㈠ 简便方法计算的方法 简便方法计算有哪些
1、简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc;cx(a-b)=axc-bxc。
2、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
3、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
4、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小。
5、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
㈡ 有什么数学简便计算法
二位数乘法速算总汇
1、两位数的十位相同的,而个位的两数则是相补的(相加等于10)
如:78×72= 37×33= 56×54= 43×47 = 28×22 46×44
(1)分别取两个数的第一位,而后一个的要加上一以后,相乘。
(2)两个数的尾数相乘,(不满十,十位添作0)
78×72=5616 37×33=1221 56×54= 3024 43×47= 2021
(7+1)×7=56 (3+1)×3=12 (5+1)×5=30 (4+1)×4=20
8×2=16 7×3=21 6×4=24 3×7=21
口决:头加1,头乘头,尾乘尾
2、两个数的个位相同,十位的两数则是相补的
如:36×76= 43×63= 53×53= 28×88= 79×39
(1)将两个数的首位相乘再加上未位数
(2)两个数的尾数相乘(不满十,十位添作0)
36×76=2736 43×63=2709
3×7+6=27 4×6+3=27
6×6=36 3×3=9
口决:头乘头加尾,尾乘尾
3、两位数的十位差1,个位的两数则是相补的。
如:48×52 12×28 39×11 48×32 96×84 75×65
即用较大的因数的十位数的平方,减去它的个位数的平方。
48×52=2496 12×28 = 336 39×11= 819 48×32=1536
2500-4=2496 400-64=336 900-81=819 1600-64=1536
口决:大数头平方—尾平方
4、一个乘数十位加个位是9,另一个乘数十位和个位是顺数
如:36 × 45 = 72 × 67 = 45 × 78 = 81 × 23 = 27 × 89 =
1、解: 3+1=4 4×4=16 5的补数是5
4×5=20 所以 36 × 45 = 1620
2、解: 7+1=8 8×6=48 7的补数是23
8×3=24 所以 72 × 67 = 4824
3、解: 4+1=5 5×7=35 8的补数是2
5×2=10 所以 45 × 78 = 3510
5、10-20的两位数乘法
如:12×13= 13×15= 14×15= 16×18= 17×19= 19×18=
(1)尾数相乘,写在个位上(满十进位)
(2)被乘数加上乘数的尾数
12×13=156 13×15= 195 14×15=210 16×18= 288
2×3=6 3×5=15 4×5=20 6×8=48
12+3=15 13+5=18 14+5=19 16+8=24
口决:尾数相乘,被乘数加上乘数的尾数(满十进位)
6、任何二位数数乘于11
如:15×11= 16×11= 88×11= 34×11= 59×11= 76×11=
(1)两数中间拉
(2)十位加个位(满十进位)
15×11= 165 88×11=968
1、5 两头拉 8、8 两头拉
1+5=6 十位加个位,写中间 8+8=16 写中间(满十进位)
尾乘尾,十位数加个位数,首乘首
7、99乘任意两位数
如:99×23= 99×57= 99×34= 99×68= 99×74=
(1)差多少减多少
(2)差多少就写多少(写在个位上)
99×23=2277 99×57= 5643 99×34=3366
100-23=77 100-57=43 100-34=66
99-77=22 99-43=56 99-66=33
8、任意两位数平方
如:23×23= 36×36= 42×42= 56×56= 78×78= 92×92=
(1)尾数的平方,写在个位上,(满十进位)
(2)首尾数相乘再扩大两倍,写在十位上,(满十进位)
(3)首数的平方
23×23= 529 36×36= 1296
3×3=9 写在个位上 6×6=36 写在个位上,满十进位
2×3=6×2=12 写在十位上,满十进位 3×6=18×2=36 写在十位上,满十进位
2×2=4 写在百位上,加上十位进的进位1为5 3×3=9 写在百位上,加上十位进的进位
口决:尾数的平方,首数乘尾数扩大2倍,首数的平方
9、大数的平方速算 (90--99)
94× 9 4=8836
(1)94与100相差为6
(2)差数6的平方36写在个位和十位上
(3)用94减去差数6为88写在百位和千位上
(4)把计算结果相连即为所求结果
10、十位和个位相反的数
如:32×23= 56×65= 73×37= 85×58= 41×14= 64×46=
(1)取一个数的头尾相乖,写在个位上(满十进位)
(2)头尾数的平方相加(满十进位)
(3)头乘尾
32×23=736 56×65= 3640
3×2=6 写在个位上 5×6=30 写在个位上 (满十进位)
3×3+2×2=13 写在十位上 5×5+6×6=61 写在十位 (满十进位)
3×2=6 写在百位上 5×6=30 写在百上
口决:头乘尾,头尾平方相加,头乘尾
11、任意两位数乘法
3 7
X 6 2
---------
2 2 9 4
(1)尾数相乘7X2=14(满十进位)
(2)对角相乘3X2=6;7X6=42,两积相加6+42=48(满十进位)8+1=9
(3)首数相乘3X6=18加上十位进上的4为18+4=22
(4)把计算结果相连即为所求结果
方法:尾数相乘,对角相乘再相加,首数相乘
㈢ 简便计算大全
一、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。适用于加法交换律和乘法交换律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
二、结合律
(一)加括号法
1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689
2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100
(二)去括号法
1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就 要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
1.分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2.提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
3.注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借来还去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆还要注意不要改变数的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000 125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900 综上所述,要教好简便计算,使学生达到计算的时候又快又对,不仅正确无误,方法还很合理、样式灵活的要求。首先要求教师熟知有关内容并绰绰有余,其次对教材还要像导演使用剧本一样,都有一个创造的过程,做探求教法的有心人。在练习设计上除了做到内容要精选,有层次,题形多样,还要有训练智力与非智力技能的价值。
㈣ 简便计算方法有哪些
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
乘法交换律:a*b=b*a
乘法结合律:a*b*c=a*(b*c)
乘法分配律:a(b+c)=ab+ac
综合算式(四则运算)应当注意的地方:
1、如果只有加和减或者只有乘和除,从左往右计算,例如:2+1-1=2,先算2+1的得数,2+1的得数再减1。
2、如果一级运算和二级运算,同时有,先算二级运算
3、如果一级,二级,三级运算(即乘方、开方和对数运算)同时有,先算三级运算再算其他两级。
4、如果有括号,要先算括号里的数(不管它是什么级的,都要先算)。
5、在括号里面,也要先算三级,然后到二级、一级。
(4)简便速算法大全扩展阅读:
从加法交换律和结合律可以得到:几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。
几个数的和减去一个数,可以选其中任一个加数减去这个数,再同其余的加数相加。几个数的积除以一个数,可以让积里的任何一个因数除以这个数,再与其他的因数相乘。
㈤ 四年级上册简便方法运算有哪些
简便计算方法:
1、在同级运算中,可以任意交换数字的位置,但要连着前面的符号一起交换。(加法或乘法交换律)
2 、在同级运算中,加号或乘号后面可以直接添括号,去括号。减号、除号后面添括号,去括号,括号里面的要变号。(加法或乘法结合律)
3、凑一法,凑十法,凑百法,凑千法:“前面凑九,末尾凑十”。
必记:25找4凑100,125找8凑1000 (凑整思想)。
简便运算算法
1、加法结合律
加法结合律为(a+b)+c=a+(b+c)。
例如,8+1+9=8+(1+9)=8+10=18
2、加法交换律
a+c=c+a。
例如,8+5=5+8=13。
3、乘法结合律
(axb)xc=ax(bxc)。
例如,3x2.5x4=3x(2.5x4)=3x10=30。
4、乘法分配律
(a+b)xc=axc+bxc。
㈥ 简便运算有哪些啊
简便计算方法:
1、基准数法
若干个都接近某数的数相加,可以把某数作为基准数,然后把基准数与相加的个数相乘,再加上各数与基准数的差,就可以得到计算结果。
例如:81+85+82+78+79
=80x5+(1+5+2-2-1)
=400+5
=405
2、拆分法
主要是拆开后的一些分数互相抵消,达到简化运算的目的,一般形如1/ax(a+1)的分数可以拆分成1/a-1/a+1。
例如:1/1x2+1/2x3+1/3x4+1/4x5+1/5x6
=1_1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6
=1-1/6
=5/6
简便运算的注意事项:
在进行简便运算,应注意运算符号(乘除和加减)和大、中、小括号之间的关连,不要越级运算,以免发生运算错误。
简便运算的相关定律
1、乘法分配律简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数,相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。
2、乘法结合律乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘。或先把后两个数相乘,再和第一个数相乘,积不变。
㈦ 简便计算方法
常用的简便算法有以下几种
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
例5
计算:16×25×25
因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
在本道题目中,利用第一种方法即可,也就是51乘以59加41的和再加上22乘以68加上32的和,等于5100加上2200等于6300
㈧ 巧算速算方法有哪些
巧算速算方法如下。
一、充分利用五大定律。
教师要扎实开展好现行教材四年级数学下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不同题型灵活选择简便方法正确而快捷地进行计算。
二、巧妙运用首同末合十。
利用首同末合十的方法来训练。首同末合十法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用首同末合十的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54x56=3024,81x89=7209。
三、留心左右两数合并法。
任意的两位数乘上99或任意的三位数乘上999的速算法叫做左右两数合并法。
1.任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62x99=6138,48x99=4752。
2.任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781x999=780219,396x999=395604。
四、利用分数与除法的关系来巧算。
在一个只有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。比如,24/18x36/12=(24/18)x(36/12)=24/18x36/12=4。
五、利用扩大缩小的规律进行简算。
有些除法计算题直接计算比较繁琐,而且容易算错,利用扩缩规律进行合理的变形可以找到简便的解决方法。比如,7/25=(7x4)/(25x4)=28/100=0.28,24/125=(24x8)/(125x8)=192/1000=0.192。
六、数字颠倒的两、三位数减法巧算。
形如73与37、185与581等的数称为数字颠倒的两、三位数,巧算方法如下。
1、数字颠倒的两位数减法,可用两位数字中的大数减去小数,再乘以9,积就是它们的差。如73-37=(7-3)x9=36,82-28=(8-2)x9=54。
2、数字颠倒的三位数减法,可用三位数中最大数减去最小数,再乘以9,乘积分两边,中间填上9,就是它们的差。比如,581-158=(8-1)x9=63,所以851-158=693。
㈨ 简便运算的技巧和方法有哪些
数学简便计算方法:
一、裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”。
(3)分母上几个因数间的差是一个定值。
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、去尾法
在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。
例题
2356-159-256
=2356-256-159
=2100-159
=1941
算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256,可使计算简便。
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
㈩ 乘法速算简便方法 简单实用的几种速算方法
1、十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=解: 1×1=1 2+4=6 2×4=8 12×14=168注:个位相乘,不够两位数要用0占位。
2、头相同,尾互补,尾相加等于10:口诀:一个头加1后,头乘头,尾乘尾。例:23×27=解:2+1=32×3=63×7=21 23×27=621注:个位相乘,不够两位数要用0占位。
3、第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=解:3+1=4 4×4=16 7×4=28 37×44=1628注:个位相乘,不够两位数要用0占位。
4、几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:21×41=解:2×4=8 2+4=6 1×1=1 21×41=861
5、11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分别在首尾 11×23125=254375 注:和满十要进一。
6、十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。例:13×326=解:13个位是3 3×3+2=11 3×2+6=12 3×6=18 13×326=4238 注:和满十要进一。