‘壹’ 二叉树的遍历算法
这里有二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法。
1.先序遍历非递归算法
#define
maxsize
100
typedef
struct
{
Bitree
Elem[maxsize];
int
top;
}SqStack;
void
PreOrderUnrec(Bitree
t)
{
SqStack
s;
StackInit(s);
p=t;
while
(p!=null
||
!StackEmpty(s))
{
while
(p!=null)
//遍历左子树
{
visite(p->data);
push(s,p);
p=p->lchild;
}//endwhile
if
(!StackEmpty(s))
//通过下一次循环中的内嵌while实现右子树遍历
{
p=pop(s);
p=p->rchild;
}//endif
}//endwhile
}//PreOrderUnrec
2.中序遍历非递归算法
#define
maxsize
100
typedef
struct
{
Bitree
Elem[maxsize];
int
top;
}SqStack;
void
InOrderUnrec(Bitree
t)
{
SqStack
s;
StackInit(s);
p=t;
while
(p!=null
||
!StackEmpty(s))
{
while
(p!=null)
//遍历左子树
{
push(s,p);
p=p->lchild;
}//endwhile
if
(!StackEmpty(s))
{
p=pop(s);
visite(p->data);
//访问根结点
p=p->rchild;
//通过下一次循环实现右子树遍历
}//endif
}//endwhile
}//InOrderUnrec
3.后序遍历非递归算法
#define
maxsize
100
typedef
enum{L,R}
tagtype;
typedef
struct
{
Bitree
ptr;
tagtype
tag;
}stacknode;
typedef
struct
{
stacknode
Elem[maxsize];
int
top;
}SqStack;
void
PostOrderUnrec(Bitree
t)
{
SqStack
s;
stacknode
x;
StackInit(s);
p=t;
do
{
while
(p!=null)
//遍历左子树
{
x.ptr
=
p;
x.tag
=
L;
//标记为左子树
push(s,x);
p=p->lchild;
}
while
(!StackEmpty(s)
&&
s.Elem[s.top].tag==R)
{
x
=
pop(s);
p
=
x.ptr;
visite(p->data);
//tag为R,表示右子树访问完毕,故访问根结点
}
if
(!StackEmpty(s))
{
s.Elem[s.top].tag
=R;
//遍历右子树
p=s.Elem[s.top].ptr->rchild;
}
}while
(!StackEmpty(s));
}//PostOrderUnrec
‘贰’ 请教一下数据结构 二叉树的先序遍历 中序遍历 后序遍历 是怎么弄的
所谓先序、中序和后序的区别在于访问根的时机,分别是BLR、LBR和LRB,其中B、L、R分别表示根结点、根结点的左子树和根结点的右子树。
以后序遍历为例进行讲解。
后序遍历算法:
(1) 后序遍历根结点的左子树;
(2) 后序遍历根结点的右子树。
(3) 访问二叉树的根结点;
你的方法是将树分解为根、左子树、右子树,再将子树继续按前述方法分解,直至每一部分只剩一个结点或空为止。
对该图,分解为
根(a),根的左子树(bde,不分先后),根的右子树(cf,不分先后)
故后序的基本顺序是(bde)、(cf)、(a)
同样的道理,对(bde)和(cf)也进行分解:
根(b)、左子树(d)、右子树(e) 后序的基本顺序是deb
根(c)、左子树(空)、右子树(f) 后序的基本顺序是fc
整合起来就是:d e b f c a
‘叁’ 树的前序遍历、中序遍历、后序遍历详解
对于当前节点,先输出该节点,然后输出他的左孩子,最后输出他的右孩子。以上图为例,递归的过程如下:
(1):输出 1,接着左孩子;
(2):输出 2,接着左孩子;
(3):输出 4,左孩子为空,再接着右孩子;
(4):输出 6,左孩子为空,再接着右孩子;
(5):输出 7,左右孩子都为空,此时 2 的左子树全部输出,2 的右子树为空,此时 1 的左子树全部输出,接着 1 的右子树;
(6):输出 3,接着左孩子;
(7):输出 5,左右孩子为空,此时 3 的左子树全部输出,3 的右子树为空,至此 1 的右子树全部输出,结束。
对于当前结点,先输出它的左孩子,然后输出该结点,最后输出它的右孩子。以上图为例:
(1):1-->2-->4,4 的左孩子为空,输出 4,接着右孩子;
(2):6 的左孩子为空,输出 6,接着右孩子;
(3):7 的左孩子为空,输出 7,右孩子也为空,此时 2 的左子树全部输出,输出 2,2 的右孩子为空,此时 1 的左子树全部输出,输出 1,接着 1 的右孩子;
(4):3-->5,5 左孩子为空,输出 5,右孩子也为空,此时 3 的左子树全部输出,而 3 的右孩子为空,至此 1 的右子树全部输出,结束。
对于当前结点,先输出它的左孩子,然后输出它的右孩子,最后输出该结点。依旧以上图为例:
(1):1->2->4->6->7,7 无左孩子,也无右孩子,输出 7,此时 6 无左孩子,而 6 的右子树也全部输出,输出 6,此时 4 无左子树,而 4 的右子树全部输出,输出 4,此时 2 的左子树全部输出,且 2 无右子树,输出 2,此时 1 的左子树全部输出,接着转向右子树;
(2):3->5,5 无左孩子,也无右孩子,输出 5,此时 3 的左子树全部输出,且 3 无右孩子,输出 3,此时 1 的右子树全部输出,输出 1,结束。
已知:
前序遍历: GDAFEMHZ
中序遍历: ADEFGHMZ
求后序遍历
首先,要先画出这棵二叉树,怎么画呢?根据上面说的我们一步一步来……
1.先看前序遍历,前序遍历第一个一定是根节点,那么我们可以知道,这棵树的根节点是G,接着,我们看中序遍历中,根节点一定是在中间访问的,那么既然知道了G是根节点,则在中序遍历中找到G的位置,G的左边一定就是这棵树的左子树,G的右边就是这棵树的右子树了。
2.我们根据第一步的分析,大致应该知道左子树节点有:ADEF,右子树的节点有:HMZ。同时,这个也分别是左子树和右子树的中序遍历的序列。
3.在前序遍历遍历完根节点后,接着执行前序遍历左子树,注意,是前序遍历,什么意思?就是把左子树当成一棵独立的树,执行前序遍历,同样先访问左子树的根,由此可以得到,左子树的根是D,第2步我们已经知道左子树是ADEF了,那么在这一步得到左子树的根是D,请看第4步。
4.从第2步得到的中序遍历的节点序列中,找到D,发现D左边只有一个A,说明D的左子树只有一个叶子节点,D的右边呢?我们可以得到D的右子树有EF,再看前序遍历的序列,发现F在前,也就是说,F是先前序遍历访问的,则得到E是F的左子树,只有一个叶子节点。
5.到这里,我们可以得到这棵树的根节点和左子树的结构了。如下图:
6.接着看右子树,在第2步的右子树中序遍历序列中,右子树是HMZ三个节点,那么先看前序遍历的序列,先出现的是M,那么M就是右子树的根节点,刚好,HZ在M的左右,分别是它的左子树和右子树,因此,右子树的结构就出来了:
7.到这里,我们可以得到整棵树的结构:
中序遍历:ADEFGHMZ
后序遍历:AEFDHZMG
1..根据后序遍历的特点(左右中),根节点在结尾,确定G是根节点。根据中序遍历的特点(左中右),确定ADEF组成左子树,HMZ组成右子树。
2.分析左子树。ADEF这四个元素在后序遍历(左右中)中的顺序是AEFD,在中序遍历(左中右)中的顺序是ADEF。根据后序遍历(左右中)的特点确定D是左子树的节点,根据中序遍历(左中右)的特点发现A在D前面,所以A是左子树的左叶子,EF则是左子树的右分枝。
EF在后序(左右中)和中序(左中右)的相对位置是一样的,所以EF关系是左右或者左中,排除左右关系(缺乏节点),所以EF关系是左中。
到此得出左子树的形状
3.分析右子树。HMZ这三个元素在中序遍历(左中右)的顺序是HMZ,在后序遍历(左右中)的顺序是HZM。根据后序遍历(左右中)的特点,M在尾部,即M是右子树的节点。再根据中序遍历(左中右)的特点,确定H(M的前面)是右子树的左叶子,Z(M的后面)是右子树的右叶子。
所以右子树的形状
‘肆’ 已知二叉树的中序遍历是DBEAFC.前序遍历是ABDECF.后序遍历怎么算
1、首先声明一个静态二叉树节点类,通过该类对象,可以构建一棵二叉树结构。
‘伍’ 树的后序遍历具体什么意思呢
树的后序遍历是指先依次后序遍历每棵子树,然后访问根结点。当树用二叉树表示法(也叫孩子兄弟表示法)存储时,可以找到唯一的一棵二叉树与之对应,我们称这棵二叉树为该树对应的二叉树。那么根据这个法则可知,树的后序遍历序列等同于该树对应的二叉树的中序遍历。
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上。
⑴访问结点本身(N),
⑵遍历该结点的左子树(L),
⑶遍历该结点的右子树(R)。
以上三种操作有六种执行次序:
NLR、LNR、LRN、NRL、RNL、RLN。
注意:
前三种次序与后三种次序对称,故只讨论先左后右的前三种次序。
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上。
(5)树的后跟序遍历迭代算法扩展阅读:
二叉树前序访问如下:
从根结点出发,则第一次到达结点A,故输出A;
继续向左访问,第一次访问结点B,故输出B;
按照同样规则,输出D,输出H;
当到达叶子结点H,返回到D,此时已经是第二次到达D,故不在输出D,进而向D右子树访问,D右子树不为空,则访问至I,第一次到达I,则输出I;
I为叶子结点,则返回到D,D左右子树已经访问完毕,则返回到B,进而到B右子树,第一次到达E,故输出E;
向E左子树,故输出J;
按照同样的访问规则,继续输出C、F、G。
二叉树中序访问如下:
从根结点出发,则第一次到达结点A,不输出A,继续向左访问,第一次访问结点B,不输出B;继续到达D,H;
到达H,H左子树为空,则返回到H,此时第二次访问H,故输出H;
H右子树为空,则返回至D,此时第二次到达D,故输出D;
由D返回至B,第二次到达B,故输出B;
按照同样规则继续访问,输出J、E、A、F、C、G。
‘陆’ 先序遍历和后序遍历是什么
1、先序遍历也叫做先根遍历、前序遍历,可记做根左右(二叉树父结点向下先左后右)。
首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树,如果二叉树为空则返回。
例如,下图所示二叉树的遍历结果是:ABDECF
(1)后序遍历左子树
(2)后序遍历右子树
(3)访问根结点
如右图所示二叉树
后序遍历结果:DEBFCA
已知前序遍历和中序遍历,就能确定后序遍历。
(6)树的后跟序遍历迭代算法扩展阅读:
图的遍历算法主要有两种,
一种是按照深度优先的顺序展开遍历的算法,也就是深度优先遍历;
另一种是按照宽度优先的顺序展开遍历的算法,也就是宽度优先遍历。宽度优先遍历是沿着图的深度遍历图的所有节点,每次遍历都会沿着当前节点的邻接点遍历,直到所有点全部遍历完成。
如果当前节点的所有邻接点都遍历过了,则回溯到上一个节点,重复这一过程一直到已访问从源节点可达的所有节点为止。
如果还存在没有被访问的节点,则选择其中一个节点作为源节点并重复以上过程,直到所有节点都被访问为止。
利用图的深度优先搜索可以获得很多额外的信息,也可以解决很多图论的问题。宽度优先遍历又名广度优先遍历。通过沿着图的宽度遍历图的节点,如果所有节点均被访问,算法随即终止。宽度优先遍历的实现一般需要一个队列来辅助完成。
宽度优先遍历和深度优先遍历一样也是一种盲目的遍历方法。也就是说,宽度遍历算法并不使用经验法则算法, 并不考虑结果的可能地址,只是彻底地遍历整张图,直到找到结果为止。图的遍历问题分为四类:
1、遍历完所有的边而不能有重复,即所谓“欧拉路径问题”(又名一笔画问题);
2、遍历完所有的顶点而没有重复,即所谓“哈密顿路径问题”。
3、遍历完所有的边而可以有重复,即所谓“中国邮递员问题”;
4、遍历完所有的顶点而可以重复,即所谓“旅行推销员问题”。
对于第一和第三类问题已经得到了完满的解决,而第二和第四类问题则只得到了部分解决。第一类问题就是研究所谓的欧拉图的性质,而第二类问题则是研究所谓的哈密顿图的性质。
‘柒’ 用递归算法先序中序后序遍历二叉树
1、先序
void PreOrderTraversal(BinTree BT)
{
if( BT )
{
printf(“%d ”, BT->Data); //对节点做些访问比如打印
PreOrderTraversal(BT->Left); //访问左儿子
PreOrderTraversal(BT->Right); //访问右儿子
}
}
2、中序
void InOrderTraversal(BinTree BT)
{
if(BT)
{
InOrderTraversal(BT->Left);
printf("%d ", BT->Data);
InOrderTraversal(BT->Right);
}
}
3、后序
void PostOrderTraversal(BinTree BT)
{
if (BT)
{
PostOrderTraversal(BT->Left);
PostOrderTraversal(BT->Right);
printf("%d ", BT->Data);
}
}
注意事项
1、前序遍历
从整棵二叉树的根结点开始,对于任意结点VV,访问结点VV并将结点VV入栈,并判断结点VV的左子结点LL是否为空。若LL不为空,则将LL置为当前结点VV;若LL为空,则取出栈顶结点,并将栈顶结点的右子结点置为当前结点VV。
2、中序遍历
从整棵二叉树的根结点开始,对于任一结点VV,判断其左子结点LL是否为空。若LL不为空,则将VV入栈并将L置为当前结点VV;若LL为空,则取出栈顶结点并访问该栈顶结点,然后将其右子结点置为当前结点VV。重复上述操作,直到当前结点V为空结点且栈为空,遍历结束。
3、后序遍历
将整棵二叉树的根结点入栈,取栈顶结点VV,若VV不存在左子结点和右子结点,或VV存在左子结点或右子结点,但其左子结点和右子结点都被访问过了,则访问结点VV,并将VV从栈中弹出。若非上述两种情况,则将VV的右子结点和左子结点依次入栈。重复上述操作,直到栈为空,遍历结束。
‘捌’ 知道一棵树的中序遍历和后序遍历,如何推算出这颗树的前序遍历
树中已知先序和中序求后序。
如先序为:abdc,中序为:bdac .
则程序可以求出后序为:dbca 。此种题型也为数据结构常考题型。
算法思想:先序遍历树的规则为中左右,则说明第一个元素必为树的根节点,比如上例
中的a就为根节点,由于中序遍历为:左中右,再根据根节点a,我们就可以知道,左子树包含
元素为:db,右子树包含元素:c,再把后序进行分解为db和c(根被消去了),然后递归的
进行左子树的求解(左子树的中序为:db,后序为:db),递归的进行右子树的求解(即右
子树的中序为:c,后序为:c)。如此递归到没有左右子树为止。
关于“已知先序和后序求中序”的思考:该问题不可解,因为对于先序和后序不能唯一的确定
中序,比如先序为 ab,后序为ba,我只能知道根节点为a,而并不能知道b是左子树还是右子树
,由此可见该问题不可解。当然也可以构造符合中序要求的所有序列。
2004.12.5
*/
#include <stdio.h>
int find(char c,char A[],int s,int e) /**//* 找出中序中根的位置。 */
{
int i;
for(i=s;i<=e;i++)
if(A[i]==c) return i;
}
/**//* 其中pre[]表示先序序,pre_s为先序的起始位置,pre_e为先序的终止位置。 */
/**//* 其中in[]表示中序,in_s为中序的起始位置,in_e为中序的终止位置。 */
/**//* pronum()求出pre[pre_s~pre_e]、in[in_s~in_e]构成的后序序列。 */
void pronum(char pre[],int pre_s,int pre_e,char in[],int in_s,int in_e)
{
char c;
int k;
if(in_s>in_e) return ; /**//* 非法子树,完成。 */
if(in_s==in_e){printf("%c",in[in_s]); /**//* 子树子仅为一个节点时直接输出并完成。 */<br/> return ;<br/> }
c=pre[pre_s]; /**//* c储存根节点。 */
k=find(c,in,in_s,in_e); /**//* 在中序中找出根节点的位置。 */
pronum(pre,pre_s+1,pre_s+k-in_s,in,in_s,k-1); /**//* 递归求解分割的左子树。 */
pronum(pre,pre_s+k-in_s+1,pre_e,in,k+1,in_e); /**//* 递归求解分割的右子树。 */
printf("%c",c); /**//* 根节点输出。 */
}
main()
{
char pre[]="abdc";
char in[]="bdac";
printf("The result:");
pronum(pre,0,strlen(in)-1,in,0,strlen(pre)-1);
getch();
}
//..
已知二叉树的先序和中序求后序-转贴自CSDN
二叉树的根结点(根据三种遍历)只可能在左右(子树)之间,或这左子树的左边,或右子树的右边。
如果已知先序和中序(如果是中序和后序已知也可以,注意:如果是前序和后序的求中序是不可能实现的),先确定这棵二叉树。
步骤:1,初始化两个数组,存放先序合中序。
2,对比先序和中序,在中序忠查找先序的第一个元素,则在中序遍历中将这个元素的左右各元素分成两部分。即的左边的部分都在这个元素的左子树中,右边的部分都在右子树中。
3,然后从从先序的第二个元素开始继续上面的步骤。
如 先序:1 2 3 4 5 6 7 8 9 10 11
后序:3 2 5 4 1 7 9 8 11 10 6
level 1: 1
2: 2 3
3: 3 4 7
4: 5 8
5: 9 10
6: 11
这
‘玖’ 已知一颗二叉树的后序遍历序列和中序遍历序列确定二叉树算法
1. 依据后序遍历序列的最后一个元素确定根结点T
2. 在中序序列中找到1中确定的根节点,其左边的序列L为根结点的左子树结点集合,其右边的序列R为根结点右子树结点集合。
3. 将L看做一棵树的序列集合重复1,得到左子树的根结点,将R看做一棵树的序列集合重复1得到右子树的根结点。这两个结点即为T的左结点和右结点。
4. 将L看做一棵树的序列集合重复2得到L子树的左子树和右子树,将R看做一棵树的序列集合重复2得到R子树的左子树和右子树
5. 对得到的子树序列重复3,4直到产生的子树序列都为空为止
‘拾’ 什么是先、中、后根遍历什么是左子树、右子树和二叉树
1、先根遍历一般是先序遍历(Pre-order),按照根左右的顺序沿一定路径经过路径上所有的结点。在二叉树中,先根后左再右。巧记:根左右。
首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树,如果二叉树为空则返回。
例如,下图所示二叉树的先根遍历结果是:ABDECF
6、二叉树
在计算机科学中,二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。