⑴ 递归,分治算法,动态规划和贪心选择的区别
递归,简单的重复,计算量大。 分治,解决问题独立,分开计算,如其名。 动态规划算法通常以自底向上的方式解各子问题, 贪心算法则通常以自顶向下的方式进行; 动态规划能求出问题的最优解,贪心不能保证求出问题的最优解
⑵ 分治算法时间复杂度
一:分治算法和递归
1.简述递归
我们要讲到分治算法,我觉得有必要说一下递归,他们就像一对孪生兄弟,经常同时应用在算法设计中,并由此产生许多高效的算法。
直接或间接的调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。
int fibonacci(int n){
if (n <= 1) return 1;
return fibonacci(n-1)+fibonacci(n-2);
}
先简单看一下经典的递归例子,博主会找个时间系统详细的总结一下关于递归的内容。
2.简述分治
分治法的设计思想是:
分–将问题分解为规模更小的子问题;
治–将这些规模更小的子问题逐个击破;
合–将已解决的子问题合并,最终得出“母”问题的解;
一个先自顶向下,再自底向上的过程。
凡治众如治寡,分数是也。—孙子兵法
3.分治法与递归的联系
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。
二:分治法的适用条件
分治法所能解决的问题一般具有以下几个特征:
1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、
第三条是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好
三:分治法的基本步骤
分解问题:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;(自顶向下)
这里涉及到一个平衡子问题的思想:人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡子问题的思想,它几乎总是比子问题规模不等的做法要好。
解决问题:如果问题规模较小而容易被解决则直接解,否则递归地解各个子问题,以得到小问题的解。
合并结果:将各个子问题的解合并为原问题的解:(自底向上)。
它的一般算法设计模式如下:
divide-and-conquer(P){
if ( | P | <= n0) adhoc(P); //(2)解决问题:递归到小问题,则解决小规模的问题(自顶向下)
divide P into smaller subinstances P1,P2,...,Pk;//(1)分解问题
for (i=1,i<=k,i++)
yi=divide-and-conquer(Pi); //利用递归的解各子问题
return merge(y1,...,yk); //将各子问题的解合并为原问题的解(自底向上)
}
四:分治法的复杂性分析
从分治法的一般设计模式可以看出,用他设计出的程序一般是递归算法。因此分治法的计算效率通常可以用递归方程来进行分析。
一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值(表示当问题P规模不超过n0时,问题已容易解出,不必再继续分解)n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:
通常可以用展开递归式的方法来解这类递归方程,反复带入求解得
⑶ 比较“分治法”和“动态规划法”的异同点和优缺点
共同点:
将待求解的问题分解成若干子问题,先求解子问题,然后再从这些子问题的解得到原问题的解。
不同点:
1、适合于用动态规划法求解的问题,分解得到的各子问题往往不是相互独立的;
而分治法中子问题相互独立。
2、动态规划法用表保存已求解过的子问题的解,再次碰到同样的子问题时不必重新求解,而只需查询答案,故可获得多项式级时间复杂度,效率较高;
而分治法中对于每次出现的子问题均求解,导致同样的子问题被反复求解,故产生指数增长的时间复杂度,效率较低。
⑷ 动态规划算法的基本思想
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题。
拓展资料:
动态规划的实质是分治思想和解决冗余,因此动态规划是一种将问题实例分析为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略
动态规划所针对的问题有一个显着的特征,即它对应的子问题树中的子问题呈现大量的重复。动态规划的关键在于,对于重复的子问题,只在第一次遇到时求解,并把答案保存起来,让以后再遇到时直接引用,不必要重新求解。