㈠ 什么是智能优化算法
群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。因此,群体智能优化算法可以建立一个基本的理论框架模式:
Step1:设置参数,初始化种群;
Step2:生成一组解,计算其适应值;
Step3:由个体最有适应着,通过比较得到群体最优适应值;
Step4:判断终止条件示否满足?如果满足,结束迭代;否则,转向Step2;
各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动步长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。
(1)智能算法和数学模拟扩展阅读
优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。
㈡ 人工智能算法有哪些
人工智能算法有:决策树、随机森林算法、逻辑回归、SVM、朴素贝叶斯、K最近邻算法、K均值算法、Adaboost算法、神经网络、马尔可夫。
㈢ 智能算法
智能信息处理研究方向
一、 科研方向意义
智能信息处理是人工智能(AI)的一个重要研究领域。在世界各地对人工智能的研究很早就开始了,当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,而人工智能也始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。80年代初,在美国、日本、接着在我国国内都掀起了一股研究神经网络理论和神经计算机的热潮,并将神经网络原理应用于图象处理、模式识别、语音综合及机器人控制等领域。随着理论研究的不断深入和应用领域的迅速扩大,近年来智能信息处理成了人工智能的一个热门研究方向,我国各高等院校都成立了关于智能信息处理的研究机构。他们立足于信息处理技术的基础研究和应用,积极地将数学、人工智能、逻辑学、认知科学等领域最新研究成果应用于各种信息的智能处理,在模式识别与人工智能、数据库与数据仓库的挖掘技术、信息网络安全与数据保密技术等方面取得了较好的研究成果,在带动其院校学科建设的同时,也努力扩大了信息技术在国民经济各领域的应用,提高了信息处理技术的社会效应和经济效益。
二、主要研究方向
模式识别与人工智能
数据挖掘算法
优化决策支持系统
商用智能软件
三、研究目标
以促进本学科的建设为目标,加强智能理论的研究,并侧重智能系统的开发应用工作。在理论上,配合本硕学生的教学工作,在模式识别与人工智能、数据挖掘和智能算法等方面进行深入研究,取得比较深入的理论研究成果,从而使学生掌握这方面最新的知识理论,为他们在以后的研究和工作中打下坚实的基础,进一步可以独立研究并取得更大的成就。在智能应用上,我们要根据现有的基础条件,进一步加强梯队人员和素质的建设,形成一支结构合理、充满活力、人员稳定的研究队伍;建立并扩展与外界的合作关系,将最新的理论研究成果转化为生产力,开发出企业急需的、先进的智能控制和信息处理软件系统,从而在为社会做贡献的同时提高我校的声誉,有利于我校的招生和就业。本方向的研究工作还会促进学生实验实践环节的质量,从根本上提高毕业生的素质。
㈣ 跪求各位数学专业计算机专业高手,列举一下智能优化算法,以及目前最流行的智能优化算法。
智能优化算法有:遗传算法,禁忌搜索,模拟退火,蚁群算法,粒子群优化算法,动态进化等等。学习这些算法主要是用来计算,解决计算机方面的一些NP问题的最佳方法。智能的意思是模拟生物物种的智慧。这个方向的实际应用也很强。只是比较复杂非常难学。
㈤ 人工智能是智能算法的实现,其核心内容在于什么
人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
㈥ 智能计算/计算智能、仿生算法、启发式算法的区别与关系
我一个个讲好了,
1)启发式算法:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度不一定事先可以预计。意思就是说,启发式算法是根据经验或者某些规则来解决问题,它求得的问题的解不一定是最优解,很有可能是近似解。这个解与最优解近似到什么程度,不能确定。相对于启发式算法,最优化算法或者精确算法(比如说分支定界法、动态规划法等则能求得最优解)。元启发式算法是启发式算法中比较通用的一种高级一点的算法,主要有遗传算法、禁忌搜索算法、模拟退火算法、蚁群算法、粒子群算法、变邻域搜索算法、人工神经网络、人工免疫算法、差分进化算法等。这些算法可以在合理的计算资源条件下给出较高质量的解。
2)仿生算法:是一类模拟自然生物进化或者群体社会行为的随机搜索方法的统称。由于这些算法求解时不依赖于梯度信息,故其应用范围较广,特别适用于传统方法难以解决的大规模复杂优化问题。主要有:遗传算法、人工神经网络、蚁群算法、蛙跳算法、粒子群优化算法等。这些算法均是模仿生物进化、神经网络系统、蚂蚁寻路、鸟群觅食等生物行为。故叫仿生算法。
3)智能计算:也成为计算智能,包括遗传算法、模拟退火算法、禁忌搜索算法、进化算法、蚁群算法、人工鱼群算法,粒子群算法、混合智能算法、免疫算法、神经网络、机器学习、生物计算、DNA计算、量子计算、模糊逻辑、模式识别、知识发现、数据挖掘等。智能计算是以数据为基础,通过训练建立联系,然后进行问题求解。
所以说,你接触的很多算法,既是仿生算法,又是启发式算法,又是智能算法,这都对。分类方法不同而已。
这次楼主不要再老花了哈!
㈦ 人工智能最主要的模型以及算法是什么呢 感觉很多数学公式都不是太好懂啊
的确比较多,但是吃透了其几个主要算法就会豁然开朗,比如
先看看神经网络和遗传算法,再学学模拟退火算法
差不多以后,学习粒子群算法,掌握了这些一般的问题就可以解决了;
最好尝试将几种算法结合起来练习,比如神经网络与遗传算法结合会有很好的效果;
有问题邮件:[email protected]
㈧ 请问智能优化算法以及神经网络能不能用数学理论进行证明
智能优化算法多达十几种,你说的是哪一种?而且你光说算法证明,这个算法本来就不存在证明,所谓的证明就是对算法收敛性的证明。就拿最普遍的遗传算法来说吧,这个的证明通常是用马氏链来描述,Holland本人则是通过模式方式来证明,但是证明过程被大家所 不认同。因为这种启发式随机搜索算法只能用概率来描述他的行为,那么一个依概率存在的东西,找到最优也是依概率的,所以所有的智能算法至今没有任何一个人说他的算法收敛性证明是严谨的,是经得起推敲的。所以算法的证明通常书上不说,要么就是简要说一下,因为本身意义不大,实际应用中,算法的参数都是要反复调整的。至于神经网络,你要证明神经网络的什么?BP的学习也不需要证明啊