① 简单开根号的详细步骤
开平方法的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开分成几段,表示所求平方根是几位数。
2.根据左边第一段里的数,求得平方根的最高位上的数。
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商。
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试。
6.用同样的方法,继续求平方根的其他各位上的数。
(1)开根号算法扩展阅读
开平方的理论依据:
开平方是平方的逆运算,只要我们知道平方的计算方法,开平方就迎刃而解了。
我们令10位数值为A,个位数值为B,即为A*10+B,根据二数和的平方有:(Ax10+B)^2=(Ax10)^2+2(Ax10)xB+B^2=(A^2)x100+(20A+B)xB。
举例说明:例359^2计算方法
1、3^2=9,
2、(20x3+5)x5=325,
3、(20*35+9)*9=6381,
4、将这些数,按两位分节合起来:90000+32500+6381=128881。得359^2=128881。
将这些计算步骤倒过来,就是开平方。同理,可以得开立方及N次方的方法。
② 如何计算开根号
手工开根号法,只适用于任何一个整数或者有限小数开二次方.
因为网上写不出样式复杂的计算式,所以只能尽量书写,然后通过口述来解释:
假设一个整数1456456,开根号首先要从个位开始,每两位数做个标记,这里用'表示,那么标记后变成1'45'64'56.然后根据你要开的小数位数在小数点后补0,这里的举例开到整,则补2个0,(原因等明白该做法后自会理解),解法如下:
解法中需要说明的几个问题:
1,算式中的....没有意义,是因为网上无法排版,为了能把版式排得整齐点而加上的
2,为了区别小数点,所以小数点用。表示,而所有的.都是为了排版需要
3、除了1'45'64'56中的'有特殊意义,在解题中有用处外,其他的'都是为了排版和对起位置,说明数字来源而加的,取消没有任何影响
...........1..2..0..6。8
.........-----------------------
.....1../..1'45'64'56.00........(1)
.............1
............--------
.......22..|.45.................(2)
..............44
..............--------
........240.|.1'64..............(3)
....................0
...............---------
.......2406.|.1'64'56...........(4)
..................1'44'36
.................-----------
........24128.|.20'20'00........(5)
....................19'29'74
..................----------
.......................10'26
其中第(1)步的意思是对左起第一个'号前的数字进行开方,即本题中的1进行开方.并将数字写在上面.
第(2)步的意思是将第二个'号和第一个'号之间的数字,即45,写下来作为被除数,把上一步已经得到并写在上面的数字1乘以20作为除数的一部分,另一部分就得通过判断,得到一个数字a,使得除数为(1*20+a),同时商也为a,本步骤中,判断得到a应为2,所以除数是22,而2作为商写到了上面,1的右边.
第(3)步,把上一步除法计算的余数1移下来,同时把第三个'号和第二个'号之间的数字64也移下来,组成数字164作为被除数,然后重复上面的方法,把之前写到上面的数字12乘以20再加上一个可以作为本步骤的商的数字,组成除数.因为经过判断,本步骤只有0符合条件,所以除数是240,而商是0写到上面,164作为余数向下移.
第(4)步,如果前面能看懂的话,这一步其实只是前面的重复,把164和56都移下来组成被除数16456,然后120乘以20再加上6组成除数,同时6本身就是商,得到余数2020.
第(5)步依然是重复,需要特殊说明的是,对于小数点后面的数字,用0补位数就可以了,依然是两位加个'号,做法不变.
上面就是基本步骤了,总结起来就是先分位数,然后对第一个分位数字进行开方,如果有余数就想下移,和第二个分位组成被除数.而除数是之前已经得到的商乘以20加上某数字组成,而这个数字要在这个步骤中作为商出现的,所以这个数字是0-9中的哪个数字,得进行心算或口算来判断,得到余数再下移,一直重复到得到答案.
其中还要说明的是每一步得到的余数一定不能比除数大,也不能小于0,不然是无效的,说明选择做商的数字是不对的.
在中学阶段,涉及开平方的计算,一是查数学用表,一是利用计算器。而在解题时用的最多的是利用分解质因数来解决。如化简√1024,因为1024=2^10,所以。
√1024=2^5=32;又如√1256=√(2^3*157)=2*√(2*157)=2√314.
如果想用笔算求算术平方根,在初二代数中讲完平方根后,有一个附录,讲得很详细。以下的介绍不知能否讲清楚:
比如求√37625.(如图)
①将37625从个位起,向左每两位分一节:3,76,25
②找一个最大的数,使它的平方不大于第一节的数字,本题中得1(1的平方为1,而2的平方为4,大于3,所以得1).把1写在竖式中3的上方。
③将刚才所得的1平方写在竖式中3的下方,并相减,然后将76移写在本行(如图)
④将前面所得的1乘20,再加一个数a,写在竖式的左方(如图),并同时把a写在竖式的上方对准6。而这个所谓的a,是需要试验的,使它与(20+a)的积最大且不超过276.本题中所得的a为9
⑤用9乘29,再用276减去,所得的差写在下方
⑥继续反复运用步骤④和⑤。如果后面的数字不足,则补两个0,继续运算。如果最后的余数是0,则该数的算术平方根是有理数;如果被开方数是小数,小数部分在分节的时候是从十分位起,每两位小数分一节。
③ 数学开根号怎么算
方法分类如下:
1.完全平方数
把任何含完全平方数的根式化简。完全平方数是一个数乘以自己得到的数,比如81就是9*9得到的。要简化,直接去掉根号,换成平方根数即可。
比如121就是完全平方数, 11 x 11= 121 你可直接把根号移掉,写成11就可。要想更简单点,你要记住下面的头十二个数的完全平方数:1 x 1 = 1, 2 x 2 = 4, 3 x 3 = 9, 4 x 4 = 16, 5 x 5 = 25, 6 x 6 = 36, 7 x 7 = 49, 8 x 8 = 64, 9 x 9 = 81, 10 x 10 = 100, 11 x 11 = 121, 12 x 12 = 144。
2.完全立方数
把任何含完全立方数的根式化简。完全立方数是一个数连续两次乘以自己而得到的数,比如27就是3*3*3得到的。要简化,直接去掉根号,换成立方根数即可。比如 512 就是完全立方数,因为8 x 8 x 8=512。 因此512的立方根就是8。
3.不能完全化简的根式
(1)把被开方数拆成自己的乘数。乘数是相乘得到目标数的数字。比如5、4是20的一对乘数,要把不能完全化简的根式中的数拆分成所有可能的乘数组合(太大的话就尽量多想),直到有完全平方数为止。
比如试着把所有的45乘数列出: 1, 3, 5, 9, 15, 和 45。 9 是一个乘数 ,亦是一个完全平方数。 9 x 5 = 45。
(2)把任何是完全平方数的乘数移出来。9是完全平方数(3*3),就把3提出来,根号里保留5。如果要把3放回去,就求平方得9再和5相乘得45。3根号5是根号45的简化说法。
4.含有变量的根式
(1)找出完全平方式。a的二次方的平方根就是 a, a的三次方的平方根就是 a乘以根号 a。因为你加了个指数,用根号a乘以a就相当于根号下的a的三次方。因此这里的完全平方数就是“a”的平方。
④ 开根号怎么计算
这个主要是自己记住多少的平方或n次方等于里面的数,例如对4开平方就得2,因为2的平方是4,对27开3次方是3,因为3的3次方是27,这个都是要靠做题多了才能熟练的
⑤ 计算机怎么计算开根号
计算机算开根的话,那么上面就有开根符号的,先输入数字,然后再点击开根号的标志就可以了。
⑥ 开根号的计算法
开平方根,如图
⑦ 开根号的计算方法是什么
开根号就像求一个数的几次方的反义词一样,比如3的2次方是9,那么9开根号2就是3。
在中学阶段,涉及开平方的计算,一是查数学用表,一是利用计算器。而在解题时用的最多的是利用分解质因数来解决。如化简√1024,因为1024=2^10,所以。
√1024=2^5=32;又如√1256=√(2^3*157)=2*√(2*157)=2√314.
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
(7)开根号算法扩展阅读:
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。
指求一个数的方根的运算,为乘方的逆运算。数a的n(n为自然数)次方根指的是n方幂等于a的数,也就是适合b的n次方=a的数b。