导航:首页 > 源码编译 > 图强算法

图强算法

发布时间:2022-12-07 12:29:24

A. 若无向图G=(V,E)中含有7个顶点,要保证G在任何情况下都是连通的,则需要的边数最少是()条

至少有n条边,正好可以组成一个环。

无向连通图指的是图中的每个顶点都有边与其相连,且图中没有断处,即对无向连通图进行遍历时,仅需要从图中的一个顶点出发。

进行深度优先或广度优先搜索,便可以访问到图中所有的顶点。无向连通图构成的条件是:边数=顶点数-1。

连通分量的提出是以"整个无向图不是连通图"为前提的,因为如果无向图是连通图,则其无法分解出多个最大连通子图,因为图中所有的顶点之间都是连通的。

(1)图强算法扩展阅读:

无向图到连通图的tarjan算法:

如果两个顶点可以相互连接,则这两个顶点是强连接的。如果有向图G的每个顶点都是强连通的,则G是一个强连通图。有向图的强连通子图是强连通分量。

在下面的图中,子图{1,2,3,4}是一个强连接组件,因为顶点1、2、3和4是不明确的。{5}和{6}也是两个强连接的分量。

利用Tarjan算法求有向图的强连通分量。寻找有向图强连通分量的Tarjan算法是以其发明者RobertTarjan的名字命名的。RobertTarjan也发明了寻找双连通分量的Tarjan算法。

Tarjan算法是基于图深度优先搜索算法的。每个强连接组件都是搜索树中的一个子树。在搜索过程中,将当前搜索树中未处理的节点添加到堆栈中,并且可以追溯到堆栈顶部的节点,以确定它们是否是强连接组件。

定义DFN(u)为u查找的节点的序列号(时间戳),Low(u)为u或u的子树可以跟踪的最早栈中节点的序号。

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

B. 图像空域增强和频域增强的基本原理是什么

图像增强的目的是改善图像的视觉效果或使图像更适合于人或机器的分析处理。通过图像增强可以减少图像噪声,提高目标与背景的对比度,亦可以强调或抑制图像中的某些细节。例如,消除照片中的划痕,改善光照不均匀的图像,突出目标的边缘等。

根据处理的空间可以将图像增强分为空域法和频域法,前者直接在图像的空间域(或图像空间)中对像素进行处理,后者在图像的变换域(即频域)内间接处理,然后经逆变换获得增强图像。空域增强可以分为点处理和区处理,频域增强可以分为低通滤波,高通滤波,带通滤波和同态滤波。

(2)图强算法扩展阅读

常用的图像增强处理方式包括灰度变换、直方图修正、图像锐化、噪声去除、几何畸变校正、频域滤波和彩色增强等。由于图像增强与感兴趣的物体特性、观察者的习惯和处理目的密切相关,尽管处理方式多种多样,但它带有很强的针对性。

因此,图像增强算法的应用也是有针对性的,并不存在一种通用的、适应各种应用场合的增强算法。于是,为了使各种不同特定目的的图像质量得到改善,产生了多种图像增强算法。这些算法根据处理空间的不同分为基于空间域的图像增强算法和基于变换域的图像增强算法。

基于空间域的图像增强算法又可以分为空域的变换增强算法、空域的滤波增强算法以及空域的彩色增强算法;基于变换域的图像增强算法可以分为频域的平滑增强算法、频域的锐化增强算法以及频域的彩色增强算法。

尽管各种图像增强技术已取得了长足的发展,形成了许多成熟、经典的处理方法,但新的增强技术依然在日新月异地发展完善,不断推陈出新,其中尤其以不引起图像模糊的去噪声方法(如空域的局部统计法)和新的频域滤波器增强技术(如小波变换,K-L变换等)最为引人瞩目。

C. 听说创维的4K极清系列有4K图强引擎功能,具体是怎样的

创维独有的4K图强引擎,实现4K影像点对点还原,通过MRIT影像微重组技术,对影像细节重组及精密显像处理,1080P/1080i画质智能提升2.89倍。基于4K图强引擎,采用芯片自适应视频编码算法,通过运动估算和运动补偿,进行场内插帧,刷新频率提升四倍。有效解决传统4K电视运动画面抖动、拖尾的问题。

D. 用C语言和数据结构(只能用这两种)来编写一个判断有向图是否为强连通图的算法

这是一个递归算法:
1、一个节点的图是强连通的,这是递归终止条件
2、G(n)的强连通性变为:图G(n-1)和节点g(n)和G(n-1)的联通问题。
采用递归方式,具体算法要结合你的存储结构实现

E. 大数据最常用的算法有哪些

奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutschan博士在自己的页面上发布了一篇文章,提到他做了一个调查,参与者大多数是计算机科学家,他请这些科学家投票选出最重要的算法,以下是这次调查的结果,按照英文名称字母顺序排序。

大数据等最核心的关键技术:32个算法

1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。

2、集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。

3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。

5、Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。

7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。

9、离散微分算法(Discrete differentiation)。

10、动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法

11、欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。

12、期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值。

13、快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。

14、梯度下降(Gradient descent)——一种数学上的最优化算法。

15、哈希算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。

18、LLL算法(Lenstra-Lenstra-Lovasz lattice rection)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。

19、最大流量算法(Maximum flow)——该算法试图从一个流量网络中找到最大的流。它优势被定义为找到这样一个流的值。最大流问题可以看作更复杂的网络流问题的特定情况。最大流与网络中的界面有关,这就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一个流网络中的最大流。

20、合并排序(Merge Sort)。

21、牛顿法(Newton’s method)——求非线性方程(组)零点的一种重要的迭代法。

22、Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。

23、两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。

24、RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。

25、RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。

26、Sch?nhage-Strassen算法——在数学中,Sch?nhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。

27、单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待最大化(或最小化)的固定线性函数。

28、奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。

29、求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。

31、合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:

查找:判断某特定元素属于哪个组。

合并:联合或合并两个组为一个组。

32、维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。

以上就是Christoph博士对于最重要的算法的调查结果。你们熟悉哪些算法?又有哪些算法是你们经常使用的?

F. 在图像处理中有哪些算法

1、图像变换:

由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。

2、图像编码压缩:

图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。

压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

3、图像增强和复原:

图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。

图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。

4、图像分割:

图像分割是数字图像处理中的关键技术之一。

图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。

5、图像描述:

图像描述是图像识别和理解的必要前提。

一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。

6、图像分类:

图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。

图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。

(6)图强算法扩展阅读:

图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。

数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。

数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,

但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。

G. Matlab怎样把一个彩色图像进行简单的增强

增强图象中的有用信息,它可以是一个失真的过程,其目的是要增强视觉效果。将原来不清晰的图像变得清晰或强调某些感兴趣的特征,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果的图像处理方法。
图像增强按所用方法可分成频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
图像增强的目的是改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,扩大图像中不同物体特征之间的差别,满足某些特殊分析的需要。其方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。
基于空域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。

H. 视觉算法和图像算法的区别

两者其实差别都不算很大,从专业本身来说,模式识别研发就比如汽车的车牌,你怎么去识别,图像算法主要研究目的就是比如车牌你怎么让他更清楚地被你采集后得到有用的信息,还原图片的原来面目等。都是算法类的研究,当然算法也是离不开程序的,如果你对软件不敢新区,那么这两个专业都不是适合你。

I. 有向图的强联通tarjan算法(判断是否为强联通

Problem Description
为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间。Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i。
Input
输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。
Output
对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。
Sample Input
3 3
1 2
2 3
3 1
3 3
1 2
2 3
3 2
0 0
Sample Output
Yes
No
程序:
[cpp] view plain
#include"stdio.h"
#include"string.h"
#include"iostream"
#include"stack"
#define M 10020
using namespace std;
stack<int>q;//定义栈
int head[M];
int use[M];//记录该点是否进栈
int dfn[M];
int low[M];
int belong[M];//Belong[i]=a;表示点i属于第a个连通分量;
int num;//记录连通分量的个数;
int index;//表示到达某点的时间,即次序;
int t,n;
struct st
{
int u,v,next;
}edge[M*20];
void init()
{
t=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
edge[t].u=u;
edge[t].v=v;
edge[t].next=head[u];
head[u]=t++;
}
void tarjan(int u)
{
int i;
dfn[u]=low[u]=++index;//注意index初始化为0,不能写成index++,
//要不第一个点的low和dfn的值会赋为0;
q.push(u);//入栈
use[u]=1;
for(i=head[u];i!=-1;i=edge[i].next)//对可以到达的点进行搜索;
{
int v=edge[i].v;
if(!dfn[v])//如果改点未被搜到过,则继续更新low
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
if(use[v])//若指向的改点在栈中更新low
{
low[u]=min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u])//表示找到了一个完整的强联通
{
num++;//强联通个数+1;
int vv;
do
{
vv=q.top();
q.pop();
use[vv]=0;
belong[vv]=num;
}while(u!=vv);//直到vv==u,都属于第num个强联通分量
}
}
void solve()
{
index=num=0;
memset(dfn,0,sizeof(dfn));
memset(use,0,sizeof(use));
for(int i=1;i<=n;i++)//有些点可能不是在同一个连通图中
{
if(!dfn[i])
tarjan(i);
}
}
int main()
{
int i,m;
while(scanf("%d%d",&n,&m),m||n)
{
init();
for(i=0;i<m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
solve();
int ans=belong[1];
int flag=0;
for(i=1;i<=n;i++)
if(belong[i]!=ans)
{
flag=1;
break;
}
if(flag)
printf("No\n");
else
printf("Yes\n");
}
}

J. 怎么用c语言和数据结构来编写一个判断有向图是否为强连通图的算法

强连通图表明任意两点之间可以互相到达。
方案1:判断结点A可以到达的点的方法如下:
首先SA = {A};
while 1
取SA中任意没有被去过的点x,根据以x为起点的有向线段,判断x可以直接到达的点,然后这些点加入SA;
如此循环,直到SA中的点的个数没有变化了
end
这样得到的集合SA是所有A可以到达的点的一个集合。
判断SA 是否等于S,若不等于S,表明不是强连通。

如此循环,求出所有S中的点的能够到达的点集。如果所有的点集都等于S表明强连通图。

方案2:可以优化1

阅读全文

与图强算法相关的资料

热点内容
域名购买了怎么指向服务器 浏览:119
安卓手机如何让照片颜色反转 浏览:859
怎么下载卓睿安手机版 浏览:514
h3crange命令 浏览:468
php前景和python 浏览:338
php压缩图片内存大小 浏览:495
在哪里可以查看云服务器的信息 浏览:70
python读取非txt文件 浏览:799
艾莫迅用什么编程软件好 浏览:227
android文件存储读取 浏览:214
php基础教程第5版 浏览:543
服务器里面怎么刷东西 浏览:194
荣耀手机如何快速把app切换页面 浏览:798
傻瓜式php源码 浏览:359
非那根剂量计算法 浏览:91
开云服务器怎么申请 浏览:815
安卓从哪看什么时候开始使用 浏览:506
php取文本长度 浏览:410
公交车供电电压转为单片机 浏览:106
电流单片机 浏览:124