1. 《深入理解SPARK核心思想与源码分析》epub下载在线阅读,求百度网盘云资源
《深入理解SPARK》(耿嘉安)电子书网盘下载免费在线阅读
资源链接:
链接:
书名:深入理解SPARK
作者:耿嘉安
豆瓣评分:7.2
出版社:机械工业出版社
出版年份:2016-1-1
页数:469
内容简介:
《深入理解SPARK:核心思想与源码分析》结合大量图和示例,对Spark的架构、部署模式和工作模块的设计理念、实现源码与使用技巧进行了深入的剖析与解读。
《深入理解SPARK:核心思想与源码分析》一书对Spark1.2.0版本的源代码进行了全面而深入的分析,旨在为Spark的优化、定制和扩展提供原理性的指导。阿里巴巴集团专家鼎力推荐、阿里巴巴资深Java开发和大数据专家撰写。
本书分为三篇:
准备篇(第1~2章),介绍了Spark的环境搭建、设计理念与基本架构,帮助读者了解一些背景知识。
核心设计篇(第3~7章),着重讲解SparkContext的初始化、存储体系、任务提交与执行、计算引擎及部署模式的原理和源码分析。通过这部分的内容,读者可以通过源码剖析更加深入理解Spark的核心设计与实现,以便在实际使用中能够快速解决线上问题并对性能进行调优。
扩展篇(第8~11章),主要讲解基于Spark核心的各种扩展及应用,包括SQL处理引擎、Hive处理、流式计算框架Spark Streaming、图计算框架GraphX、机器学习库MLlib等内容。通过阅读这部分内容,读者可以扩展实际项目中对Spark的应用场景,让Spark焕发活力。
作者简介:
耿嘉安,10年IT行业相关经验。就职于阿里巴巴商家业务事业部,任资深Java工程师,专注于开源和大数据领域,目前与小伙伴们基于ODPS构建阿里的大数据商业解决方案——御膳房。在大量的工作实践中,对J2EE、JVM、Tomcat、Spring、Hadoop、Spark、MySQL、Redis都有深入研究,尤其喜欢剖析开源项目的源码实现。早期从事J2EE企业级应用开发,对Java相关技术有独到见解。业余时间喜欢研究中国古代历史,古诗词,旅游,足球等。
2. 求《深入理解spark核心思想及源码分析》全文免费下载百度网盘资源,谢谢~
《深入理解spark核心思想及源码分析》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1iOq9-MrepVdWcIrbALPMPg
3. Spark源码分析之SparkSubmit的流程
本文主要对SparkSubmit的任务提交流程源码进行分析。 Spark源码版本为2.3.1。
首先阅读一下启动脚本,看看首先加载的是哪个类,我们看一下 spark-submit 启动脚本中的具体内容。
可以看到这里加载的类是org.apache.spark.deploy.SparkSubmit,并且把启动相关的参数也带过去了。下面我们跟一下源码看看整个流程是如何运作的...
SparkSubmit的main方法如下
这里我们由于我们是提交作业,所有会走上面的submit(appArgs, uninitLog)方法
可以看到submit方法首先会准备任务提交的环境,调用了prepareSubmitEnvironment,该方法会返回四元组,该方法中会调用doPrepareSubmitEnvironment,这里我们重点注意 childMainClass类具体是什么 ,因为这里涉及到后面启动我们主类的过程。
以下是doPrepareSubmitEnvironment方法的源码...
可以看到该方法首先是解析相关的参数,如jar包,mainClass的全限定名,系统配置,校验一些参数,等等,之后的关键点就是根据我们 deploy-mode 参数来判断是如何运行我们的mainClass,这里主要是通过childMainClass这个参数来决定下一步首先启动哪个类。
childMainClass根据部署模型有不同的值:
之后该方法会把准备好的四元组返回,我们接着看之前的submit方法
可以看到这里最终会调用doRunMain()方法去进行下一步。
doRunMain的实现如下...
doRunMain方法中会判断是否需要一个代理用户,然后无论需不需要都会执行runMain方法,我们接下来看看runMain方法是如何实现的。
这里我们只假设以集群模式启动,首先会加载类,将我们的childMainClass加载为字节码对象mainClass ,然后将mainClass 映射成SparkApplication对象,因为我们以集群模式启动,那么上一步返回四元组中的childMainClass的参数为ClientApp的全限定名,而这里会调用app实例的start方法因此,这里最终调用的是ClientApp的start方法。
ClientApp的start方法如下...
可以看到这里和之前我们的master启动流程有些相似。
可以参考我上一篇文章 Spark源码分析之Master的启动流程 对这一流程加深理解。
首先是准备rpcEnv环境,之后通过master的地址获取masterEndpoints端点相关信息,因为这里运行start方法时会将之前配置的相关参数都传进来,之后就会通过rpcEnv注册相关clientEndPoint端点信息,同时需要注意,这里会把masterEndpoints端点信息也作为构造ClientEndpoint端点的参数,也就是说这个ClientEndpoint会和masterEndpoints通信。
而在我上一篇文章中说过,只要是setupEndpoint方法被调用,一定会调用相关端点的的onStart方法,而这会调用clientEndPoint的onStart方法。
ClientEndPoint类中的onStart方法会匹配launch事件。源码如下
onStart中匹配我们的launch的过程,这个过程是启动driverWrapper的过程,可以看到上面源码中封装了mainClass ,该参数对应DriverWrapper类的全限定名,之后将mainClass封装到command中,然后封装到driverDescription中,向Master申请启动Driver。
这个过程会向Mster发送消息,是通过rpcEnv来实现发射消息的,而这里就涉及到outbox信箱,会调用postToOutbox方法,向outbox信箱中添加消息,然后通过TransportClient的send或sendRpc方法发送消息。发件箱以及发送过程是在同一个线程中进行。
而细心的同学会注意到这里调用的方法名为SendToMasterAndForwardReply,见名之意,发送消息到master并且期待回应。
下面是rpcEnv来实现向远端发送消息的一个调用流程,最终会通过netty中的TransportClient来写出。
之后,Master端会触发receiveAndReply函数,匹配RequestSubmitDriver样例类,完成模式匹配执行后续流程。
可以看到这里首先将Driver信息封装成DriverInfo,然后添加待调度列表waitingDrivers中,然后调用通用的schele函数。
由于waitingDrivers不为空,则会走LaunchDriver的流程,当前的application申请资源,这时会向worker发送消息,触发Worker的receive方法。
Worker的receive方法中,当Worker遇到LaunchDriver指令时,创建并启动一个DriverRunner,DriverRunner启动一个线程,异步的处理Driver启动工作。这里说启动的Driver就是刚才说的org.apache.spark.deploy.worker.DriverWrapper
可以看到上面在DriverRunner中是开辟线程异步的处理Driver启动工作,不会阻塞主进程的执行,而prepareAndRunDriver方法中最终调用 runDriver..
runDriver中主要先做了一些初始化工作,接着就开始启动driver了。
上述Driver启动工作主要分为以下几步:
下面我们直接看DriverWrapper的实现
DriverWrapper,会创建了一个RpcEndpoint与RpcEnv,RpcEndpoint为WorkerWatcher,主要目的为监控Worker节点是否正常,如果出现异常就直接退出,然后当前的ClassLoader加载userJar,同时执行userMainClass,在执行用户的main方法后关闭workerWatcher。
以上就是SparkSubmit的流程,下一篇我会对SparkContext的源码进行解析。
欢迎关注...
4. 深入理解spark核心思想与源码分析 怎么样
SparkSQL主要的推动者是Databricks。提到SparkSQL不得不提的就是Shark。Shark可以理解为Spark社区这边搞的一个”HiveonSpark”,把Hive的物理执行计划使用Spark计算引擎去执行。这里面会有一些问题,Hive社区那边没有把物理执行计划到执行引擎这个步骤抽象出公共API,所以Spark社区这边要自己维护一个Hive的分支,而且Hive的设计和发展不太会考虑到如何优化Spark的Job。但是前面提到的HiveonSpark却是和Hive一起发布的,是由Hive社区控制的。所以后来Spark社区就停止了Shark的开发转向SparkSQL(“坑了”一部分当时信任Shark的人)。SparkSQL是把SQL解析成RDD的transformation和action,而且通过catalyst可以自由、灵活的选择最优执行方案。对数据库有深入研究的人就会知道,SQL执行计划的优化是一个非常重要的环节,SparkSQL在这方面的优势非常明显,提供了一个非常灵活、可扩展的架构。但是SparkSQL是基于内存的,元数据放在内存里面,不适合作为数据仓库的一部分来使用。所以有了SparkSQL的HiveContext,就是兼容Hive的SparkSQL。它支持HiveQL,HiveMetastore,HiveSerDesandHiveUDFs以及JDBCdriver。这样看起来很完美,但是实际上也有一些缺点:SparkSQL依赖于Hive的一个snapshot,所以它总是比Hive的发布晚一个版本,很多Hive新的feature和bugfix它就无法包括。而且目前看Spark社区在Spark的thriftserver方面的投入不是很大,所以感觉它不是特别想朝着这个方向发展。还有一个重要的缺点就是SparkSQL目前还不能通过分析SQL来预测这个查询需要多少资源从而申请对应的资源,所以在共享集群上无法高效地分配资源和调度任务。