㈠ 国内做分布式存储研发的公司有哪些
做过一些集成项目,国内集群NAS(分布式文件系统)这块了解一些,随便说说,仅限于通用集群NAS。宣传自研集群NAS的公司不少,OEM居多,做研发的不多,完全自研就更少了。列一些接触过,完全自研,产品化程度相对高一些的吧。大一点的,华为 (oceanstor 9000),曙光(parastor)。市场上见的比较多了。小一点的,龙存,这个算是老牌子了。聚存,这个知道的人不多。基于ceph的公司这几年不少,用过其中一家的东西,块这块还行,文件这块还需要时间。分布式存储其实是一个比较大的领域。有分布式数据库、分布式文件系统、分布式块(ServerSAN)、分布式对象存储之类。做的公司挺多,不过真正都自己的代码的挺少,很多都是开源改的。分布式数据来说一般互联网公司用的多,像阿里,腾讯、网络都有自己分布式数据库。国内做分布式文件系统来说,数中科院的一帮人做的最早。从中科院出来人基本的分为三家,曙光,龙存,达沃。这三家基本都属于自研并且应用时间都在国内来说时间最久了。也有像华为、淘宝、网络、腾讯的文件系统。
㈡ 哪些分布式文件系统是由python编写的呢
我知道分布式文件系统完全用Python 写的只有openstack 的swift。
其他还有一些不知名的分布式文件系统用python 写的如:
NCFS(基于多个云存储的分布式文件系统)
一般考虑性能都不会采用python 作为分布式文件系统的开发语言
㈢ 分布式文件存储系统采用什么方式来提升可用性和可靠性
一。分布式Session的几种实现方式 1.基于数据库的Session共享 2.基于NFS共享文件系统 3.基于memcached 的session,如何保证 memcached 本身的高可用性? 4. 基于resin/tomcat web容器本身的session复制机制 5. 基于TT/Redis 或 jbosscache 进行 session 共享。 6. 基于cookie 进行session共享 或者是: 一、Session Replication 方式管理 (即session复制) 简介:将一台机器上的Session数据广播复制到集群中其余机器上 使用场景:机器较少,网络流量较小 优点:实现简单、配置较少、当网络中有机器Down掉时不影响用户访问 缺点:广播式复制到其余机器有一定廷时,带来一定网络开销 二、Session Sticky 方式管理 简介:即粘性Session、当用户访问集群中某台机器后,强制指定后续所有请求均落到此机器上 使用场景:机器数适中、对稳定性要求不是非常苛刻 优点:实现简单、配置方便、没有额外网络开销 缺点:网络中有机器Down掉时、用户Session会丢失、容易造成单点故障 三、缓存集中式管理 简介:将Session存入分布式缓存集群中的某台机器上,当用户访问不同节点时先从缓存中拿Session信息 使用场景:集群中机器数多、网络环境复杂 优点:可靠性好 缺点:实现复杂、稳定性依赖于缓存的稳定性、Session信息放入缓存时要有合理的策略写入 二。Session和Cookie的区别和联系以及Session的实现原理 1、session保存在服务器,客户端不知道其中的信息;cookie保存在客户端,服务器能够知道其中的信息。 2、session中保存的是对象,cookie中保存的是字符串。 3、session不能区分路径,同一个用户在访问一个网站期间,所有的session在任何一个地方都可以访问到。而cookie中如果设置了路径参数,那么同一个网站中不同路径下的cookie互相是访问不到的。 4、session需要借助cookie才能正常<nobr oncontextmenu="return false;" onmousemove="kwM(3);" id="key3" onmouseover="kwE(event,3, this);" style="COLOR: #6600ff; BORDER-BOTTOM: 0px dotted; BACKGROUND-COLOR: transparent; TEXT-DECORATION: underline" onclick="return kwC();" onmouseout="kwL(event, this);" target="_blank">工作</nobr>。如果客户端完全禁止cookie,session将失效。 http是无状态的协议,客户每次读取web页面时,服务器都打开新的会话,而且服务器也不会自动维护客户的上下文信息,那么要怎么才能实现网上商店中的 购物车呢,session就是一种保存上下文信息的机制,它是针对每一个用户的,变量的值保存在服务器端,通过SessionID来区分不同的客 户,session是以cookie或URL重写为基础的,默认使用cookie来实现,系统会创造一个名为JSESSIONID的输出cookie,我 们叫做session cookie,以区别persistent cookies,也就是我们通常所说的cookie,注意session cookie是存储于浏览器内存中的,并不是写到硬盘上的,这也就是我们刚才看到的JSESSIONID,我们通常情是看不到JSESSIONID的,但 是当我们把浏览器的cookie禁止后,web服务器会采用URL重写的方式传递Sessionid,我们就可以在地址栏看到 sessionid=KWJHUG6JJM65HS2K6之类的字符串。 明白了原理,我们就可以很容易的分辨出persistent cookies和session cookie的区别了,网上那些关于两者安全性的讨论也就一目了然了,session cookie针对某一次会话而言,会话结束session cookie也就随着消失了,而persistent cookie只是存在于客户端硬盘上的一段文本(通常是加密的),而且可能会遭到cookie欺骗以及针对cookie的跨站脚本攻击,自然不如 session cookie安全了。 通常session cookie是不能跨窗口使用的,当你新开了一个浏览器窗口进入相同页面时,系统会赋予你一个新的sessionid,这样我们信息共享的目的就达不到 了,此时我们可以先把sessionid保存在persistent cookie中,然后在新窗口中读出来,就可以得到上一个窗口SessionID了,这样通过session cookie和persistent cookie的结合我们就实现了跨窗口的session tracking(会话跟踪)。 在一些web开发的书中,往往只是简单的把Session和cookie作为两种并列的http传送信息的方式,session cookies位于服务器端,persistent cookie位于客户端,可是session又是以cookie为基础的,明白的两者之间的联系和区别,我们就不难选择合适的技术来开发web service了。 总之: 一、cookie机制和session机制的区别 具体来说cookie机制采用的是在客户端保持状态的方案,而session机制采用的是在服务器端保持状态的方案。 同时我们也看到,由于在服务器端保持状态的方案在客户端也需要保存一个标识,所以session机制可能需要借助于cookie机制来达到保存标识的目的,但实际上还有其他选择。 二、会话cookie和持久cookie的区别 如果不设置过期时间,则表示这个cookie生命周期为浏览器会话期间,只要关闭浏览器窗口,cookie就消失了。这种生命期为浏览会话期的cookie被称为会话cookie。会话cookie一般不保存在硬盘上而是保存在内存里。 如果设置了过期时间,浏览器就会把cookie保存到硬盘上,关闭后再次打开浏览器,这些cookie依然有效直到超过设定的过期时间。 存储在硬盘上的cookie可以在不同的浏览器进程间共享,比如两个IE窗口。而对于保存在内存的cookie,不同的浏览器有不同的处理方式。 三、如何利用实现自动登录 当用户在某个网站注册后,就会收到一个惟一用户ID的cookie。客户后来重新连接时,这个用户ID会自动返回,服务器对它进行检查,确定它是否为注册用户且选择了自动登录,从而使用户无需给出明确的用户名和密码,就可以访问服务器上的资源。 四、如何根据用户的爱好定制站点 网站可以使用cookie记录用户的意愿。对于简单的设置,网站可以直接将页面的设置存储在cookie中完成定制。然而对于更复杂的定制,网站只需仅将一个惟一的标识符发送给用户,由服务器端的数据库存储每个标识符对应的页面设置。 五、cookie的发送 1.创建Cookie对象 2.设置最大时效 3.将Cookie放入到HTTP响应报头 如果你创建了一个cookie,并将他发送到浏览器,默认情况下它是一个会话级别的cookie:存储在浏览器的内存中,用户退出浏览器之后被删除。如 果你希望浏览器将该cookie存储在磁盘上,则需要使用maxAge,并给出一个以秒为单位的时间。将最大时效设为0则是命令浏览器删除该 cookie。 发送cookie需要使用HttpServletResponse的addCookie方法,将cookie插入到一个 Set-Cookie HTTP请求报头中。由于这个方法并不修改任何之前指定的Set-Cookie报头,而是创建新的报头,因此我们将这个方法称为是addCookie,而 非setCookie。同样要记住响应报头必须在任何文档内容发送到客户端之前设置。 六、cookie的读取 1.调用request.getCookie 要获取有浏览器发送来的cookie,需要调用HttpServletRequest的getCookies方法,这个调用返回Cookie对象的数组,对应由HTTP请求中Cookie报头输入的值。 2.对数组进行循环,调用每个cookie的getName方法,直到找到感兴趣的cookie为止 cookie与你的主机(域)相关,而非你的servlet或JSP页面。因而,尽管你的servlet可能只发送了单个cookie,你也可能会得到许多不相关的cookie。 例如: String cookieName = “userID”; Cookie cookies[] = request.getCookies(); if (cookies!=null){ for(int i=0;i Cookie cookie = cookies[i]; if (cookieName.equals(cookie.getName())){ doSomethingWith(cookie.getValue()); } } } 七、如何使用cookie检测初访者 A.调用HttpServletRequest.getCookies()获取Cookie数组 B.在循环中检索指定名字的cookie是否存在以及对应的值是否正确 C.如果是则退出循环并设置区别标识 D.根据区别标识判断用户是否为初访者从而进行不同的操作 八、使用cookie检测初访者的常见错误 不能仅仅因为cookie数组中不存在在特定的数据项就认为用户是个初访者。如果cookie数组为null,客户可能是一个初访者,也可能是由于用户将cookie删除或禁用造成的结果。 但是,如果数组非null,也不过是显示客户曾经到过你的网站或域,并不能说明他们曾经访问过你的servlet。其它servlet、JSP页面以及 非java Web应用都可以设置cookie,依据路径的设置,其中的任何cookie都有可能返回给用户的浏览器。 正确的做法是判断cookie数组是否为空且是否存在指定的Cookie对象且值正确。 九、使用cookie属性的注意问题 属性是从服务器发送到浏览器的报头的一部分;但它们不属于由浏览器返回给服务器的报头。 因此除了名称和值之外,cookie属性只适用于从服务器输出到客户端的cookie;服务器端来自于浏览器的cookie并没有设置这些属性。 因而不要期望通过request.getCookies得到的cookie中可以使用这个属性。这意味着,你不能仅仅通过设置cookie的最大时效, 发出它,在随后的输入数组中查找适当的cookie,读取它的值,修改它并将它存回Cookie,从而实现不断改变的cookie值。 十、如何使用cookie记录各个用户的访问计数 1.获取cookie数组中专门用于统计用户访问次数的cookie的值 2.将值转换成int型 3.将值加1并用原来的名称重新创建一个Cookie对象 4.重新设置最大时效 5.将新的cookie输出 十一、session在不同环境下的不同含义 session,中文经常翻译为会话,其本来的含义是指有始有终的一系列动作/消息,比如打电话是从拿起电话拨号到挂断电话这中间的一系列过程可以称之为一个session。 然而当session一词与网络协议相关联时,它又往往隐含了“面向连接”和/或“保持状态”这样两个含义。 session在Web开发环境下的语义又有了新的扩展,它的含义是指一类用来在客户端与服务器端之间保持状态的解决方案。有时候Session也用来指这种解决方案的存储结构。 十二、session的机制 session机制是一种服务器端的机制,服务器使用一种类似于散列表的结构(也可能就是使用散列表)来保存信息。 但程序需要为某个客户端的请求创建一个session的时候,服务器首先检查这个客户端的请求里是否包含了一个session标识-称为session id,如果已经包含一个session id则说明以前已经为此客户创建过session,服务器就按照session id把这个session检索出来使用(如果检索不到,可能会新建一个,这种情况可能出现在服务端已经删除了该用户对应的session对象,但用户人为 地在请求的URL后面附加上一个JSESSION的参数)。 如果客户请求不包含session id,则为此客户创建一个session并且生成一个与此session相关联的session id,这个session id将在本次响应中返回给客户端保存。 十三、保存session id的几种方式 A.保存session id的方式可以采用cookie,这样在交互过程中浏览器可以自动的按照规则把这个标识发送给服务器。 B. 由于cookie可以被人为的禁止,必须有其它的机制以便在cookie被禁止时仍然能够把session id传递回服务器,经常采用的一种技术叫做URL重写,就是把session id附加在URL路径的后面,附加的方式也有两种,一种是作为URL路径的附加信息,另一种是作为查询字符串附加在URL后面。网络在整个交互过程中始终 保持状态,就必须在每个客户端可能请求的路径后面都包含这个session id。 C.另一种技术叫做表单隐藏字段。就是服务器会自动修改表单,添加一个隐藏字段,以便在表单提交时能够把session id传递回服务器。 十四、session什么时候被创建 一个常见的错误是以为session在有客户端访问时就被创建,然而事实是直到某server端程序(如Servlet)调用HttpServletRequest.getSession(true)这样的语句时才会被创建。 十五、session何时被删除 session在下列情况下被删除: A.程序调用HttpSession.invalidate() B.距离上一次收到客户端发送的session id时间间隔超过了session的最大有效时间 C.服务器进程被停止 再次注意关闭浏览器只会使存储在客户端浏览器内存中的session cookie失效,不会使服务器端的session对象失效。
㈣ rust可以开发分布式系统吗
rust是可以开发分布式系统的。
引子
构建一个分布式系统 并不是一件容易的事情,我们需要考虑很多的问题,首先就是我们的系统到底需要提供什么样的功能,譬如:
一致性:我们是否需要保证整个系统的线性一致性,还是能容忍短时间的数据不一致,只支持最终一致性。
稳定性:我们能否保证系统 7 x 24 小时稳定运行。系统的可用性是 4 个 9,还有 5 个 9?如果出现了机器损坏等灾难情况,系统能否做的自动恢复。
扩展性:当数据持续增多,能否通过添加机器就自动做到数据再次平衡,并且不影响外部服务。
分布式事务:是否需要提供分布式事务支持,事务隔离等级需要支持到什么程度。
上面的问题在系统设计之初,就需要考虑好,作为整个系统的设计目标。为了实现这些特性,我们就需要考虑到底采用哪一种实现方案,取舍各个方面的利弊等。
后面,我将以我们开发的分布式 Key-Value TiKV 作为实际例子,来说明下我们是如何取舍并实现的。
TiKV
TiKV 是一个分布式 Key-Value store,它使用 Rust 开发,采用 Raft 一致性协议保证数据的强一致性,以及稳定性,同时通过 Raft 的 Configuration Change 机制实现了系统的可扩展性。
TiKV 提供了基本的 KV API 支持,也就是通常的 Get,Set,Delete,Scan 这样的 API。TiKV 也提供了支持 ACID 事务的 Transaction API,我们可以使用 Begin 开启一个事务,在事务里面对 Key 进行操作,最后再用 Commit 提交一个事务,TiKV 支持 SI 以及 SSI 事务隔离级别,用来满足用户的不同业务场景。
Rust
在规划好 TiKV 的特性之后,我们就要开始进行 TiKV 的开发。这时候,我们面临的第一个问题就是采用什么样的语言进行开发。当时,摆在我们眼前的有几个选择:
Go,Go 是我们团队最擅长的一门语言,而且 Go 提供的 goroutine,channel 这些机制,天生的适合大规模分布式系统的开发,但灵活方便的同时也有一些甜蜜的负担,首先就是 GC,虽然现在 Go 的 GC 越来越完善,但总归会有短暂的卡顿,另外 goroutine 的调度也会有切换开销,这些都可能会造成请求的延迟增高。
Java,现在世面上面有太多基于 Java 做的分布式系统了,但 Java 一样有 GC 等开销问题,同时我们团队在 Java 上面没有任何开发经验,所以没有采用。
C++,C++ 可以认为是开发高性能系统的代名词,但我们团队没有特别多的同学能熟练掌握 C++,所以开发大型 C++ 项目并不是一件非常容易的事情。虽然使用现代 C++ 的编程方式能大量减少 data race,dangling pointer 等风险,我们仍然可能犯错。
当我们排除了上面几种主流语言之后,我们发现,为了开发 TiKV,我们需要这门语言具有如下特性:
静态语言,这样才能最大限度的保证运行性能。
无 GC,完全手动控制内存。
Memory safe,尽量避免 dangling pointer,memory leak 等问题。
Thread safe,不会遇到 data race 等问题。
包管理,我们可以非常方便的使用第三方库。
高效的 C 绑定,因为我们还可能使用一些 C library,所以跟 C 交互不能有开销。
综上,我们决定使用 Rust,Rust 是一门系统编程语言,它提供了我们上面想要的语言特性,但选择 Rust 对我们来说也是很有风险的,主要有两点:
我们团队没有任何 Rust 开发经验,全部都需要花时间学习 Rust,而偏偏 Rust 有一个非常陡峭的学习曲线。
基础网络库的缺失,虽然那个时候 Rust 已经出了 1.0,但我们发现很多基础库都没有,譬如在网络库上面只有 mio,没有好用的 RPC 框架,HTTP 也不成熟。
但我们还是决定使用 Rust,对于第一点,我们团队花了将近一个月的时间来学习 Rust,跟 Rust 编译器作斗争,而对于第二点,我们就完全开始自己写。
幸运的,当我们越过 Rust 那段阵痛期之后,发现用 Rust 开发 TiKV 异常的高效,这也就是为啥我们能在短时间开发出 TiKV 并在生产环境中上线的原因。
一致性协议
对于分布式系统来说,CAP 是一个不得不考虑的问题,因为 P 也就是 Partition Tolerance 是一定存在的,所以我们就要考虑到底是选择 C - Consistency 还是 A - Availability。
我们在设计 TiKV 的时候就决定 - 完全保证数据安全性,所以自然就会选择 C,但其实我们并没有完全放弃 A,因为多数时候,毕竟断网,机器停电不会特别频繁,我们只需要保证 HA - High Availability,也就是 4 个 9 或者 5 个 9 的可用性就可以了。
既然选择了 C,我们下一个就考虑的是选用哪一种分布式一致性算法,现在流行的无非就是 Paxos 或者 Raft,而 Raft 因为简单,容易理解,以及有很多现成的开源库可以参考,自然就成了我们的首要选择。
在 Raft 的实现上,我们直接参考的 etcd 的 Raft。etcd 已经被大量的公司在生产环境中使用,所以它的 Raft 库质量是很有保障的。虽然 etcd 是用 Go 实现的,但它的 Raft library 是类似 C 的实现,所以非常便于我们用 Rust 直接翻译。在翻译的过程中,我们也给 etcd 的 Raft fix 了一些 bug,添加了一些功能,让其变得更加健壮和易用。
现在 Raft 的代码仍然在 TiKV 工程里面,但我们很快会将独立出去,变成独立的 library,这样大家就能在自己的 Rust 项目中使用 Raft 了。
使用 Raft 不光能保证数据的一致性,也可以借助 Raft 的 Configuration Change 机制实现系统的水平扩展,这个我们会在后面的文章中详细的说明。
存储引擎
选择了分布式一致性协议,下一个就要考虑数据存储的问题了。在 TiKV 里面,我们会存储 Raft log,然后也会将 Raft log 里面实际的客户请求应用到状态机里面。
首先来看状态机,因为它会存放用户的实际数据,而这些数据完全可能是随机的 key - value,为了高效的处理随机的数据插入,自然我们就考虑使用现在通用的 LSM Tree 模型。而在这种模型下,RocksDB 可以认为是现阶段最优的一个选择。
RocksDB 是 Facebook 团队在 LevelDB 的基础上面做的高性能 Key-Value Storage,它提供了很多配置选项,能让大家根据不同的硬件环境去调优。这里有一个梗,说的是因为 RocksDB 配置太多,以至于连 RocksDB team 的同学都不清楚所有配置的意义。
关于我们在 TiKV 中如何使用,优化 RocksDB,以及给 RocksDB 添加功能,fix bug 这些,我们会在后面文章中详细说明。
而对于 Raft Log,因为任意 Log 的 index 是完全单调递增的,譬如 Log 1,那么下一个 Log 一定是 Log 2,所以 Log 的插入可以认为是顺序插入。这种的,最通常的做法就是自己写一个 Segment File,但现在我们仍然使用的是 RocksDB,因为 RocksDB 对于顺序写入也有非常高的性能,也能满足我们的需求。但我们不排除后面使用自己的引擎。
因为 RocksDB 提供了 C API,所以可以直接在 Rust 里面使用,大家也可以在自己的 Rust 项目里面通过 rust-rocksdb 这个库来使用 RocksDB。
分布式事务
要支持分布式事务,首先要解决的就是分布式系统时间的问题,也就是我们用什么来标识不同事务的顺序。通常有几种做法:
TrueTime,TrueTime 是 Google Spanner 使用的方式,不过它需要硬件 GPS + 原子钟支持,而且 Spanner 并没有在论文里面详细说明硬件环境是如何搭建的,外面要自己实现难度比较大。
HLC,HLC 是一种混合逻辑时钟,它使用 Physical Time 和 Logical Clock 来确定事件的先后顺序,HLC 已经在一些应用中使用,但 HLC 依赖 NTP,如果 NTP 精度误差比较大,很可能会影响 commit wait time。
TSO,TSO 是一个全局授时器,它直接使用一个单点服务来分配时间。TSO 的方式很简单,但会有单点故障问题,单点也可能会有性能问题。
TiKV 采用了 TSO 的方式进行全局授时,主要是为了简单。至于单点故障问题,我们通过 Raft 做到了自动 fallover 处理。而对于单点性能问题,TiKV 主要针对的是 PB 以及 PB 以下级别的中小规模集群,所以在性能上面只要能保证每秒百万级别的时间分配就可以了,而网络延迟上面,TiKV 并没有全球跨 IDC 的需求,在单 IDC 或者同城 IDC 情况下,网络速度都很快,即使是异地 IDC,也因为有专线不会有太大的延迟。
解决了时间问题,下一个问题就是我们采用何种的分布式事务算法,最通常的就是使用 2 PC,但通常的 2 PC 算法在一些极端情况下面会有问题,所以业界要不通过 Paxos,要不就是使用 3 PC 等算法。在这里,TiKV 参考 Percolator,使用了另一种增强版的 2 PC 算法。
这里先简单介绍下 Percolator 的分布式事务算法,Percolator 使用了乐观锁,也就是会先缓存事务要修改的数据,然后在 Commit 提交的时候,对要更改的数据进行加锁处理,然后再更新。采用乐观锁的好处在于对于很多场景能提高整个系统的并发处理能力,但在冲突严重的情况下反而没有悲观锁高效。
对于要修改的一行数据,Percolator 会有三个字段与之对应,Lock,Write 和 Data:
Lock,就是要修改数据的实际 lock,在一个 Percolator 事务里面,有一个 primary key,还有其它 secondary keys, 只有 primary key 先加锁成功,我们才会再去尝试加锁后续的 secondary keys。
Write,保存的是数据实际提交写入的 commit timestamp,当一个事务提交成功之后,我们就会将对应的修改行的 commit timestamp 写入到 Write 上面。
Data,保存实际行的数据。
当事务开始的时候,我们会首先得到一个 start timestamp,然后再去获取要修改行的数据,在 Get 的时候,如果这行数据上面已经有 Lock 了,那么就可能终止当前事务,或者尝试清理 Lock。
当我们要提交事务的时候,先得到 commit timestamp,会有两个阶段:
Prewrite:先尝试给 primary key 加锁,然后尝试给 second keys 加锁。如果对应 key 上面已经有 Lock,或者在 start timestamp 之后,Write 上面已经有新的写入,Prewrite 就会失败,我们就会终止这次事务。在加锁的时候,我们也会顺带将数据写入到 Data 上面。
Commit:当所有涉及的数据都加锁成功之后,我们就可以提交 primay key,这时候会先判断之前加的 Lock 是否还在,如果还在,则删掉 Lock,将 commit timestamp 写入到 Write。当 primary key 提交成功之后,我们就可以异步提交 second keys,我们不用在乎 primary keys 是否能提交成功,即使失败了,也有机制能保证数据被正常提交。
㈤ 什么是分布式存储系统
分布式存储系统,是将数据分散存储在多台独立的设备上。传统的网络存储系统采用集中的存储服务器存放所有数据,存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,不能满足大规模存储应用的需要。分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
(5)编译分布式存储系统开发扩展阅读:
分布式存储,集中管理,在这个方案中,共有三级:
1、上级监控中心:上级监控中心通常只有一个,主要由数字矩阵、认证服务器和VSTARClerk软件等。
2、本地监控中心:本地监控中心可以有多个,可依据地理位置设置,或者依据行政隶属关系设立,主要由数字矩阵、流媒体网关、iSCSI存储设备、VSTARRecorder软件等组成;音视频的数据均主要保存在本地监控中心,这就是分布式存储的概念。
3、监控前端:主要由摄像头、网络视频服务器组成,其中VE4000系列的网络视频服务器可以带硬盘,该硬盘主要是用于网络不畅时,暂时对音视频数据进行保存,或者需要在前端保存一些重要数据的情况。
㈥ 基于mogileFS搭建分布式文件系统--海量小文件的存储利器
1.简介
分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。分布式文件系统的设计基于客户机/服务器模式。一个典型的网络可能包括多个供多用户访问的服务器。另外,对等特性允许一些系统扮演客户机和服务器的双重角色。例如,用户可以“发表”一个允许其他客户机访问的目录,一旦被访问,这个目录对客户机来说就像使用本地驱动器一样。
当下我们处在一个互联网飞速发展的信息 社会 ,在海量并发连接的驱动下每天所产生的数据量必然以几何方式增长,随着信息连接方式日益多样化,数据存储的结构也随着发生了变化。在这样的压力下使得人们不得不重新审视大量数据的存储所带来的挑战,例如:数据采集、数据存储、数据搜索、数据共享、数据传输、数据分析、数据可视化等一系列问题。
传统存储在面对海量数据存储表现出的力不从心已经是不争的事实,例如:纵向扩展受阵列空间限制、横向扩展受交换设备限制、节点受文件系统限制。
然而分布式存储的出现在一定程度上有效的缓解了这一问题,之所以称之为缓解是因为分布式存储在面对海量数据存储时也并非十全十美毫无压力,依然存在的难点与挑战例如:节点间通信、数据存储、数据空间平衡、容错、文件系统支持等一系列问题仍处在不断摸索和完善中。
2.分布式文件系统的一些解决方案
Google Filesystem适合存储海量大个文件,元数据存储与内存中
HDFS(Hadoop Filesystem)GFS的山寨版,适合存储大量大个文件
TFS(Taobao Filesystem)淘宝的文件系统,在名称节点上将元数据存储与关系数据库中,文件数量不在受限于名称节点的内容空间,可以存储海量小文件LustreOracle开发的企业级分布式系统,较重量级MooseFS基于FUSE的格式,可以进行挂载使用MogileFS
擅长存储海量的小数据,元数据存储与关系型数据库中
1.简介
MogileFS是一个开源的分布式文件系统,用于组建分布式文件集群,由LiveJournal旗下DangaInteractive公司开发,Danga团队开发了包括 Memcached、MogileFS、Perlbal等不错的开源项目:(注:Perlbal是一个强大的Perl写的反向代理服务器)。MogileFS是一个开源的分布式文件系统。
目前使用 MogileFS 的公司非常多,比如国外的一些公司,日本前几名的公司基本都在使用这个.
国内所知道的使用 MogileFS 的公司有图片托管网站 yupoo又拍,digg, 薯仔, 豆瓣,1 号店, 大众点评,搜狗,安居客等等网站.基本很多网站容量,图片都超过 30T 以上。
2.MogileFS特性
1) 应用层提供服务,不需要使用核心组件
2)无单点失败,主要有三个组件组成,分为tracker(跟踪节点)、mogstore(存储节点)、database(数据库节点)
3)自动复制文件,复制文件的最小单位不是文件,而是class
4)传输中立,无特殊协议,可以通过NFS或HTTP实现通信
5)简单的命名空间:没有目录,直接存在与存储空间上,通过域来实现
6)不用共享任何数据
3.MogileFS的组成
1)Tracker--跟踪器,调度器
MogileFS的核心,是一个调度器,mogilefsd进程就是trackers进程程序,trackers的主要职责有:删除数据、复制数据、监控、查询等等.这个是基于事件的( event-based ) 父进程/消息总线来管理所有来之于客户端应用的交互(requesting operations to be performed), 包括将请求负载平衡到多个"query workers"中,然后让 mogilefs的子进程去处理.
mogadm,mogtool的所有操作都要跟trackers打交道,Client的一些操作也需要定义好trackers,因此最好同时运行多个trackers来做负载均衡.trackers也可以只运行在一台机器上,使用负载均衡时可以使用搞一些简单的负载均衡解决方案,如haproxy,lvs,nginx等,
tarcker的配置文件为/etc/mogilefs/mogilefsd.conf,监听在TCP的7001端口
2)Database--数据库部分
主要用来存储mogilefs的元数据,所有的元数据都存储在数据库中,因此,这个数据相当重要,如果数据库挂掉,所有的数据都不能用于访问,因此,建议应该对数据库做高可用
3)mogstored--存储节点
数据存储的位置,通常是一个HTTP(webDAV)服务器,用来做数据的创建、删除、获取,任何 WebDAV 服务器都可以, 不过推荐使用 mogstored . mogilefsd可以配置到两个机器上使用不同端口… mogstored 来进行所有的 DAV 操作和流量,IO监测, 并且你自己选择的HTTP服务器(默认为 perlbal)用来做 GET 操作给客户端提供文件.
典型的应用是一个挂载点有一个大容量的SATA磁盘. 只要配置完配置文件后mogstored程序的启动将会使本机成为一个存储节点.当然还需要mogadm这个工具增加这台机器到Cluster中.
配置文件为/etc/mogilefs/mogstored.conf,监听在TCP的7500端口
4.基本工作流程
应用程序请求打开一个文件 (通过RPC 通知到 tracker, 找到一个可用的机器). 做一个 “create_open” 请求.
tracker 做一些负载均衡(load balancing)处理,决定应该去哪儿,然后给应用程序一些可能用的位置。
应用程序写到其中的一个位置去 (如果写失败,他会重新尝试并写到另外一个位置去).
应用程序 (client) 通过”create_close” 告诉tracker文件写到哪里去了.
tracker 将该名称和域命的名空间关联 (通过数据库来做的)
tracker, 在后台, 开始复制文件,知道他满足该文件类别设定的复制规则
然后,应用程序通过 “get_paths” 请求 domain+key (key == “filename”) 文件, tracker基于每一位置的I/O繁忙情况回复(在内部经过 database/memcache/etc 等的一些抉择处理), 该文件可用的完整 URLs地址列表.
应用程序然后按顺序尝试这些URL地址. (tracker’持续监测主机和设备的状态,因此不会返回死连接,默认情况下他对返回列表中的第一个元素做双重检查,除非你不要他这么做..)
1.拓扑图
说明:1.用户通过URL访问前端的nginx
2.nginx根据特定的挑选算法,挑选出后端一台tracker来响应nginx请求
3.tracker通过查找database数据库,获取到要访问的URL的值,并返回给nginx
4.nginx通过返回的值及某种挑选算法挑选一台mogstored发起请求
5.mogstored将结果返回给nginx
6.nginx构建响应报文返回给客户端
2.ip规划
角色运行软件ip地址反向代理nginx192.168.1.201存储节点与调度节点1
mogilefs192.168.1.202存储节点与调度节点2
mogilefs192.168.1.203数据库节点
MariaDB192.168.1.204
3.数据库的安装操作并为授权
关于数据库的编译安装,请参照本人相关博文http://wangfeng7399.blog.51cto.com/3518031/1393146,本处将不再累赘,本处使用的为yum源的安装方式安装mysql
4.安装mogilefs. 安装mogilefs,可以使用yum安装,也可以使用编译安装,本处通过yum安装
5.初始化数据库
可以看到在数据库中创建了一些表
6.修改配置文件,启动服务
7.配置mogilefs
添加存储主机
添加存储设备
添加域
添加class
8.配置192.168.1.203的mogilefs 。切记不要初始化数据库,配置应该与192.168.1.202一样
9.尝试上传数据,获取数据,客户端读取数据
上传数据,在任何一个节点上传都可以
获取数据
客户端查看数据
我们可以通过任何一个节点查看到数据
要想nginx能够实现对后端trucker的反向代理,必须结合第三方模块来实现
1.编译安装nginx
2.准备启动脚本
3.nginx与mofilefs互联
查看效果
5.配置后端truckers的集群
查看效果
大功告成了,后续思路,前段的nginx和数据库都存在单点故障,可以实现高可用集群
㈦ 什么是分布式系统!作用是什么、好处是什么
故名思义,分布式系统就是将系统的应用层,数据层或其它部分构架成分布(物理和逻辑上的都可以)状(通常是网状)。分布式系统通常是为了增强系统的可扩展性、稳定性和执行效率。比如在线游戏通常就是分布系统,里面所谓的“区”就是分布系统里子例程。而分布式数据库其实也可以称作分布式系统,数据持久化层是分布的(数据存在不同的数据库中,可交互,有一套综管系统来维护数据的完整性和准确性)
所以说分布式系统更准确地说是一种系统构架概念,不是一种技术,
C#对网络的支持挺不错的,封装得很好,你主要可能看看网络通信这一块东西。然后机械工业出版社有一本分布式系统的书,做了全面阐述。你可以看看。~
下面是网络给出的解释:
分布式软件系统(Distributed Software Systems)
是支持分布式处理的软件系统,是在由通信网络互联的多处理机体系结构上执行任务的系统。它包括分布式操作系统、分布式程序设计语言及其编译(解释)系统、分布式文件系统和分布式数据库系统等。
分布式操作系统负责管理分布式处理系统资源和控制分布式程序运行。它和集中式操作系统的区别在于资源管理、进程通信和系统结构等方面。
分布式程序设计语言用于编写运行于分布式计算机系统上的分布式程序。一个分布式程序由若干个可以独立执行的程序模块组成,它们分布于一个分布式处理系统的多台计算机上被同时执行。它与集中式的程序设计语言相比有三个特点:分布性、通信性和稳健性。
分布式文件系统具有执行远程文件存取的能力,并以透明方式对分布在网络上的文件进行管理和存取。
分布式数据库系统由分布于多个计算机结点上的若干个数据库系统组成,它提供有效的存取手段来操纵这些结点上的子数据库。分布式数据库在使用上可视为一个完整的数据库,而实际上它是分布在地理分散的各个结点上。当然,分布在各个结点上的子数据库在逻辑上是相关的。
分布式数据库系统是由若干个站集合而成。这些站又称为节点,它们在通讯网络中联接在一起,每个节点都是一个独立的数据库系统,它们都拥有各自的数据库、中央处理机、终端,以及各自的局部数据库管理系统。因此分布式数据库系统可以看作是一系列集中式数据库系统的联合。它们在逻辑上属于同一系统,但在物理结构上是分布式的。
分布式数据库系统已经成为信息处理学科的重要领域,正在迅速发展之中,原因基于以下几点:
1、它可以解决组织机构分散而数据需要相互联系的问题。比如银行系统,总行与各分行处于不同的城市或城市中的各个地区,在业务上它们需要处理各自的数据,也需要彼此之间的交换和处理,这就需要分布式的系统。
2、如果一个组织机构需要增加新的相对自主的组织单位来扩充机构,则分布式数据库系统可以在对当前机构影响最小的情况下进行扩充。
3、均衡负载的需要。数据的分解采用使局部应用达到最大,这使得各处理机之间的相互干扰降到最低。负载在各处理机之间分担,可以避免临界瓶颈。
4、当现有机构中已存在几个数据库系统,而且实现全局应用的必要性增加时,就可以由这些数据库自下而上构成分布式数据库系统。
5、相等规模的分布式数据库系统在出现故障的几率上不会比集中式数据库系统低,但由于其故障的影响仅限于局部数据应用,因此就整个系统来讲它的可靠性是比较高的。
特点
1、在分布式数据库系统里不强调集中控制概念,它具有一个以全局数据库管理员为基础的分层控制结构,但是每个局部数据库管理员都具有高度的自主权。
2、在分布式数据库系统中数据独立性概念也同样重要,然而增加了一个新的概念,就是分布式透明性。所谓分布式透明性就是在编写程序时好像数据没有被分布一样,因此把数据进行转移不会影响程序的正确性。但程序的执行速度会有所降低。
3、集中式数据库系统不同,数据冗余在分布式系统中被看作是所需要的特性,其原因在于:首先,如果在需要的节点复制数据,则可以提高局部的应用性。其次,当某节点发生故障时,可以操作其它节点上的复制数据,因此这可以增加系统的有效性。当然,在分布式系统中对最佳冗余度的评价是很复杂的。
分布式系统的类型,大致可以归为三类:
1、分布式数据,但只有一个总数据库,没有局部数据库。
2、分层式处理,每一层都有自己的数据库。
3、充分分散的分布式网络,没有中央控制部分,各节点之间的联接方式又可以有多种,如松散的联接,紧密的联接,动态的联接,广播通知式联接等。
---------------------
什么是分布式智能?
NI LabVIEW 8的分布式智能结合了相关的技术和工具,解决了分布式系统开发会碰到的一些挑战。更重要的是,NI LabVIEW 8的分布式智能提供的解决方案不仅令这些挑战迎刃而解,且易于实施。LabVIEW 8的分布式智能具体包括:
可对分布式系统中的所有结点编程——包括主机和终端。尤为可贵的是,您可以利用LabVIEW图形化编程方式,对大量不同类型的对象进行编程,如桌面处理器、实时系统、FPGA、PDA、嵌入式微处理器和DSP。
导航所有系统结点的查看系统——LabVIEW Project Explorer。您可使用Project Explorer查看、编辑、运行和调试运行于任何对象上的结点。
经简化的数据共享编程界面——共享变量。使用共享变量,您可轻松地在系统间(甚至实时系统间)传输数据且不影响性能。无通信循环,无RT FIFO,无需低层次TCP函数。您可以利用简单的对话完成共享变量的配置,从而将数据在各系统间传输或将数据连接到不同的数据源。您还可添加记录、警报、事件等数据服务――一切仅需简单的对话即可完成。
实现了远程设备及系统内部或设备及系统之间的同步操作——定时和同步始终是定义高性能测量和控制系统的关键问题。利用基于NI技术的系统,探索设备内部并编写其内部运行机制,从而取得比传统仪器或PLC方式下更为灵活的解决方案。
--------------------
在分布式计算机操作系统支持下,互连的计算机可以互相协调工作,共同完成一项任务。
也可以这么解释:
一种计算机硬件的配置方式和相应的功能配置方式。它是一种多处理器的计算机系统,各处理器通过互连网络构成统一的系统。系统采用分布式计算结构,即把原来系统内中央处理器处理的任务分散给相应的处理器,实现不同功能的各个处理器相互协调,共享系统的外设与软件。这样就加快了系统的处理速度,简化了主机的逻辑结构 。
希望对你有所帮助~ :)
㈧ 现在使用较广泛的分布式存储产品有哪些
分布式存储应用十分广泛,在云计算领域十分常见。因为业务特点和自身实力和资源等综合原因,很多大型的云计算厂商都会选择自主开发或二次开发分布式存储系统,这些厂商本身的产品性能也会比较稳定,在此我列举一下这些厂商。
1. 公有云方面:阿里云的盘古和腾讯的PaxosStore,这两个存储系统分别支撑了大多数阿里云和腾讯系产品的存储和计算。
2. 私有云方面:国外的有VMware的vSAN,谷歌的Google Megastore等;国内的有新华三的ONEStor、华为的FusionStorage、云宏的WinStore等。
在这里特别提一下云宏的WinStore存储,他们的产品在金融领域应用非常广泛,除了自主研发的虚拟化平台,他们也特别提到这个存储技术,WinStore是他们自主研发的分布式存储系统,使得他们的产品在数据存储安全性和容灾性能上有优势。
㈨ 分布式开发主要用到什么
在谈分布式系统架构前,我们先来看看,什么是分布式系统?
假设原来我们有一个系统,代码量30多万行。现在拆分成20个小系统,每个小系统1万多行代码。
原本代码之间都是直接基于Spring框架走JVM内存调用,现在拆开来,将20个小系统部署在不同的机器上,然后基于分布式服务框架(比如bbo)搞一个rpc调用,接口与接口之间通过网络通信来进行请求和响应。
所以分布式系统很重要的特点就是服务间要跨网络进行调用。
此外,分布式系统可以大概可以分成两类。
(一)、底层的分布式系统
比如hadoop hdfs(分布式存储系统)、spark(分布式计算系统)、storm(分布式流式计算系统)、elasticsearch(分布式搜索系统)、kafka(分布式发布订阅消息系统)等。
(二)、分布式业务系统
分布式业务系统,把原来用java开发的一个大块系统,给拆分成多个子系统,多个子系统之间互相调用,形成一个大系统的整体。
举个例子,假设原来你做了一个OA系统,里面包含了权限模块、员工模块、请假模块、财务模块,一个工程,里面包含了一堆模块,模块与模块之间会互相去调用,1台机器部署。
现在如果你把他这个系统给拆开,权限系统,员工系统,请假系统,财务系统,4个系统,4个工程,分别在4台机器上部署。
然后一个请求过来,完成这个请求,员工系统去调用权限系统,调用请假系统,调用财务系统,4个系统分别完成了一部分的事情。
最后4个系统都干完了以后,才认为是这个请求已经完成了。这就是所谓的分布式业务系统。
㈩ 《大规模分布式存储系统原理解析与架构实战》epub下载在线阅读,求百度网盘云资源
《大规模分布式存储系统》(杨传辉)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1CG8nBAVixYg53OHREZc_3g
书名:大规模分布式存储系统
作者:杨传辉
豆瓣评分:7.8
出版社:机械工业出版社
出版年份:2013-9-1
页数:293
内容简介:
《大规模分布式存储系统:原理解析与架构实战》是分布式系统领域的经典着作,由阿里巴巴高级技术专家“阿里日照”(OceanBase核心开发人员)撰写,阳振坤、章文嵩、杨卫华、汪源、余锋(褚霸)、赖春波等来自阿里、新浪、网易和网络的资深技术专家联袂推荐。理论方面,不仅讲解了大规模分布式存储系统的核心技术和基本原理,而且对谷歌、亚马逊、微软和阿里巴巴等国际型大互联网公司的大规模分布式存储系统进行了分析;实战方面,首先通过对阿里巴巴的分布式数据库OceanBase的实现细节的深入剖析完整地展示了大规模分布式存储系统的架构与设计过程,然后讲解了大规模分布式存储技术在云计算和大数据领域的实践与应用。
《大规模分布式存储系统:原理解析与架构实战》内容分为四个部分:基础篇——分布式存储系统的基础知识,包含单机存储系统的知识,如数据模型、事务与并发控制、故障恢复、存储引擎、压缩/解压缩等;分布式系统的数据分布、复制、一致性、容错、可扩展性等。范型篇——介绍谷歌、亚马逊、微软、阿里巴巴等着名互联网公司的大规模分布式存储系统架构,涉及分布式文件系统、分布式键值系统、分布式表格系统以及分布式数据库技术等。实践篇——以阿里巴巴的分布式数据库OceanBase为例,详细介绍分布式数据库内部实现,以及实践过程中的经验。专题篇——介绍分布式系统的主要应用:云存储和大数据,这些是近年来的热门领域,本书介绍了云存储平台、技术与安全,以及大数据的概念、流式计算、实时分析等。
作者简介:
杨传辉,阿里巴巴高级技术专家,花名日照,OceanBase核心开发人员,对分布式系统的理论和工程实践有深刻理解。曾在网络作为核心成员参与类MapRece系统、类Bigtable系统和网络分布式消息队列等底层基础设施架构工作。热衷于分布式存储和计算系统设计,乐于分享,有技术博客NosqlNotes。