问底层硬件设备的所有权限。
用户空间:相对与内核空间,上层运用程序所运行的空间就是用户空间,用户空间访问内核空间的唯一方式就是系统调用。一个4G的虚拟地址空间,其中3G是用户空间,剩余的1G是内核空间。如果一个用户空间想与另外一个用户空间进行通信,就需要内核模块支持,这个运行在内核空间的,负责各个用户进程通过Binder通信的内核模块叫做Binder驱动,虽然叫做Binder驱动,但是和硬件并没有什么关系,只是实现方式和设备驱动程序是一样的,提供了一些标准文件操作。

在写AIDL的时候,一般情况下,我们有两个进程,一个作为Server端提供某种服务,然后另外一个进程作为Client端,连接Server端之后,就 可以使用Server里面定义的服务。这种思想是一种典型的C/S的思想。值得注意的是Android系统中的Binder自身也是C/S的架构,也有Server端与Client端。一个大的C/S架构中,也有一个小的C/S架构。

先笼统的说一下,在整个Binder框架中,由系列组件组成,分别是Client、Server、ServiceManager和Binder驱动程序,其中Client、Server和ServiceManager运行在用户空间,Binder驱动程序运行内核空间。运行在用户空间中的Client、Server和ServiceManager,是在三个不同进程中的,Server进程中中定义了服务提供给Client进程使用,并且Server中有一个Binder实体,但是Server中定义的服务并不能直接被Client使用,它需要向ServiceManager注册,然后Client要用服务的时候,直接向ServiceManager要,ServiceManager返回一个Binder的替身(引用)给Client,这样Client就可以调用Server中的服务了。

场景 :进程A要调用进程B里面的一个draw方法处理图片。

分析 :在这种场景下,进程A作为Client端,进程B做为Server端,但是A/B不在同一个进程中,怎么来调用B进程的draw方法呢,首先进程B作为Server端创建了Binder实体,为其取一个字符形式,可读易记的名字,并将这个Binder连同名字以数据包的形式通过Binder驱动发送给ServiceManager,也就是向ServiceManager注册的过程,告诉ServiceManager,我是进程B,拥有图像处理的功能,ServiceManager从数据包中取出名字和引用以一个注册表的形式保留了Server进程的注册信息。为什么是以数据包的形式呢,因为这是两个进程,直接传递对象是不行滴,只能是一些描述信息。现在Client端进程A联系ServiceManager,说现在我需要进程B中图像处理的功能,ServiceManager从注册表中查到了这个Binder实体,但是呢,它并不是直接把这个Binder实体直接给Client,而是给了一个Binder实体的代理,或者说是引用,Client通过Binder的引用访问Server。分析到现在,有个关键的问题需要说一下,ServiceManager是一个进程,Server是另一个进程,Server向ServiceManager注册Binder必然会涉及进程间通信。当前实现的是进程间通信却又要用到进程间通信,这就好象蛋可以孵出鸡前提却是要找只鸡来孵蛋,确实是这样的,ServiceManager中预先有了一个自己的Binder对象(实体),就是那只鸡,然后Server有个Binder对象的引用,就是那个蛋,Server需要通过这个Binder的引用来实现Binder的注册。鸡就一只,蛋有很多,ServiceManager进程的Binder对象(实体)仅有一个,其他进程所拥有的全部都是它的代理。同样一个Server端Binder实体也应该只有一个,对应所有Client端全部都是它的代理。

我们再次理解一下Binder是什么?在Binder通信模型的四个角色里面;他们的代表都是“Binder”,一个Binder对象就代表了所有,包括了Server,Client,ServiceManager,这样,对于Binder通信的使用者而言,不用关心实现的细节。对Server来说,Binder指的是Binder实体,或者说是本地对象,对于Client来说,Binder指的是Binder代理对象,也就是Binder的引用。对于Binder驱动而言,在Binder对象进行跨进程传递的时候,Binder驱动会自动完成这两种类型的转换。

简单的总结一下,通过上面一大段的分析,一个Server在使用的时候需要经历三个阶段

1、定义一个AIDL文件
Game.aidl

GameManager .aidl

2、定义远端服务Service
在远程服务中的onBind方法,实现AIDL接口的具体方法,并且返回Binder对象

3、本地创建连接对象

以上就是一个远端服务的一般套路,如果是在两个进程中,就可以进程通信了,现在我们分析一下,这个通信的流程。重点是GameManager这个编译生成的类。

从类的关系来看,首先接口GameManager 继承 IInterface ,IInterface是一个接口,在GameManager内部有一个内部类Stub,Stub继承了Binder,(Binder实现了IBinder),并且实现了GameManager接口,在Stub中还有一个内部类Proxy,Proxy也实现了GameManager接口,一个整体的结构是这样的

现在的问题是,Stub是什么?Proxy又是什么?在上面说了在Binder通信模型的四个角色里面;他们的代表都是“Binder”,一个Binder对象就代表了所有,包括了Server,Clinet,ServiceManager,为了两个进程的通信,系统给予的内核支持是Binder,在抽象一点的说,Binder是系统开辟的一块内存空间,两个进程往这块空间里面读写数据就行了,Stub从Binder中读数据,Proxy向Binder中写数据,达到进程间通信的目的。首先我们分析Stub。

Stub 类继承了Binder ,说明了Stub有了跨进程传输的能力,实现了GameManager接口,说明它有了根据游戏ID查询一个游戏的能力。我们在bind一个Service之后,在onServiceConnecttion的回调里面,就是通过asInterface方法拿到一个远程的service的。

asInterface调用queryLocalInterface。

mDescriptor,mOwner其实是Binder的成员变量,Stub继承了Binder,在构造函数的时候,对着两个变量赋的值。

如果客户端和服务端是在一个进程中,那么其实queryLocalInterface获取的就是Stub对象,如果不在一个进程queryLocalInterface查询的对象肯定为null,因为不同进程有不同虚拟机,肯定查不到mOwner对象的,所以这时候其实是返回的Proxy对象了。拿到Stub对象后,通常在onServiceConnected中,就把这个对象转换成我们多定义AIDL接口。

比如我们这里会转换成GameManager,有了GameManager对象,就可以调用后querryGameById方法了。如果是一个进程,那直接调用的是自己的querryGameById方法,如果不是一个进程,那调用了就是代理的querryGameById方法了。

看到其中关键的一行是

mRemote就是一个IBinder对象,相对于Stub,Proxy 是组合关系(HAS-A),内部有一个IBinder对象mRemote,Stub是继承关系(IS-A),直接实现了IBinder接口。

transact是个native方法,最终还会回掉JAVA层的onTransact方法。

onTransact根据调用号(每个AIDL函数都有一个编号,在跨进程的时候,不会传递函数,而是传递编号指明调用哪个函数)调用相关函数;在这个例子里面,调用了Binder本地对象的querryGameById方法;这个方法将结果返回给驱动,驱动唤醒挂起的Client进程里面的线程并将结果返回。于是一次跨进程调用就完成了。

***Please accept mybest wishes for your happiness and success ! ***

❸ Android Handler源码分析

Handler相信安卓开发者都很熟悉了,平常在开发的时候应用场景很多,但是Handler到底是如何发送消息和接收消息的呢,它内部到底做了些什么工作呢,本篇文章就Handler来分析它的源码流程

在Handler中有多个发送消息的方法,以下为几个例子:

第一个不用多说直接发送消息的,延迟时间是0

第二个发送带有延迟的消息,如果delayMillis 是负数则设置为0

第三个发送消息排在消息队列的头部,等待处理

从源码可以看出来第一个和第二个方法都是调用sendMessageAtTime方法,而sendMessageAtTime方法调用的是enqueueMessage方法,所以它们调用的都是enqueueMessage方法

走到这里我们看到这个msg.target 就是当前Handler,这里之所以这样写是为了后面用于消息分发的,这里的queue不会为空,我们来看queue到底在哪里实例的

在这里看到不仅MessageQueue在这里实例化并且Looper也是在这里实例化的,在这里有个疑问就是mQueue这样写会不会为空呢,带着这个疑问我们后面解答,我们先看Looper中的myLooper方法

发现是从ThreadLocal静态对象里面获取的Looper对象,再看下在哪里设置的呢

在这里我们看下ThreadLocal是怎么设置和获取的,找到set方法和get方法

在这里说明一下一个线程对应一个ThreadLocalMap 一个ThreadLocalMap 对应一个key和value值,key对应的是sThreadLocal,value对应的存储的Looper对象。接着在这里发现MessageQueue是在这里实例化的,这里有个prepare方法里面设置的,那到底在哪里调用的呢。熟悉Activity启动流程源码的童鞋都知道,最终Activity启动流程操作主要是在ActivityThread里面的,并且Android程序刚开始的入口是ActivityThread的main方法,所以我们查看main方法

我们看到在入口调用了Looper.prepareMainLooper方法,我们直接进入方法

在这里惊奇的发现调用了prepare方法,在下面判断中保证一个线程中只能有一个Looper对象,否则抛出异常。
走到这里做个总结:

从上面可以看出几乎所有的发送消息方法都会调用enqueueMessage方法,我们查看MessageQueue中的enqueueMessage方法

这个方法主要是用来存储消息队列的,并且通过时间进行有序排序,有了消息之后就通过nativeWake方法这个方法是底层实现的,这个方法是用通过JNI实现的,即在底层通过C实现的,底层在这里就不多说了,不是本篇主要内容。在上面我们在ActivityThread中main方法中调用了Looper.loop()方法,这样这个方法就被唤醒,接着我们查看此方法到底干了啥

这个方法是个无限循环方法等待获取可以处理分发msg消息的,我们重点来看MessageQueue.next()方法

这个方法很重要在这里主要是取出Message返回给Looper.loop()用做消息分发,现在来看Looper.loop()方法中调用的Handler dispatchMessage方法

在这里如果Message 设置了callback 的话,则直接调用 message.callback.run()方法,如果有设置Handler的callback,则也进行分发,如果都没有的话,那就直接调用handleMessage(Message msg)方法。

做个总结:

最后:

在这里多说几句为什么用链表结构的方式进行存储消息,而不用数组的方式呢,熟悉ArrayList源码的开发者都知道它里面其实就是以数组的方式进行存储数据的,而LinkedList是以节点的方式存储的,相当于二叉树结构的和链表结构类似,所以最终我们知道链接结构主要是增加删除效率高,而数组的方式则是查询的效率高

❹ Android TV开发焦点移动源码分析

点可以理解为选中态,在Android TV上起很重要的作用。一个视图控件只有在获得焦点的状态下,才能响应按键的Click事件。
相对于手机上用手指点击屏幕产生的Click事件, 在TV中通过点击遥控器的方向键来控制焦点的移动。当焦点移动到目标控件上之后,按下遥控器的确定键,才会触发一个Click事件,进而去做下一步的处理
在处理焦点的时候,有一些基础的用法需要知道。
首先,一个控件isFocusable()需要为true才有资格可以获取到焦点。如果想要在触摸模式下获取焦点,需要通过setFocusableInTouchMode(boolean)来设置。也可以直接在xml布局文件中指定:

keyEvent 分发过程:

而当按下遥控器的按键时,会产生一个按键事件,就是KeyEvent,包含“上”,“下”,“左”,“右”,“返回”,“确定”等指令。焦点的处理就在KeyEvent的分发当中完成。
首先,KeyEvent会流转到ViewRootImpl中开始进行处理,具体方法是内部类 ViewPostImeInputStage 中的 processKeyEvent :

接下来先看一下KeyEvent在view框架中的分发:

这里也是可以做焦点控制,最好是在 event.getAction() == KeyEvent.ACTION_DOWN 进行.
因为android 的 ViewRootlmpl 的 processKeyEvent 焦点搜索与请求的地方 进行了判断if (event.getAction() == KeyEvent.ACTION_DOWN)

• 首先ViewGroup会一层一层往上执行父类的dispatchKeyEvent方法,如果返回true那么父类的dispatchKeyEvent方法就会返回true,也就代表父类消费了该焦点事件,那么焦点事件自然就不会往下进行分发。
• 然后ViewGroup会判断mFocused这个view是否为空,如果为空就会return false,焦点继续往下传递;如果不为空,那就会return mFocused的dispatchKeyEvent方法返回的结果。这个mFocused其实是ViewGroup中当前获取焦点的子View

发现执行了onKeyListener中的onKey方法,如果onKey方法返回true,那么dispatchKeyEvent方法也会返回true
如果想要修改ViewGroup焦点事件的分发
• 重写view的dispatchKeyEvent方法
• 给某个子view设置onKeyListener监听

下面再来看一下如果一个页面第一次进入,系统是如何确定焦点是定位在哪个view上的

由于DecorView继承自FrameLayout,这里调用的是ViewGroup的requestFocus

descendantFocusability:
• FOCUS_AFTER_DESCENDANTS:先分发给Child View进行处理,如果所有的Child View都没有处理,则自己再处理
• FOCUS_BEFORE_DESCENDANTS:ViewGroup先对焦点进行处理,如果没有处理则分发给child View进行处理
• FOCUS_BLOCK_DESCENDANTS:ViewGroup本身进行处理,不管是否处理成功,都不会分发给ChildView进行处理
因为 PhoneWindow 给 DecoreView 初始化时设置 了 setDescendantFocusability(ViewGroup.FOCUS_AFTER_DESCENDANTS),所以这里默认是FOCUS_AFTER_DESCENDANTS

到此第一次请求焦点的过程基本告一个段落

焦点移动的时候,默认的情况下,会按照一种算法去找在指定移动方向上最近的邻居。在一些情况下,焦点的移动可能跟开发者的意图不符,这时开发者可以在布局文件中使用下面这些XML属性来指定下一个焦点对象:

在KeyEvent分发中已经知道如果分发过程中event没有被消耗,就会根据方向搜索以及请求焦点View

流程一:查找用户指定的下一个焦点

流程二:获取搜索方向上所有可以获取焦点的view,使用算法查找下一个view
addFocusables() 获取搜索方向上可获得焦点的view

descendantFocusability属性决定了ViewGroup和其子view的聚焦优先级
• FOCUS_BLOCK_DESCENDANTS:viewgroup会覆盖子类控件而直接获得焦点
• FOCUS_BEFORE_DESCENDANTS:viewgroup会覆盖子类控件而直接获得焦点
• FOCUS_AFTER_DESCENDANTS:viewgroup只有当其子类控件不需要获取焦点时才获取焦点
addFocusables 的第一个参数views是由root决定的。在ViewGroup的focusSearch方法中传进来的root是DecorView,也可以主动调用FocusFinder的findNextFocus方法,在指定的ViewGroup中查找焦点。
FocusFinder.findNextFocus 查找焦点

❺ Android TV 焦点原理源码解析

相信很多刚接触AndroidTV开发的开发者,都会被各种焦点问题给折磨的不行。不管是学技术还是学习其他知识,都要学习和理解其中原理,碰到问题我们才能得心应手。下面就来探一探Android的焦点分发的过程。

Android焦点事件的分发是从ViewRootImpl的processKeyEvent开始的,源码如下:

源码比较长,下面我就慢慢来讲解一下具体的每一个细节。

dispatchKeyEvent方法返回true代表焦点事件被消费了。

ViewGroup的dispatchKeyEvent()方法的源码如下:

(2)ViewGroup的dispatchKeyEvent执行流程

(3)下面再来瞧瞧view的dispatchKeyEvent方法的具体的执行过程

惊奇的发现执行了onKeyListener中的onKey方法,如果onKey方法返回true,那么dispatchKeyEvent方法也会返回true

可以得出结论:如果想要修改ViewGroup焦点事件的分发,可以这么干:

注意:实际开发中,理论上所有焦点问题都可以通过给dispatchKeyEvent方法增加监听来来拦截来控制。

(1)dispatchKeyEvent方法返回false后,先得到按键的方向direction值,这个值是一个int类型参数。这个direction值是后面来进行焦点查找的。

(2)接着会调用DecorView的findFocus()方法一层一层往下查找已经获取焦点的子View。
ViewGroup的findFocus方法如下:

View的findFocus方法

说明:判断view是否获取焦点的isFocused()方法, (mPrivateFlags & PFLAG_FOCUSED) != 0 和view 的isFocused()方法是一致的。

其中isFocused()方法的作用是判断view是否已经获取焦点,如果viewGroup已经获取到了焦点,那么返回本身即可,否则通过mFocused的findFocus()方法来找焦点。mFocused其实就是ViewGroup中获取焦点的子view,如果mView不是ViewGourp的话,findFocus其实就是判断本身是否已经获取焦点,如果已经获取焦点了,返回本身。

(3)回到processKeyEvent方法中,如果findFocus方法返回的mFocused不为空,说明找到了当前获取焦点的view(mFocused),接着focusSearch会把direction(遥控器按键按下的方向)作为参数,找到特定方向下一个将要获取焦点的view,最后如果该view不为空,那么就让该view获取焦点。

(4)focusSearch方法的具体实现。

focusSearch方法的源码如下:

可以看出focusSearch其实是一层一层地网上调用父View的focusSearch方法,直到当前view是根布局(isRootNamespace()方法),通过注释可以知道focusSearch最终会调用DecorView的focusSearch方法。而DecorView的focusSearch方法找到的焦点view是通过FocusFinder来找到的。

(5)FocusFinder是什么?

它其实是一个实现 根据给定的按键方向,通过当前的获取焦点的View,查找下一个获取焦点的view这样算法的类。焦点没有被拦截的情况下,Android框架焦点的查找最终都是通过FocusFinder类来实现的。

(6)FocusFinder是如何通过findNextFocus方法寻找焦点的。

下面就来看看FocusFinder类是如何通过findNextFocus来找焦点的。一层一层往下看,后面会执行findNextUserSpecifiedFocus()方法,这个方法会执行focused(即当前获取焦点的View)的findUserSetNextFocus方法,如果该方法返回的View不为空,且isFocusable = true && isInTouchMode() = true的话,FocusFinder找到的焦点就是findNextUserSpecifiedFocus()返回的View。

(7)findNextFocus会优先根据XML里设置的下一个将获取焦点的View ID值来寻找将要获取焦点的View。

看看View的findUserSetNextFocus方法内部都干了些什么,OMG不就是通过我们xml布局里设置的nextFocusLeft,nextFocusRight的viewId来找焦点吗,如果按下Left键,那么便会通过nextFocusLeft值里的View Id值去找下一个获取焦点的View。

可以得出以下结论:

1. 如果一个View在XML布局中设置了focusable = true && isInTouchMode = true,那么这个View会优先获取焦点。

2. 通过设置nextFocusLeft,nextFocusRight,nextFocusUp,nextFocusDown值可以控制View的下一个焦点。

Android焦点的原理实现就这些。总结一下:

为了方便同志们学习,我这做了张导图,方便大家理解~

❻ 怎么分析一个android应用程序的源码

一般工程的AndroidManifest.xml里包含下面代码的是主界面

<intent-filter>
<actionandroid:name="android.intent.action.MAIN"/>

<categoryandroid:name="android.intent.category.LAUNCHER"/>
</intent-filter>

找到主界面后就根据主界面的函数找其他界面的入口,一点一点的分析就好了

❼ ValueAnimator源码解析-基于Android API30

先上个时序图,整个调用链都在图里了。

ValueAnimator.java

初始化动画,并将监听添加到AnimationHandler

AnimationHandler.java

将Frame监听添加到Choreographer

Choreographer.java

请求下一个信号,不明白信号的可看 《Android 底层渲染 - 屏幕刷新机制源码分析》

FrameDisplayEventReceiver.java

当来了信号量后,执行onvsync,发送Handler同步消息,Message的Callback就是FrameDisplayEventReceiver,最终通过Handler执行了FrameDisplayEventReceiver.run()方法

DisplayEventReceiver.java

请求信号量,并分发处理

FrameDisplayEventReceiver.java

处理回调
Choreographer.CallbackRecord.java

执行Frame回调

AnimationHandler.java

帧回调到动画回调
ValueAnimator.java

整个流程就分析完了。动画的核心驱动是,利用屏幕的刷新机制,请求信号,然后在通过Handler的同步消息,执行Frame回调。Frame回调中在执行动画回调。动画回调中根据时间和动画插值。计算出最新的动画值,回调给用户。ValueAnimation中animateBasedOnTime方法会返回当前动画是否结束,如果已经结束就移除动画回调,如果未结束FrameCallback的doFrame中处理完这一帧后,会继续请求下一个信号量。

❽ [Android源码分析] - 异步通信Handler机制

一、问题:在Android启动后会在新进程里创建一个主线程,也叫UI线程( 非线程安全 )这个线程主要负责监听屏幕点击事件与界面绘制。当Application需要进行耗时操作如网络请求等,如直接在主线程进行容易发生ANR错误。所以会创建子线程来执行耗时任务,当子线程执行完毕需要通知UI线程并修改界面时,不可以直接在子线程修改UI,怎么办?

解决方法:Message Queue机制可以实现子线程与UI线程的通信。

该机制包括Handler、Message Queue、Looper。Handler可以把消息/ Runnable对象 发给Looper,由它把消息放入所属线程的消息队列中,然后Looper又会自动把消息队列里的消息/Runnable对象 广播 到所属线程里的Handler,由Handler处理接收到的消息或Runnable对象。

1、Handler

每次创建Handler对象时,它会自动绑定到创建它的线程上。如果是主线程则默认包含一个Message Queue,否则需要自己创建一个消息队列来存储。

Handler是多个线程通信的信使。比如在线程A中创建AHandler,给它绑定一个ALooper,同时创建属于A的消息队列AMessageQueue。然后在线程B中使用AHandler发送消息给ALooper,ALooper会把消息存入到AMessageQueue,然后再把AMessageQueue广播给A线程里的AHandler,它接收到消息会进行处理。从而实现通信。

2、Message Queue

在主线程里默认包含了一个消息队列不需要手动创建。在子线程里,使用Looper.prepare()方法后,会先检查子线程是否已有一个looper对象,如果有则无法创建,因为每个线程只能拥有一个消息队列。没有的话就为子线程创建一个消息队列。

Handler类包含Looper指针和MessageQueue指针,而Looper里包含实际MessageQueue与当前线程指针。

下面分别就UI线程和worker线程讲解handler创建过程:

首先,创建handler时,会自动检查当前线程是否包含looper对象,如果包含,则将handler内的消息队列指向looper内部的消息队列,否则,抛出异常请求执行looper.prepare()方法。

 - 在 UI线程 中,系统自动创建了Looper 对象,所以,直接new一个handler即可使用该机制;

- 在 worker线程 中,如果直接创建handler会抛出运行时异常-即通过查‘线程-value’映射表发现当前线程无looper对象。所以需要先调用Looper.prepare()方法。在prepare方法里,利用ThreadLocal<Looper>对象为当前线程创建一个Looper(利用了一个Values类,即一个Map映射表,专为thread存储value,此处为当前thread存储一个looper对象)。然后继续创建handler, 让handler内部的消息队列指向该looper的消息队列(这个很重要,让handler指向looper里的消息队列,即二者共享同一个消息队列,然后handler向这个消息队列发送消息,looper从这个消息队列获取消息) 。然后looper循环消息队列即可。当获取到message消息,会找出message对象里的target,即原始发送handler,从而回调handler的handleMessage() 方法进行处理。

 - handler与looper共享消息队列 ,所以handler发送消息只要入列,looper直接取消息即可。

 - 线程与looper映射表 :一个线程最多可以映射一个looper对象。通过查表可知当前线程是否包含looper,如果已经包含则不再创建新looper。

5、基于这样的机制是怎样实现线程隔离的,即在线程中通信呢。 

核心在于 每一个线程拥有自己的handler、message queue、looper体系 。而 每个线程的Handler是公开 的。B线程可以调用A线程的handler发送消息到A的共享消息队列去,然后A的looper会自动从共享消息队列取出消息进行处理。反之一样。

二、上面是基于子线程中利用主线程提供的Handler发送消息出去,然后主线程的Looper从消息队列中获取并处理。那么还有另外两种情况:

1、主线程发送消息到子线程中;

采用的方法和前面类似。要在子线程中实例化AHandler并设定处理消息的方法,同时由于子线程没有消息队列和Looper的轮询,所以要加上Looper.prepare(),Looper.loop()分别创建消息队列和开启轮询。然后在主线程中使用该AHandler去发送消息即可。

2、子线程A与子线程B之间的通信。

1、 Handler为什么能够实现不同线程的通信?核心点在哪?

不同线程之间,每个线程拥有自己的Handler、消息队列和Looper。Handler是公共的,线程可以通过使用目标线程的Handler对象来发送消息,这个消息会自动发送到所属线程的消息队列中去,线程自带的Looper对象会不断循环从里面取出消息并把消息发送给Handler,回调自身Handler的handlerMessage方法,从而实现了消息的线程间传递。

2、 Handler的核心是一种事件激活式(类似传递一个中断)的还是主要是用于传递大量数据的?重点在Message的内容,偏向于数据传输还是事件传输。

目前的理解,它所依赖的是消息队列,发送的自然是消息,即类似事件中断。

0、 Android消息处理机制(Handler、Looper、MessageQueue与Message)

1、 Handler、Looper源码阅读

2、 Android异步消息处理机制完全解析,带你从源码的角度彻底理解

谢谢!

wingjay

![](https://avatars0.githubusercontent.com/u/9619875?v=3&s=460)

❾ Android源码解析Window系列第(一)篇---Window的基本认识和Activity的加载流程

您可能听说过View ,ViewManager,Window,PhoneWindow,WindowManager,WindowManagerService,可是你知道这几个类是什么关系,干嘛用的。概括的来说,View是放在Window中的,Window是一个抽象类,它的具体实现是PhoneWindow,PhoneWindow还有个内部类DecorView,WindowManager是一个interface,继承自ViewManager,它是外界访问Window的入口,,提供了add/remove/updata的方法操作View,WindowManager与WindowManagerSerice是个跨进程的过程,WindowManagerService的职责是对系统中的所有窗口进行管理。如果您不太清楚,建议往下看,否则就不要看了。

Android系统的Window有很多种,大体上来说,Framework定义了三种窗口类型;

这就是Framework定义了三种窗口类型,这三种类型定义在WindowManager的内部类LayoutParams中,WindowManager讲这三种类型 进行了细化,把每一种类型都用一个int常量来表示,这些常量代表窗口所在的层,WindowManagerService在进行窗口叠加的时候,会按照常量的大小分配不同的层,常量值越大,代表位置越靠上面, 所以我们可以猜想一下,应用程序Window的层值常量要小于子Window的层值常量,子Window的层值常量要小于系统Window的层值常量。 Window的层级关系如下所示。

上面说了Window分为三种,用Window的type区分,在搞清楚Window的创建之前,我们需要知道怎么去描述一个Window,我们就把Window当做一个实体类,给我的感觉,它必须要下面几个字段。

实际上WindowManager.LayoutParams对Window有很详细的定义。

提取几个重要的参数

Window是一个是一个抽象的概念,千万不要认为我们所看到的就是Window,我们平时所看到的是视图,每一个Window都对应着一个View,View和Window通过ViewRootImpl来建立联系。有了View,Window的存在意义在哪里呢,因为View不能单独存在,它必须依附着Window,所以有视图的地方就有Window,比如Activity,一个Dialog,一个PopWindow,一个菜单,一个Toast等等。

通过上面我们知道视图和Window的关系,那么有一个问题,是先有视图,还是先有Window。这个答案只有在源码中找了。应用程序的入口类是ActivityThread,在ActivityThread中有performLaunchActivity来启动Activity,这个performLaunchActivity方法内部会创建一个Activity。

如果activity不为null,就会调用attach,在attach方法中通过PolicyManager创建了Window对象,并且给Window设置了回调接口。

PolicyManager的实现类是Policy

这样Window就创建出来了, 所以先有Window,后有视图,视图依赖Window存在 ,再说一说视图(Activity)为Window设置的回调接口。

Activity实现了这个回调接口,当Window的状态发生变化的时候,就会回调Activity中实现的这些接口,有些回调接口我们还是熟悉的,dispatchTouchEvent,onAttachedToWindow,onDetachedFromWindow等。

下面分析view是如何附属到window上的,通过上面可以看到,在attach之后就要执行callActivityOnCreate,在onCreate中我们会调用setContentView方法。

getWindow获取了Window对象,Window的具体实现类是PhoneWindow,所以要看PhoneWindow的setContentView方法。

这里涉及到一个mContentParent变量,他是一个DecorView的一部分,DecorView是PhoneWindow的一个内部类,我先介绍一下关于DecorView的知识。

DecorView是Activity的顶级VIew,DecorView继承自FrameLayout,在DecorView中有上下两个部分,上面是标题栏,下面是内容栏,我们通过PhoneWindow的setContentView所设置的布局文件是加到内容栏(mContentParent)里面的,View层的事件都是先经过DecorView在传递给我们的View的。

OK在回到setContentView的源码分析,我们可以得到Activity的Window创建需要三步。

- 1、 如果没有DecorView,在installDecor中创建DecorView。

- 2、将View添加到decorview中的mContentParent中。

- 3、回调Activity的onContentChanged接口。

先看看第一步,installDecor的源码

installDecor中调用了generateDecor,继续看

直接给new一个DecorView,有了DecorView之后,就可以加载具体的布局文件到DecorView中了,具体的布局文件和系统和主题有关系。

在看第二步,将View添加到decorview中的mContentParent中。

直接将Activity视图加到DecorView的mContentParent中,最后一步,回调Activity的onContentChanged接口。在Activity中寻找onContentChanged方法,它是个空实现,我们可以在子Activity中处理。

到此DecorView被创建完毕,我们一开始从Thread中的handleLaunchActivity方法开始分析,首先加载Activity的字节码文件,利用反射的方式创建一个Activity对象,调用Activity对象的attach方法,在attach方法中,创建系统需要的Window并为设置回调,这个回调定义在Window之中,由Activity实现,当Window的状态发生变化的时候,就会回调Activity实现的这些回调方法。调用attach方法之后,Window被创建完成,这时候需要关联我们的视图,在handleLaunchActivity中的attach执行之后就要执行handleLaunchActivity中的callActivityOnCreate,在onCreate中我们会调用setContentView方法。通过setContentView,创建了Activity的顶级View---DecorView,DecorView的内容栏(mContentParent)用来显示我们的布局。 这个是我们上面分析得到了一个大致流程,走到这里,这只是添加的过程,还要有一个显示的过程,显示的过程就要调用handleLaunchActivity中的handleResumeActivity方法了。最后会调用makeVisible方法。

这里面首先拿到WindowManager对象,用tWindowManager 的父接口ViewManager接收,ViewManager可以
最后调用 mDecor.setVisibility(View.VISIBLE)设置mDecor可见。到此,我们终于明白一个Activity是怎么显示在我们的面前了。
参考链接:
http://blog.csdn.net/feiclear_up/article/details/49201357

❿ Android socket源码解析(三)socket的connect源码解析

上一篇文章着重的聊了socket服务端的bind,listen,accpet的逻辑。本文来着重聊聊connect都做了什么?

如果遇到什么问题,可以来本文 https://www.jianshu.com/p/da6089fdcfe1 下讨论

当服务端一切都准备好了。客户端就会尝试的通过 connect 系统调用,尝试的和服务端建立远程连接。

首先校验当前socket中是否有正确的目标地址。然后获取IP地址和端口调用 connectToAddress 。

在这个方法中,能看到有一个 NetHooks 跟踪socket的调用,也能看到 BlockGuard 跟踪了socket的connect调用。因此可以hook这两个地方跟踪socket,不过很少用就是了。

核心方法是 socketConnect 方法,这个方法就是调用 IoBridge.connect 方法。同理也会调用到jni中。

能看到也是调用了 connect 系统调用。

文件:/ net / ipv4 / af_inet.c

在这个方法中做的事情如下:

注意 sk_prot 所指向的方法是, tcp_prot 中 connect 所指向的方法,也就是指 tcp_v4_connect .

文件:/ net / ipv4 / tcp_ipv4.c

本质上核心任务有三件:

想要能够理解下文内容,先要明白什么是路由表。

路由表分为两大类:

每个路由器都有一个路由表(RIB)和转发表 (fib表),路由表用于决策路由,转发表决策转发分组。下文会接触到这两种表。

这两个表有什么区别呢?

网上虽然给了如下的定义:

但实际上在Linux 3.8.1中并没有明确的区分。整个路由相关的逻辑都是使用了fib转发表承担的。

先来看看几个和FIB转发表相关的核心结构体:

熟悉Linux命令朋友一定就能认出这里面大部分的字段都可以通过route命令查找到。

命令执行结果如下:

在这route命令结果的字段实际上都对应上了结构体中的字段含义:

知道路由表的的内容后。再来FIB转发表的内容。实际上从下面的源码其实可以得知,路由表的获取,实际上是先从fib转发表的路由字典树获取到后在同感加工获得路由表对象。

转发表的内容就更加简单

还记得在之前总结的ip地址的结构吗?

需要进行一次tcp的通信,意味着需要把ip报文准备好。因此需要决定源ip地址和目标IP地址。目标ip地址在之前通过netd查询到了,此时需要得到本地发送的源ip地址。

然而在实际情况下,往往是面对如下这么情况:公网一个对外的ip地址,而内网会被映射成多个不同内网的ip地址。而这个过程就是通过DDNS动态的在内存中进行更新。

因此 ip_route_connect 实际上就是选择一个缓存好的,通过DDNS设置好的内网ip地址并找到作为结果返回,将会在之后发送包的时候填入这些存在结果信息。而查询内网ip地址的过程,可以成为RTNetLink。

在Linux中有一个常用的命令 ifconfig 也可以实现类似增加一个内网ip地址的功能:

比如说为网卡eth0增加一个IPV6的地址。而这个过程实际上就是调用了devinet内核模块设定好的添加新ip地址方式,并在回调中把该ip地址刷新到内存中。

注意 devinet 和 RTNetLink 严格来说不是一个存在同一个模块。虽然都是使用 rtnl_register 注册方法到rtnl模块中:

文件:/ net / ipv4 / devinet.c

文件:/ net / ipv4 / route.c

实际上整个route模块,是跟着ipv4 内核模块一起初始化好的。能看到其中就根据不同的rtnl操作符号注册了对应不同的方法。

整个DDNS的工作流程大体如下:

当然,在tcp三次握手执行之前,需要得到当前的源地址,那么就需要通过rtnl进行查询内存中分配的ip。

文件:/ include / net / route.h

这个方法核心就是 __ip_route_output_key .当目的地址或者源地址有其一为空,则会调用 __ip_route_output_key 填充ip地址。目的地址为空说明可能是在回环链路中通信,如果源地址为空,那个说明可能往目的地址通信需要填充本地被DDNS分配好的内网地址。

在这个方法中核心还是调用了 flowi4_init_output 进行flowi4结构体的初始化。

文件:/ include / net / flow.h

能看到这个过程把数据中的源地址,目的地址,源地址端口和目的地址端口,协议类型等数据给记录下来,之后内网ip地址的查询与更新就会频繁的和这个结构体进行交互。

能看到实际上 flowi4 是一个用于承载数据的临时结构体,包含了本次路由操作需要的数据。

执行的事务如下:

想要弄清楚ip路由表的核心逻辑,必须明白路由表的几个核心的数据结构。当然网上搜索到的和本文很可能大为不同。本文是基于LInux 内核3.1.8.之后的设计几乎都沿用这一套。

而内核将路由表进行大规模的重新设计,很大一部分的原因是网络环境日益庞大且复杂。需要全新的方式进行优化管理系统中的路由表。

下面是fib_table 路由表所涉及的数据结构:

依次从最外层的结构体介绍:

能看到路由表的存储实际上通过字典树的数据结构压缩实现的。但是和常见的字典树有点区别,这种特殊的字典树称为LC-trie 快速路由查找算法。

这一篇文章对于快速路由查找算法的理解写的很不错: https://blog.csdn.net/dog250/article/details/6596046

首先理解字典树:字典树简单的来说,就是把一串数据化为二进制格式,根据左0,右1的方式构成的。

如图下所示:

这个过程用图来展示,就是沿着字典树路径不断向下读,比如依次读取abd节点就能得到00这个数字。依次读取abeh就能得到010这个数字。

说到底这种方式只是存储数据的一种方式。而使用数的好处就能很轻易的找到公共前缀,在字典树中找到公共最大子树,也就找到了公共前缀。

而LC-trie 则是在这之上做了压缩优化处理,想要理解这个算法,必须要明白在 tnode 中存在两个十分核心的数据:

这负责什么事情呢?下面就简单说说整个lc-trie的算法就能明白了。

当然先来看看方法 __ip_dev_find 是如何查找

文件:/ net / ipv4 / fib_trie.c

整个方法就是通过 tkey_extract_bits 生成tnode中对应的叶子节点所在index,从而通过 tnode_get_child_rcu 拿到tnode节点中index所对应的数组中获取叶下一级别的tnode或者叶子结点。

其中查找index最为核心方法如上,这个过程,先通过key左移动pos个位,再向右边移动(32 - bits)算法找到对应index。

在这里能对路由压缩算法有一定的理解即可,本文重点不在这里。当从路由树中找到了结果就返回 fib_result 结构体。

查询的结果最为核心的就是 fib_table 路由表,存储了真正的路由转发信息

文件:/ net / ipv4 / route.c

这个方法做的事情很简单,本质上就是想要找到这个路由的下一跳是哪里?

在这里面有一个核心的结构体名为 fib_nh_exception 。这个是指fib表中去往目的地址情况下最理想的下一跳的地址。

而这个结构体在上一个方法通过 find_exception 获得.遍历从 fib_result 获取到 fib_nh 结构体中的 nh_exceptions 链表。从这链表中找到一模一样的目的地址并返回得到的。

文件:/ net / ipv4 / tcp_output.c

阅读全文

与android源码解读相关的资料

热点内容
文件夹怎么做标题 浏览:31
腾讯云服务器如何防止被攻击 浏览:879
六棱柱的体积算法 浏览:933
淘宝什么云服务器好用 浏览:340
pythonoa项目 浏览:307
android杜比音效 浏览:341
杀手47为什么连接不了服务器 浏览:108
静态路径命令 浏览:533
一直编译不过怎么办 浏览:829
汽车串联并联算法 浏览:458
助眠解压的声音音频小哥哥 浏览:277
pythoncmd换行 浏览:376
linux取消行号 浏览:355
安卓原生系统官网是什么 浏览:444
底部主图源码 浏览:878
服务器崩了有什么提示 浏览:780
远程海康服务器用什么浏览器 浏览:232
解压报纸图片 浏览:956
python微信公众号开发平台 浏览:895
知识付费网站java源码 浏览:255