A. 什么是算法的时间复杂度
时间复杂度表面的意思就是代码花费的时间,但是一般使用这个概念的时候,更注重的是随着数据量增长,代码执行时间的增长情况。一般认为一个基本的运算为一次运行算,例如加减乘除判断等等
例1和例2时间复杂度都可以简单认为是o(N),一般用时间复杂度的时候要取一个下限即可,不用那么精确,可能你认为例1是o(2N)而例2是o(n),但实际上这两者对于时间复杂度的作用来说没区别,前面已经说了,时间复杂度关注的是数据量的增长导致的时间增长情况,o(2N)和o(n)在数据量增加一倍的时候,时间开销都是增加一倍(线性增长)。
又例如两重循环的时间复杂度是o(N的平方),N扩大一倍,时间复杂度就扩大4倍。所以时间复杂度主要是研究增长的问题,一般效率较好的算法要控制在o(N)或者o(log2N)
B. 如何计算一个算法的时间复杂度
求解算法的时间复杂度的具体步骤是:
1、找出算法中的基本语句:
算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
2、计算基本语句的执行次数的数量级:
(1)只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。
(2)这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
3、用大Ο记号表示算法的时间性能:
(1)将基本语句执行次数的数量级放入大Ο记号中。
(2)如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++)
for(j=1;j<=n;j++)x++;
(3)第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
C. 算法的时间复杂性是指( )。
算法的复杂度分时间复杂度和空间复杂度。
时间复杂度:在运行算法时所耗费的时间为f(n)(即 n的函数)。
空间复杂度:实现算法所占用的空间为g(n)(也为n的函数)。
D. 算法的时间复杂度
分情况:
n=2^k;
i从1到n,则需要计算k+1次也就是log(n)+1.
n不等于2的某次方则恰好少计算一次..
计算次数为log(n).
平均复杂度O(log(n))
E. Dijkstra算法时间复杂度
我们可以用大O符号将Dijkstra算法的运行时间表示为边数m和顶点数n的函数。
Dijkstra算法最简单的实现方法是用一个链表或者数组来存储所有顶点的集合Q,所以搜索Q中最小元素的运算(Extract-Min(Q))只需要线性搜索Q中的所有元素。这样的话算法的运行时间是O(n2)。
对于边数少于n2稀疏图来说,我们可以用邻接表来更有效的实现Dijkstra算法。同时需要将一个二叉堆或者斐波纳契堆用作优先队列来寻找最小的顶点(Extract-Min)。当用到二叉堆的时候,算法所需的时间为O((m+n)log n),斐波纳契堆能稍微提高一些性能,让算法运行时间达到O(m + n log n)。相关问题和算法
在Dijkstra算法的基础上作一些改动,可以扩展其功能。例如,有时希望在求得最短路径的基础上再列出一些次短的路径。为此,可先在原图上计算出最短路径,然后从图中删去该路径中的某一条边,在余下的子图中重新计算最短路径。对于原最短路径中的每一条边,均可求得一条删去该边后子图的最短路径,这些路径经排序后即为原图的一系列次短路径。
OSPF(open shortest path first, 开放最短路径优先)算法是Dijkstra算法在网络路由中的一个具体实现。
与Dijkstra算法不同,Bellman-Ford算法可用于具有负花费边的图,只要图中不存在总花费为负值且从源点 s 可达的环路(如果有这样的环路,则最短路径不存在,因为沿环路循环多次即可无限制的降低总花费)。
与最短路径问题有关的一个问题是旅行商问题(traveling salesman problem),它要求找出通过所有顶点恰好一次且最终回到源点的最短路径。该问题是NP难的;换言之,与最短路径问题不同,旅行商问题不太可能具有多项式时间算法。
如果有已知信息可用来估计某一点到目标点的距离,则可改用A*算法,以减小最短路径的搜索范围。
F. 算法时间复杂度有几种
算法时间复杂度有3种:
1、常数阶O(1),对数阶O(log2n)(以2为底n的对数,下同),线性阶O(n),
2、线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,
3、k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
(6)算法时间复杂度扩展阅读:
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),存在一个正常数c使得fn*c>=T(n)恒成立。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n^2+3n+4与T(n)=4n^2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。
G. A*算法的时间复杂度是多少
从数学上定义,给定算法A,如果存在函数F(n),当n=k时,F(k)表示算法A在输入规模为k的情况下的运行时间,则称F(n)为算法A的时间复杂度。这里首先要明确输入规模的概念。关于输入规模,不是很好下定义,非严格的讲,输入规模是指算法A所接受输入的自然独立体的大小。例如,对于排序算法来说,输入规模一般就是待排序元素的个数,而对于求两个同型方阵乘积的算法,输入规模可以看作是单个方阵的维数。为了简单起见,总是假设算法的输入规模是用大于零的整数表示的,即n=1,2,3,……,k,…… 对于同一个算法,每次执行的时间不仅取决于输入规模,还取决于输入的特性和具体的硬件环境在某次执行时的状态。所以想要得到一个统一精确的F(n)是不可能的。为了解决这个问题,做以下两个说明: 1.忽略硬件及环境因素,假设每次执行时硬件条件和环境条件是完全一致的。 2.对于输入特性的差异,将从数学上进行精确分析并带入函数解析式。
H. 算法的时间复杂性
1 就是for(int i=1;i<=n;i++),n+1中的1是判断跳出。这就有点抠细节了说老实话。
2 学过时间复杂度没有?不想解释。
I. 算法的时间复杂度
时间复杂度的表示: O(执行次数)
一个有序的元素列表查找某个元素可以用二分查找,每次取中间元素进行比较大小,直到相等。因为每次不符合时总会排除一半的元素 ,所以查找的次数为log2n,那么时间复杂度为O(log2n)。如果是一个无序的元素列表,查找从位置0开始,那么简单查找的次数为n,那么时间复杂度为O(n)。
除此之外快速排序为O(n*log2n),选择排序为O(n*n)。
旅行算法就是n个旅行地点,你可从某个地方出发到余下某下一个地点,走完所有地点。从最开始时走有n个地点可以选择,接下来再走就有n-1个地点可以选择,这样直到只有一个地点可以选择。那么所有你可走的路径就是一个阶乘,选择复杂度为O( n!)。
关于数组和链表的操作。先说数组,因为你有了元素的索引,可以随机访问,你就能快速找到这个元素,而且所有元素的读取都是一样的步骤,所以读取时间复杂度为O(1),数组的插入和删除的时间复杂度为O(n),因为要移动元素。链表的特性是每个都存储了下一个元素的地址,只能顺序访问。那么读取插入删除的时间复杂度分别是O(n)、O(1)、O(1)。
J. 如何计算一个算法的时间复杂度
求解算法的时间复杂度的具体步骤是:
1、找出算法中的基本语句:
算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
2、计算基本语句的执行次数的数量级:
(1)只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。
(2)这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
3、用大Ο记号表示算法的时间性能:
(1)将基本语句执行次数的数量级放入大Ο记号中。
(2)如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++)
for(j=1;j<=n;j++)x++;
(3)第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。