导航:首页 > 源码编译 > mapreducejoin算法

mapreducejoin算法

发布时间:2022-12-07 11:13:30

① hadoop MapRece 读取配置参数

  1. 如果第三方配置文件不是特别大(几百M以上),则可以使用DistributeCache。

  2. 如果第三方配置文件比较大,则需要在MapRece中实现join来做。


关于 DistributeCache的用法,请搜索“maprece DistributeCache”。

关于在MapRece中实现两个文件的join,请搜索"maprece实现join"。

我只能说到这了。

② 大数据培训课程安排有哪些,深圳大数据培训哪家好

下面是以道教育大数据培训开发课程,可以参考
第一阶段 WEB 开发基础
HTML基础
1、Html基本介绍
2、HTML语法规范
3、基本标签介绍
4、HTML编辑器/文本文档/WebStrom/elipse
5、HTML元素和属性
6、基本的HTML元素
6.1 标题
6.2 段落
6.3 样式和style属性
6.3 链接 a
6.4 图像 img
6.5 表格 table
6.6 列表 ul/ol/dl
7、 HTML注释
8、表单介绍
9、Table标签
10、DIV布局介绍
11、HTML列表详解
HTML布局和Bootstrap
1、 HTML块元素(block)和行内元素(inline)
2、使用div实现网页布局
3、响应式WEB设计(Responsive Web Design)
4、使用bootstrap实现响应式布局
HTML表单元素
1、HTML表单 form
2、HTML表单元素
3、 HTML input的类型 type
4、 Html input的属性
CSS基础
1、CSS简介及基本语法
2、在HTML文档中使用CSS
3、CSS样式
4、CSS选择器
5、盒子模型
6、布局及定位
CSS高级/CSS3
1、尺寸和对齐
2、分类(clear/cursor/display/float/position/visibility)
3、导航栏
4、图片库
5、图片透明
6、媒介类型 @media
7、CSS3
8、CSS3动画效果
JavaScript基础
1、JavaScript简介
2、基本语法规则
3、在HTML文档中使用JS
4、JS变量
5、JS数据类型
6、JS函数
7、JS运算符
8、流程控制
9、JS错误和调试
JavaScript对象和作用域
1、数字 Number
2、字符串String
3、日期 Date
4、数组
5、数学 Math
6、DOM对象和事件
7、BOM对象
8、Window对象
9、作用域和作用域链
10、JSON
Javascript库
1、Jquery
2、Prototype
3、Ext Js
Jquery
1、Jquery基本语法
2、Jquery选择器
3、Jquery事件
4、Jquery选择器
5、Jquery效果和动画
6、使用Jquery操作HTML和DOM
7、Jquery遍历
8、Jquery封装函数
9、Jquery案例
表单验证和Jquery Validate
1、用Js对HTML表单进行验证
2、Jquery Validata基本用法
3、默认校验规则和提示信息
4、debug和ignore
5、更改错误信息显示位置和样式
6、全部校验通过后的执行函数
7、修改验证触发方式
8、异步验证
9、自定义校验方法
10、radio 和 checkbox、select 的验证
Java基础
1、关于Java
2、Java运行机制
3、第一个Java程序,注释
4、Javac,Java,Javadoc等命令
5、标识符与关键字
6、变量的声明,初始化与应用
7、变量的作用域
8、变量重名
9、基本数据类型
10、类型转换与类型提升
11、各种数据类型使用细节
12、转义序列
13、各种运算符的使用
流程控制
1、选择控制语句if-else
2、选择控制语句switch-case
3、循环控制语句while
4、循环控制语句do-while
5、循环控制语句for与增强型for
6、break,continue,return
7、循环标签
8、数组的声明与初始化
9、数组内存空间分配
10、栈与堆内存
11、二维(多维)数组
12、Arrays类的相关方法
13、main方法命令行参数
面向对象
1、面向对象的基本思想
2、类与对象
3、成员变量与默认值
4、方法的声明,调用
5、参数传递和内存图
6、方法重载的概念
7、调用原则与重载的优势
8、构造器声明与默认构造器
9、构造器重载
10、this关键字的使用
11、this调用构造器原则
12、实例变量初始化方式
13、可变参数方法
访问权限控制
1、包 package和库
2、访问权限修饰符private/protected/public/包访问权限
3、类的访问权限
4、抽象类和抽象方法
5、接口和实现
6、解耦
7、Java的多重继承
8、通过继承来扩展接口
错误和异常处理
1、概念:错误和异常
2、基本异常
3、捕获异常 catch
4、创建自定义异常
5、捕获所有异常
6、Java标准异常
7、使用finally进行清理
8、异常的限制
9、构造器
10、异常匹配
11、异常使用指南
数据库基础(MySQL)
数据库基础(MySQL)
JDBC
1、Jdbc基本概念
2、使用Jdbc连接数据库
3、使用Jdbc进行crud操作
4、使用Jdbc进行多表操作
5、Jdbc驱动类型
6、Jdbc异常和批量处理
7、Jdbc储存过程
Servlet和JSP
1、Servlet简介
2、Request对象
3、Response对象
4、转发和重定向
5、使用Servlet完成Crud
6、Session和Coolie简介
7、ServletContext和Jsp
8、El和Jstl的使用
Ajax
1、什么是Ajax
2、XMLHttpRequest对象(XHR)
3、XHR请求
4、XHR响应
5、readystate/onreadystatechange
6、Jquery Ajax
7、JSON
8、案例:对用户名是否可用进行服务器端校验
综合案例
1、项目开发一般流程介绍
2、模块化和分层
3、DButils
4、QueryRunner
5、ResultSetHandle
6、案例:用户登录/注册,从前端到后端
第二阶段 Java SE
访问权限和继承
1、包的声明与使用
2、import与import static
3、访问权限修饰符
4、类的封装性
5、static(静态成员变量)
6、final(修饰变量,方法)
7、静态成员变量初始化方式
8、类的继承与成员继承
9、super的使用
10、调用父类构造器
11、方法的重写与变量隐藏
12、继承实现多态和类型转换
13、instanceof
抽象类与接口
1、抽象类
2、抽象方法
3、继承抽象类
4、抽象类与多态
5、接口的成员
6、静态方法与默认方法
7、静态成员类
8、实例成员类
9、局部类
10、匿名类
11、eclipse的使用与调试
12、内部类对外围类的访问关系
13、内部类的命名
Lambda表达式与常用类
1、函数式接口
2、Lambda表达式概念
3、Lambda表达式应用场合
4、使用案例
5、方法引用
6、枚举类型(编译器的处理)
7、包装类型(自动拆箱与封箱)
8、String方法
9、常量池机制
10、String讲解
11、StringBuilder讲解
12、Math,Date使用
13、Calendars使用
异常处理与泛型
1、异常分类
2、try-catch-finally
3、try-with-resources
4、多重捕获multi-catch
5、throw与throws
6、自定义异常和优势
7、泛型背景与优势
8、参数化类型与原生类型
9、类型推断
10、参数化类型与数组的差异
11、类型通配符
12、自定义泛型类和类型擦出
13、泛型方法重载与重写
集合
1 、常用数据结构
2 、Collection接口
3 、List与Set接口
4 、SortedSet与NavigableSet
5 、相关接口的实现类
6 、Comparable与Comparator
7、Queue接口
8 、Deque接口
9 、Map接口
10、NavigableMap
11、相关接口的实现类
12、流操作(聚合操作)
13、Collections类的使用
I/O流与反射
1 、File类的使用
2 、字节流
3 、字符流
4 、缓存流
5 、转换流
6 、数据流
7、对象流
8、类加载,链接与初始化
9 、ClassLoader的使用
10、Class类的使用
11、通过反射调用构造器
12、安全管理器
网络编程模型与多线程
1、进程与线程
2、创建线程的方式
3、线程的相关方法
4、线程同步
5、线程死锁
6、线程协作操作
7、计算机网络(IP与端口)
8、TCP协议与UDP协议
9、URL的相关方法
10、访问网络资源
11、TCP协议通讯
12、UDP协议通讯
13、广播
SSM-Spring
1.Spring/Spring MVC
2.创建Spring MVC项目
3.Spring MVC执行流程和参数
SSM-Spring.IOC
1.Spring/Spring MVC
2.创建Spring MVC项目
3.Spring MVC执行流程和参数
SSM-Spring.AOP
1.Spring/Spring MVC
2.创建Spring MVC项目
3.Spring MVC执行流程和参数
SSM-Spring.Mybatis
1.MyBatis简介
2.MyBatis配置文件
3.用MyBatis完成CRUD
4.ResultMap的使用
5.MyBatis关联查询
6.动态SQL
7.MyBatis缓冲
8.MyBatis-Generator
Socket编程
1.网络通信和协议
2.关于Socket
3.Java Socket
4.Socket类型
5.Socket函数
6.WebSocket
7.WebSocket/Spring MVC/WebSocket Ajax
IO/异步
window对象
全局作用域
窗口关系及框架
窗口位置和大小
打开窗口
间歇调用和超时调用(灵活运用)
系统对话框
location对象
navigator对象
screen对象
history对象
NIO/AIO
1.网络编程模型
2.BIO/NIO/AIO
3.同步阻塞
4.同步非阻塞
5.异步阻塞
6.异步非阻塞
7.NIO与AIO基本操作
8.高性能IO设计模式
第三阶段 Java 主流框架
MyBatis
1.mybatis框架原理分析
2.mybatis框架入门程序编写
3.mybatis和hibernate的本质区别和应用场景
4.mybatis开发方法
5.SqlMapConfig配置文件讲解
6.输入映射-pojo包装类型的定义与实现
7.输出映射-resultType、resultMap
8.动态sql
9.订单商品数据模型分析
10.高级映射的使用
11.查询缓存之一级缓存、二级缓存
12.mybatis与spring整合
13. mybatis逆向工程自动生成代码
Spring/Spring MVC
1. springmvc架构介绍
2. springmvc入门程序
3. spring与mybatis整合
4. springmvc注解开发—商品修改功能分析
5. springmvc注解开发—RequestMapping注解
6. springmvc注解开发—Controller方法返回值
7. springmvc注解开发—springmvc参数绑定过程分析
8. springmvc注解开发—springmvc参数绑定实例讲解
9. springmvc与struts2的区别
10. springmvc异常处理
11. springmvc上传图片
12. springmvc实现json交互
13. springmvc对RESTful支持
14. springmvc拦截器
第四阶段 关系型数据库/MySQL/NoSQL
SQL基础
1.SQL及主流产品
2.MySQL的下载与安装(sinux/windows)
3.MySql的基本配置/配置文件
4.基本的SQL操作 DDL
5.基本的SQL操作 DML
6.基本的SQL操作 DCL
7.MySQL客户端工具
8.MySQL帮助文档
MySQL数据类型和运算符
1 数值类型
2 日期时间类型
3 字符串类型
4 CHAR 和 VARCHAR 类型
5 BINARY 和 VARBINARY 类型
6 ENUM 类型
7 SET 类型
8 算术运算符
9 比较运算符
10 逻辑运算符
11 位运算
12 运算符的优先级
MySQL函数
1 字符串函数
2 数值函数
3 日期和时间函数
4 流程函数
5 其他常用函数
MySQL存储引擎
1.MySQL支持的存储引擎及其特性
2.MyISAM
3.InnoDB
4.选择合适的存储引擎
选择合适的数据类型
1 CHAR 与 VARCHAR
2 TEXT 与 BLOB
3 浮点数与定点数
4 日期类型选择
字符集
1 字符集概述
2 Unicode字符集
3 汉字及一些常见字符集
4 选择合适的字符集
5 MySQL 支持的字符集
6 MySQL 字符集的设置 .
索引的设计和使用
1.什么是索引
2.索引的类型
3.索引的数据结构 BTree B+Tree Hash
4.索引的存储
5.MySQL索引
6.查看索引的使用情况
7.索引设计原则
视图/存储过程/函数/触发器
1. 什么是视图
2. 视图操作
3. 什么是存储过程
4. 存储过程操作
5. 什么是函数
6. 函数的相关操作
7. 触发器
事务控制/锁
1. 什么是事务
2. 事务控制
3. 分布式事务
4. 锁/表锁/行锁
5. InnoDB 行锁争用
6. InnoDB 的行锁模式及加锁方法7
7 InnoDB 行锁实现方式7
8 间隙锁(Next-Key 锁)
9 恢复和复制的需要,对 InnoDB 锁机制的影响
10 InnoDB 在不同隔离级别下的一致性读及锁的差异
11 表锁
12 死锁
SQL Mode和安全问题
1. 关于SQL Mode
2. MySQL中的SQL Mode
3. SQL Mode和迁移
4. SQL 注入
5. 开发过程中如何避免SQL注入
SQL优化
1.通过 show status 命令了解各种 SQL 的执行频率
2. 定位执行效率较低的 SQL 语句
3. 通过 EXPLAIN 分析低效 SQL 的执行计划
4. 确定问题并采取相应的优化措施
5. 索引问题
6.定期分析表和检查表
7.定期优化表
8.常用 SQL 的优化
MySQL数据库对象优化
1. 优化表的数据类型
2 散列化
3 逆规范化
4 使用中间表提高统计查询速度
5. 影响MySQL性能的重要参数
6. 磁盘I/O对MySQL性能的影响
7. 使用连接池
8. 减少MySQL连接次数
9. MySQL负载均衡
MySQL集群
MySQL管理和维护
MemCache
Redis
在Java项目中使用MemCache和Redis
第五阶段:操作系统/linux、云架构
Linux安装与配置
1、安装Linux至硬盘
2、获取信息和搜索应用程序
3、进阶:修复受损的Grub
4、关于超级用户root
5、依赖发行版本的系统管理工具
6、关于硬件驱动程序
7、进阶:配置Grub
系统管理与目录管理
1、Shell基本命令
2、使用命令行补全和通配符
3、find命令、locate命令
4、查找特定程序:whereis
5、Linux文件系统的架构
6、移动、复制和删除
7、文件和目录的权限
8、文件类型与输入输出
9、vmware介绍与安装使用
10、网络管理、分区挂载
用户与用户组管理
1、软件包管理
2、磁盘管理
3、高级硬盘管理RAID和LVM
4、进阶:备份你的工作和系统
5、用户与用户组基础
6、管理、查看、切换用户
7、/etc/...文件
8、进程管理
9、linux VI编辑器,awk,cut,grep,sed,find,unique等
Shell编程
1、 SHELL变量
2、传递参数
3、数组与运算符
4、SHELL的各类命令
5、SHELL流程控制
6、SHELL函数
7、SHELL输入/输出重定向
8、SHELL文件包含
服务器配置
1、系统引导
2、管理守护进程
3、通过xinetd启动SSH服务
4、配置inetd
5、Tomcat安装与配置
6、MySql安装与配置
7、部署项目到Linux
第六阶段:Hadoop生态系统
Hadoop基础
1、大数据概论
2、 Google与Hadoop模块
3、Hadoop生态系统
4、Hadoop常用项目介绍
5、Hadoop环境安装配置
6、Hadoop安装模式
7、Hadoop配置文件
HDFS分布式文件系统
1、认识HDFS及其HDFS架构
2、Hadoop的RPC机制
3、HDFS的HA机制
4、HDFS的Federation机制
5、 Hadoop文件系统的访问
6、JavaAPI接口与维护HDFS
7、HDFS权限管理
8、hadoop伪分布式
Hadoop文件I/O详解
1、Hadoop文件的数据结构
2、 HDFS数据完整性
3、文件序列化
4、Hadoop的Writable类型
5、Hadoop支持的压缩格式
6、Hadoop中编码器和解码器
7、 gzip、LZO和Snappy比较
8、HDFS使用shell+Java API
MapRece工作原理
1、MapRece函数式编程概念
2、 MapRece框架结构
3、MapRece运行原理
4、Shuffle阶段和Sort阶段
5、任务的执行与作业调度器
6、自定义Hadoop调度器
7、 异步编程模型
8、YARN架构及其工作流程
MapRece编程
1、WordCount案例分析
2、输入格式与输出格式
3、压缩格式与MapRece优化
4、辅助类与Streaming接口
5、MapRece二次排序
6、MapRece中的Join算法
7、从MySQL读写数据
8、Hadoop系统调优
Hive数据仓库工具
1、Hive工作原理、类型及特点
2、Hive架构及其文件格式
3、Hive操作及Hive复合类型
4、Hive的JOIN详解
5、Hive优化策略
6、Hive内置操作符与函数
7、Hive用户自定义函数接口
8、Hive的权限控制
Hive深入解读
1 、安装部署Sqoop
2、Sqoop数据迁移
3、Sqoop使用案例
4、深入了解数据库导入
5、导出与事务
6、导出与SequenceFile
7、Azkaban执行工作流
Sqoop与Oozie
1 、安装部署Sqoop
2、Sqoop数据迁移
3、Sqoop使用案例
4、深入了解数据库导入
5、导出与事务
6、导出与SequenceFile
7、Azkaban执行工作流
Zookeeper详解
1、Zookeeper简介
2、Zookeeper的下载和部署
3、Zookeeper的配置与运行
4、Zookeeper的本地模式实例
5、Zookeeper的数据模型
6、Zookeeper命令行操作范例
7、storm在Zookeeper目录结构
NoSQL、HBase
1、HBase的特点
2、HBase访问接口
3、HBase存储结构与格式
4、HBase设计
5、关键算法和流程
6、HBase安装
7、HBase的SHELL操作
8、HBase集群搭建
第七阶段:Spark生态系统
Spark
1.什么是Spark
2.Spark大数据处理框架
3.Spark的特点与应用场景
4.Spark SQL原理和实践
5.Spark Streaming原理和实践
6.GraphX SparkR入门
7.Spark的监控和调优
Spark部署和运行
1.WordCount准备开发环境
2.MapRece编程接口体系结构
3.MapRece通信协议
4.导入Hadoop的JAR文件
5.MapRece代码的实现
6.打包、部署和运行
7.打包成JAR文件
Spark程序开发
1、启动Spark Shell
2、加载text文件
3、RDD操作及其应用
4、RDD缓存
5、构建Eclipse开发环境
6、构建IntelliJ IDEA开发环境
7、创建SparkContext对象
8、编写编译并提交应用程序
Spark编程模型
1、RDD特征与依赖
2、集合(数组)创建RDD
3、存储创建RDD
4、RDD转换 执行 控制操作
5、广播变量
6、累加器
作业执行解析
1、Spark组件
2、RDD视图与DAG图
3、基于Standalone模式的Spark架构
4、基于YARN模式的Spark架构
5、作业事件流和调度分析
6、构建应用程序运行时环境
7、应用程序转换成DAG
Spark SQL与DataFrame
1、Spark SQL架构特性
2、DataFrame和RDD的区别
3、创建操作DataFrame
4、RDD转化为DataFrame
5、加载保存操作与Hive表
6、Parquet文件JSON数据集
7、分布式的SQL Engine
8、性能调优 数据类型
深入Spark Streaming
1、Spark Streaming工作原理
2、DStream编程模型
3、Input DStream
4、DStream转换 状态 输出
5、优化运行时间及内存使用
6、文件输入源
7、基于Receiver的输入源
8、输出操作
Spark MLlib与机器学习
1、机器学习分类级算法
2、Spark MLlib库
3、MLlib数据类型
4、MLlib的算法库与实例
5、ML库主要概念
6、算法库与实例
GraphX与SparkR
1、Spark GraphX架构
2、GraphX编程与常用图算法
3、GraphX应用场景
4、SparkR的工作原理
5、R语言与其他语言的通信
6、SparkR的运行与应用
7、R的DataFrame操作方法
8、SparkR的DataFrame
Scala编程开发
1、Scala语法基础
2、idea工具安装
3、maven工具配置
4、条件结构、循环、高级for循环
5、数组、映射、元组
6、类、样例类、对象、伴生对象
7、高阶函数与函数式编程
Scala进阶
1、 柯里化、闭包
2、模式匹配、偏函数
3、类型参数
4、协变与逆变
5、隐式转换、隐式参数、隐式值
6、Actor机制
7、高级项目案例
Python编程
1、Python编程介绍
2、Python的基本语法
3、Python开发环境搭建
4、Pyhton开发Spark应用程序
第八阶段:Storm生态系统
storm简介与基本知识
1、storm的诞生诞生与成长
2、storm的优势与应用
3、storm基本知识概念和配置
4、序列化与容错机制
5、可靠性机制—保证消息处理
6、storm开发环境与生产环境
7、storm拓扑的并行度
8、storm命令行客户端
Storm拓扑与组件详解
1、流分组和拓扑运行
2、拓扑的常见模式
3、本地模式与stormsub的对比
4、 使用非jvm语言操作storm
5、hook、组件基本接口
6、基本抽象类
7、事务接口
8、组件之间的相互关系
spout详解 与bolt详解
1、spout获取数据的方式
2、常用的spout
3、学习编写spout类
4、bolt概述
5、可靠的与不可靠的bolt
6、复合流与复合anchoring
7、 使用其他语言定义bolt
8、学习编写bolt类
storm安装与集群搭建
1、storm集群安装步骤与准备
2、本地模式storm配置命令
3、配置hosts文件、安装jdk
4、zookeeper集群的搭建
5、部署节点
6、storm集群的搭建
7、zookeeper应用案例
8、Hadoop高可用集群搭建
Kafka
1、Kafka介绍和安装
2、整合Flume
3、Kafka API
4、Kafka底层实现原理
5、Kafka的消息处理机制
6、数据传输的事务定义
7、Kafka的存储策略
Flume
1、Flume介绍和安装
2、Flume Source讲解
3、Flume Channel讲解
4、Flume Sink讲解
5、flume部署种类、流配置
6、单一代理、多代理说明
7、flume selector相关配置
Redis
1、Redis介绍和安装、配置
2、Redis数据类型
3、Redis键、字符串、哈希
4、Redis列表与集合
5、Redis事务和脚本
6、Redis数据备份与恢复
7、Redis的SHELL操作

③ 大数据需要掌握哪些技能

大数据技术体系庞大,包括的知识较多

1、学习大数据首先要学习Java基础

Java是大数据学习需要的编程语言基础,因为大数据的开发基于常用的高级语言。而且不论是学hadoop,

2、学习大数据必须学习大数据核心知识

Hadoop生态系统;HDFS技术;HBASE技术;Sqoop使用流程;数据仓库工具HIVE;大数据离线分析Spark、Python语言;数据实时分析Storm;消息订阅分发系统Kafka等。

3、学习大数据需要具备的能力

数学知识,数学知识是数据分析师的基础知识。对于数据分析师,了解一些描述统计相关的内容,需要有一定公式计算能力,了解常用统计模型算法。而对于数据挖掘工程师来说,各类算法也需要熟练使用,对数学的要求是最高的。

4、学习大数据可以应用的领域

大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛。

④ 大数据培训到底是培训什么

一、基础部分:JAVA语言 和 LINUX系统

二、数据开发:

1、数据分析与挖掘

一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。

大数据培训一般是指大数据开发培训。

大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。

2、大数据开发

数据工程师建设和优化系统。学习hadoop、spark、storm、超大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;

课程学习一共分为六个阶段:

7

⑤ hadoop的maprece常见算法案例有几种

基本MapRece模式

计数与求和
问题陈述:
有许多文档,每个文档都有一些字段组成。需要计算出每个字段在所有文档中的出现次数或者这些字段的其他什么统计值。例如,给定一个log文件,其中的每条记录都包含一个响应时间,需要计算出平均响应时间。
解决方案:
让我们先从简单的例子入手。在下面的代码片段里,Mapper每遇到指定词就把频次记1,Recer一个个遍历这些词的集合然后把他们的频次加和。

1 class Mapper
2 method Map(docid id, doc d)
3 for all term t in doc d do
4 Emit(term t, count 1)
5
6 class Recer
7 method Rece(term t, counts [c1, c2,...])
8 sum = 0
9 for all count c in [c1, c2,...] do
10 sum = sum + c
11 Emit(term t, count sum)

这种方法的缺点显而易见,Mapper提交了太多无意义的计数。它完全可以通过先对每个文档中的词进行计数从而减少传递给Recer的数据量:

1 class Mapper
2 method Map(docid id, doc d)
3 H = new AssociativeArray
4 for all term t in doc d do
5 H{t} = H{t} + 1
6 for all term t in H do
7 Emit(term t, count H{t})

如果要累计计数的的不只是单个文档中的内容,还包括了一个Mapper节点处理的所有文档,那就要用到Combiner了:

1 class Mapper
2 method Map(docid id, doc d)
3 for all term t in doc d do
4 Emit(term t, count 1)
5
6 class Combiner
7 method Combine(term t, [c1, c2,...])
8 sum = 0
9 for all count c in [c1, c2,...] do
10 sum = sum + c
11 Emit(term t, count sum)
12
13 class Recer
14 method Rece(term t, counts [c1, c2,...])
15 sum = 0
16 for all count c in [c1, c2,...] do
17 sum = sum + c
18 Emit(term t, count sum)

应用:Log 分析, 数据查询

整理归类

问题陈述:
有一系列条目,每个条目都有几个属性,要把具有同一属性值的条目都保存在一个文件里,或者把条目按照属性值分组。 最典型的应用是倒排索引。
解决方案:
解决方案很简单。 在 Mapper 中以每个条目的所需属性值作为 key,其本身作为值传递给 Recer。 Recer 取得按照属性值分组的条目,然后可以处理或者保存。如果是在构建倒排索引,那么 每个条目相当于一个词而属性值就是词所在的文档ID。
应用:倒排索引, ETL
过滤 (文本查找),解析和校验
问题陈述:
假设有很多条记录,需要从其中找出满足某个条件的所有记录,或者将每条记录传换成另外一种形式(转换操作相对于各条记录独立,即对一条记录的操作与其他记录无关)。像文本解析、特定值抽取、格式转换等都属于后一种用例。
解决方案:
非常简单,在Mapper 里逐条进行操作,输出需要的值或转换后的形式。
应用:日志分析,数据查询,ETL,数据校验

分布式任务执行

问题陈述:
大型计算可以分解为多个部分分别进行然后合并各个计算的结果以获得最终结果。
解决方案: 将数据切分成多份作为每个 Mapper 的输入,每个Mapper处理一份数据,执行同样的运算,产生结果,Recer把多个Mapper的结果组合成一个。
案例研究: 数字通信系统模拟
像 WiMAX 这样的数字通信模拟软件通过系统模型来传输大量的随机数据,然后计算传输中的错误几率。 每个 Mapper 处理样本 1/N 的数据,计算出这部分数据的错误率,然后在 Recer 里计算平均错误率。
应用:工程模拟,数字分析,性能测试
排序
问题陈述:
有许多条记录,需要按照某种规则将所有记录排序或是按照顺序来处理记录。
解决方案: 简单排序很好办 – Mappers 将待排序的属性值为键,整条记录为值输出。 不过实际应用中的排序要更加巧妙一点, 这就是它之所以被称为MapRece 核心的原因(“核心”是说排序?因为证明Hadoop计算能力的实验是大数据排序?还是说Hadoop的处理过程中对key排序的环节?)。在实践中,常用组合键来实现二次排序和分组。
MapRece 最初只能够对键排序, 但是也有技术利用可以利用Hadoop 的特性来实现按值排序。想了解的话可以看这篇博客。
按照BigTable的概念,使用 MapRece来对最初数据而非中间数据排序,也即保持数据的有序状态更有好处,必须注意这一点。换句话说,在数据插入时排序一次要比在每次查询数据的时候排序更高效。
应用:ETL,数据分析

非基本 MapRece 模式

迭代消息传递 (图处理)

问题陈述:
假设一个实体网络,实体之间存在着关系。 需要按照与它比邻的其他实体的属性计算出一个状态。这个状态可以表现为它和其它节点之间的距离, 存在特定属性的邻接点的迹象, 邻域密度特征等等。
解决方案:
网络存储为系列节点的结合,每个节点包含有其所有邻接点ID的列表。按照这个概念,MapRece 迭代进行,每次迭代中每个节点都发消息给它的邻接点。邻接点根据接收到的信息更新自己的状态。当满足了某些条件的时候迭代停止,如达到了最大迭代次数(网络半径)或两次连续的迭代几乎没有状态改变。从技术上来看,Mapper 以每个邻接点的ID为键发出信息,所有的信息都会按照接受节点分组,recer 就能够重算各节点的状态然后更新那些状态改变了的节点。下面展示了这个算法:

1 class Mapper
2 method Map(id n, object N)
3 Emit(id n, object N)
4 for all id m in N.OutgoingRelations do
5 Emit(id m, message getMessage(N))
6
7 class Recer
8 method Rece(id m, [s1, s2,...])
9 M = null
10 messages = []
11 for all s in [s1, s2,...] do
12 if IsObject(s) then
13 M = s
14 else // s is a message
15 messages.add(s)
16 M.State = calculateState(messages)
17 Emit(id m, item M)

一个节点的状态可以迅速的沿着网络传全网,那些被感染了的节点又去感染它们的邻居,整个过程就像下面的图示一样:

案例研究: 沿分类树的有效性传递
问题陈述:
这个问题来自于真实的电子商务应用。将各种货物分类,这些类别可以组成一个树形结构,比较大的分类(像男人、女人、儿童)可以再分出小分类(像男裤或女装),直到不能再分为止(像男式蓝色牛仔裤)。这些不能再分的基层类别可以是有效(这个类别包含有货品)或者已无效的(没有属于这个分类的货品)。如果一个分类至少含有一个有效的子分类那么认为这个分类也是有效的。我们需要在已知一些基层分类有效的情况下找出分类树上所有有效的分类。
解决方案:
这个问题可以用上一节提到的框架来解决。我们咋下面定义了名为 getMessage和 calculateState 的方法:

1 class N
2 State in {True = 2, False = 1, null = 0},
3 initialized 1 or 2 for end-of-line categories, 0 otherwise
4 method getMessage(object N)
5 return N.State
6 method calculateState(state s, data [d1, d2,...])
7 return max( [d1, d2,...] )

案例研究:广度优先搜索
问题陈述:需要计算出一个图结构中某一个节点到其它所有节点的距离。
解决方案: Source源节点给所有邻接点发出值为0的信号,邻接点把收到的信号再转发给自己的邻接点,每转发一次就对信号值加1:

1 class N
2 State is distance,
3 initialized 0 for source node, INFINITY for all other nodes
4 method getMessage(N)
5 return N.State + 1
6 method calculateState(state s, data [d1, d2,...])
7 min( [d1, d2,...] )

案例研究:网页排名和 Mapper 端数据聚合
这个算法由Google提出,使用权威的PageRank算法,通过连接到一个网页的其他网页来计算网页的相关性。真实算法是相当复杂的,但是核心思想是权重可以传播,也即通过一个节点的各联接节点的权重的均值来计算节点自身的权重。

1 class N
2 State is PageRank
3 method getMessage(object N)
4 return N.State / N.OutgoingRelations.size()
5 method calculateState(state s, data [d1, d2,...])
6 return ( sum([d1, d2,...]) )

要指出的是上面用一个数值来作为评分实际上是一种简化,在实际情况下,我们需要在Mapper端来进行聚合计算得出这个值。下面的代码片段展示了这个改变后的逻辑 (针对于 PageRank 算法):

1 class Mapper
2 method Initialize
3 H = new AssociativeArray
4 method Map(id n, object N)
5 p = N.PageRank / N.OutgoingRelations.size()
6 Emit(id n, object N)
7 for all id m in N.OutgoingRelations do
8 H{m} = H{m} + p
9 method Close
10 for all id n in H do
11 Emit(id n, value H{n})
12
13 class Recer
14 method Rece(id m, [s1, s2,...])
15 M = null
16 p = 0
17 for all s in [s1, s2,...] do
18 if IsObject(s) then
19 M = s
20 else
21 p = p + s
22 M.PageRank = p
23 Emit(id m, item M)

应用:图分析,网页索引

值去重 (对唯一项计数)
问题陈述: 记录包含值域F和值域 G,要分别统计相同G值的记录中不同的F值的数目 (相当于按照 G分组).
这个问题可以推而广之应用于分面搜索(某些电子商务网站称之为Narrow Search)
Record 1: F=1, G={a, b}
Record 2: F=2, G={a, d, e}
Record 3: F=1, G={b}
Record 4: F=3, G={a, b}

Result:
a -> 3 // F=1, F=2, F=3
b -> 2 // F=1, F=3
d -> 1 // F=2
e -> 1 // F=2

解决方案 I:
第一种方法是分两个阶段来解决这个问题。第一阶段在Mapper中使用F和G组成一个复合值对,然后在Recer中输出每个值对,目的是为了保证F值的唯一性。在第二阶段,再将值对按照G值来分组计算每组中的条目数。
第一阶段:

1 class Mapper
2 method Map(null, record [value f, categories [g1, g2,...]])
3 for all category g in [g1, g2,...]
4 Emit(record [g, f], count 1)
5
6 class Recer
7 method Rece(record [g, f], counts [n1, n2, ...])
8 Emit(record [g, f], null )

第二阶段:

1 class Mapper
2 method Map(record [f, g], null)
3 Emit(value g, count 1)
4
5 class Recer
6 method Rece(value g, counts [n1, n2,...])
7 Emit(value g, sum( [n1, n2,...] ) )

解决方案 II:
第二种方法只需要一次MapRece 即可实现,但扩展性不强。算法很简单-Mapper 输出值和分类,在Recer里为每个值对应的分类去重然后给每个所属的分类计数加1,最后再在Recer结束后将所有计数加和。这种方法适用于只有有限个分类,而且拥有相同F值的记录不是很多的情况。例如网络日志处理和用户分类,用户的总数很多,但是每个用户的事件是有限的,以此分类得到的类别也是有限的。值得一提的是在这种模式下可以在数据传输到Recer之前使用Combiner来去除分类的重复值。

1 class Mapper
2 method Map(null, record [value f, categories [g1, g2,...] )
3 for all category g in [g1, g2,...]
4 Emit(value f, category g)
5
6 class Recer
7 method Initialize
8 H = new AssociativeArray : category -> count
9 method Rece(value f, categories [g1, g2,...])
10 [g1', g2',..] = ExcludeDuplicates( [g1, g2,..] )
11 for all category g in [g1', g2',...]
12 H{g} = H{g} + 1
13 method Close
14 for all category g in H do
15 Emit(category g, count H{g})

应用:日志分析,用户计数
互相关
问题陈述:有多个各由若干项构成的组,计算项两两共同出现于一个组中的次数。假如项数是N,那么应该计算N*N。
这种情况常见于文本分析(条目是单词而元组是句子),市场分析(购买了此物的客户还可能购买什么)。如果N*N小到可以容纳于一台机器的内存,实现起来就比较简单了。
配对法
第一种方法是在Mapper中给所有条目配对,然后在Recer中将同一条目对的计数加和。但这种做法也有缺点:
使用 combiners 带来的的好处有限,因为很可能所有项对都是唯一的
不能有效利用内存

1 class Mapper
2 method Map(null, items [i1, i2,...] )
3 for all item i in [i1, i2,...]
4 for all item j in [i1, i2,...]
5 Emit(pair [i j], count 1)
6
7 class Recer
8 method Rece(pair [i j], counts [c1, c2,...])
9 s = sum([c1, c2,...])
10 Emit(pair[i j], count s)

Stripes Approach(条方法?不知道这个名字怎么理解)
第二种方法是将数据按照pair中的第一项来分组,并维护一个关联数组,数组中存储的是所有关联项的计数。The second approach is to group data by the first item in pair and maintain an associative array (“stripe”) where counters for all adjacent items are accumulated. Recer receives all stripes for leading item i, merges them, and emits the same result as in the Pairs approach.
中间结果的键数量相对较少,因此减少了排序消耗。
可以有效利用 combiners。
可在内存中执行,不过如果没有正确执行的话也会带来问题。
实现起来比较复杂。
一般来说, “stripes” 比 “pairs” 更快

1 class Mapper
2 method Map(null, items [i1, i2,...] )
3 for all item i in [i1, i2,...]
4 H = new AssociativeArray : item -> counter
5 for all item j in [i1, i2,...]
6 H{j} = H{j} + 1
7 Emit(item i, stripe H)
8
9 class Recer
10 method Rece(item i, stripes [H1, H2,...])
11 H = new AssociativeArray : item -> counter
12 H = merge-sum( [H1, H2,...] )
13 for all item j in H.keys()
14 Emit(pair [i j], H{j})

应用:文本分析,市场分析
参考资料:Lin J. Dyer C. Hirst G. Data Intensive Processing MapRece
用MapRece 表达关系模式
在这部分我们会讨论一下怎么使用MapRece来进行主要的关系操作。
筛选(Selection)

1 class Mapper
2 method Map(rowkey key, tuple t)
3 if t satisfies the predicate
4 Emit(tuple t, null)

投影(Projection)
投影只比筛选稍微复杂一点,在这种情况下我们可以用Recer来消除可能的重复值。

1 class Mapper
2 method Map(rowkey key, tuple t)
3 tuple g = project(t) // extract required fields to tuple g
4 Emit(tuple g, null)
5
6 class Recer

阅读全文

与mapreducejoin算法相关的资料

热点内容
域名购买了怎么指向服务器 浏览:119
安卓手机如何让照片颜色反转 浏览:859
怎么下载卓睿安手机版 浏览:514
h3crange命令 浏览:468
php前景和python 浏览:338
php压缩图片内存大小 浏览:495
在哪里可以查看云服务器的信息 浏览:70
python读取非txt文件 浏览:799
艾莫迅用什么编程软件好 浏览:227
android文件存储读取 浏览:214
php基础教程第5版 浏览:543
服务器里面怎么刷东西 浏览:194
荣耀手机如何快速把app切换页面 浏览:798
傻瓜式php源码 浏览:359
非那根剂量计算法 浏览:91
开云服务器怎么申请 浏览:815
安卓从哪看什么时候开始使用 浏览:506
php取文本长度 浏览:410
公交车供电电压转为单片机 浏览:106
电流单片机 浏览:124