㈠ 数学算法的问题及十大算法是什么
LS,不是C吧,是数学啊算法框图好,具体的需要语法的可以自己写下,稍等(画图中……)
㈡ 学会机器学习十大算法 什么水平
学习机器学习十大算法,相当于电脑的中级水平。
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。
一,数据对象的运算和操作:计算机可以执行的基本操作是以指令的形式描述的。一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类:[1]
1,算术运算:加减乘除等运算
2,逻辑运算:或、且、非等运算
3,关系运算:大于、小于、等于、不等于等运算
4,数据传输:输入、输出、赋值等运算[1]
二,算法的控制结构:一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。[
㈢ 机器学习十大算法 是哪些 知乎
决策树
随机森林算法
逻辑回归
SVM
朴素贝叶斯
K最近邻算法
K均值算法
Adaboost 算法
神经网络
马尔可夫
㈣ 求计算机专业中的十大算法。。。qq827316329.。。。
不得不说,算法没有“十大”之类的东西的,不过的确有人对此进行过评选
《来自圣经的证明》收集了数十个简洁而优雅的数学证明,迅速赢得了大批数学爱好者的追捧。如果还有一本《来自圣经的算法》,哪些算法会列入其中呢?最近,有人在 StackExchange 上发起了提问,向网友们征集那些来自圣经的算法。众人在一大堆入围算法中进行投票,最终得出了呼声最高的五个算法:
第五名: BFPRT 算法
1973 年, Blum 、 Floyd 、 Pratt 、 Rivest 、 Tarjan 集体出动,合写了一篇题为 “Time bounds for selection” 的论文,给出了一种在数组中选出第 k 大元素的算法,俗称"中位数之中位数算法"。依靠一种精心设计的 pivot 选取方法,该算法从理论上保证了最坏情形下的线性时间复杂度,打败了平均线性、最坏 O(n^2) 复杂度的传统算法。一群大牛把递归算法的复杂度分析玩弄于骨掌股掌之间,构造出了一个当之无愧的来自圣经的算法。
第四名:快速排序
快速排序算法是 1960 年由英国计算机科学家 C.A.R. Hoare 发明的,是一种既高效又简洁的排序方法,现在已是学习算法的必修内容之一。快速排序的思想并不复杂,妙就妙在那个线性的数据分割过程,而真正最牛 B 的则是对整个算法的时间复杂度分析。我曾写过一个快速排序平均 O(n log n) 的证明,分析过程绝对值得欣赏。
第三名:并查集
严格地说,并查集是一种数据结构,它专门用来处理集合的合并操作和查询操作。并查集巧妙地借用了树结构,使得编程复杂度降低到了令人难以置信的地步;用上一些递归技巧后,各种操作几乎都能用两行代码搞定。而路径压缩的好主意,更是整个数据结构的画龙点睛之笔。并查集的效率极高,单次操作的时间复杂度几乎可以看作是常数级别;但由于数据结构的实际行为难以预测,精确的时间复杂度分析需要用到不少高深的技巧。
第二名: KMP 算法
KMP 算法是一种非常有效的字符串匹配算法,它告诉了人们一个有些反直觉的事实:字符串匹配竟然能在线性时间里完成!整个算法写成代码不足 10 行,但其中蕴含的天才般的奇妙思想让算法初学者们望而却步,而它的复杂度分析则更是堪称经典。
第一名:辗转相除法
辗转相除法是 Euclid 的《几何原本》中提到的一种寻找两个数的最大公因数的算法。无论是简洁的算法过程,还是深刻的算法原理,抑或是巧妙的复杂度分析,都称得上是来自圣经的算法。而扩展的辗转相除法则构造性地证明了,对任意整数 a 和 b ,存在一对 x 、 y 使得 ax + by = gcd(a, b) 。这一结论的普遍性和实用性让它成为了数论中的基本定理之一,在很多数学问题中都能看到它的身影。
㈤ 求,数学建模十大算法
数学建模的十大算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,
同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,
而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,
很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,
涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,
很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法
(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,
但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,
当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,
因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比
如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,
这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)
㈥ 数学建模的十大算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,
同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,
而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,
很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,
涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法
(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,
但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,
当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比
如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,
这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)
㈦ 计算机十大经典算法有哪些
再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,逆着这个行进方向,从终点向始点计算,在选定系统行进方向之后,常比线性规划法更为有效,由每个阶段都作出决策,从而使整个过程达到最优化。所谓多阶段决策过程,特别是对于那些离散型问题。实际上,动态规划法就是分多阶段进行决策,其基本思路是,原问题的解即子问题的解的合并
不好意思啊,就是把研究问题分成若干个相互联系的阶段,逐次对每个阶段寻找某种决策,用来解决多阶段决策过程问题的一种最优化方法,就是把一个复杂的问题分成两个或更多的相同或相似的子问题:按时空特点将复杂问题划分为相互联系的若干个阶段。字面上的解释是“分而治之”动态规划法[dynamic
programming
method
(dp)]是系统分析中一种常用的方法。在水资源规划中,往往涉及到地表水库调度、水资源量的合理分配、优化调度等问题,而这些问题又可概化为多阶段决策过程问题。动态规划法是解决此类问题的有效方法。动态规划法是20世纪50年代由贝尔曼(r,使整个过程达到最优.
bellman)等人提出。许多实际问题利用动态规划法处理,故又称为逆序决策过程。
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
在计算机科学中,分治法是一种很重要的算法
㈧ 十大数据挖掘算法中时间复杂度哪个最高
我们一般用时间复杂度和空间复杂度来比较算法的优劣
时间复杂度的定义是当数据规模为n的时候时间的几何增长函数程度(不包括系数)
一般而言
O(log2n)优于O(n)优于O(nlog2n)优于O(n^2)......
㈨ 数据挖掘十大算法 pdf
http://www.cs.uvm.e/~icdm/algorithms/10Algorithms-08.pdf
到这个网站下载就OK