导航:首页 > 源码编译 > 钢水碳氧积算法

钢水碳氧积算法

发布时间:2022-12-12 05:10:36

‘壹’ 碳氧积怎么计算

积碳是发动机在工作过程中,燃油中不饱和烯烃和胶质在高温状态下产生的一种焦着状的物质。积碳在电火花加工中是应该尽量避免发生的事,特别在精密模具加工会是致命的影响。如果积碳已经导致故障,例如怠速抖动、启动困难,怠速高,尾气超标等问题,就必须清洗。常规车辆也必须每半年或者1万公里清洗一次积碳。清洗可以用一些免拆清洗剂,例如车贝尔燃油系统在以往,各式清洁剂尚未问世时,清除积碳唯一的方式是分解引擎,不过以往多数车辆仍配置对于喷油量大而化之的化油器,只要积碳不严重到妨害汽门的运作,引擎受积碳的影响并不明显,所以专为清除积碳而分解引擎的情形并不多。随着各国汽车废气排放标准的日趋严苛,化油器逐渐被喷油量较精准的喷射供油系统所取代。喷油系统对喷油量的控制较精准,油气被积碳吸收会严重影响引擎的动力表现,甚至让喷油系统无法运作。所以清除进汽门以及燃烧室的积碳对于喷射供油引擎而言是保养项目的一部份。

加注高质量的汽油。

汽油中的蜡和胶质等不纯物是形成积碳的主要成分,所以清洁度高的汽油形成积碳的趋势就弱一些。不幸的是,目前我国的汽油质量与发达国家相比还较低,只能因陋就简。大家要注意高标号并不等于高质量,也就是说97号的油并不一定比93号的杂质就少,标号只代表油的辛烷值,并不能代表品质和清洁程度。

一些车主为了保证汽油的清洁度,会采用在汽油里添加汽油清洁剂的做法。这样可有效地防止在金属表面形成积碳结层,并能逐渐活化原有的积碳颗粒慢慢去除,从而保护发动机免受伤害。不过汽油清洁剂的添加一定要慎重,如果加入了伪劣的产品会得到相反的效果。

不要长时间怠速行驶

怠速时间长,发动机达到正常温度的时间也就变长,汽油被喷到气门背面后蒸发的速度就慢,积碳也由此而生。同时经常怠速行驶,进入发动机的空气流量也就小,这样对积碳的冲刷作用变得也很弱,会促进积碳的沉积。

多跑高速,尽量提高手挡车的换挡转速

多跑高速的目的就是要利用气流对进气道的冲刷作用来预防产生积碳。另外,提高换挡的转速也与多跑高速有着异曲同工之妙,把原来在转速2000时换挡变成2500转换,不但可以有效预防积碳生成,还可以提高汽车的动力性,也避免了换挡转速过低带来的爆振,保护发动机。碳无敌。

‘贰’ 何为热平衡计算法炼钢电炉的

热平衡计算法主要以电炉熔化期的吹氧助熔引起的碳氧反 应和废钢中的含油脂燃烧,以及从炉门等处进入的空气为基准。 热平衡计算法是在某些假设的前提下进行的。无锡东方环境东方环保是从事冶金行业高温烟气及二次能源的咨询、规划、治理的系统集成商。拥有住建部甲级设计资质,承接负能除尘、冶金烟气治理除尘、冶金余热回收利用、炼钢余热梯级利用和余热发电等余热综合利用工程,生产袋式除尘器和脉冲除尘器及烟气捕集装置。承包转炉一次烟气全干法余热回收除尘工程、冶金余热发电及除尘工程、进行环保设施运营管理。

‘叁’ 影响钢水氧含量的因素有哪些

吹炼终点钢水氧含量也称为钢水的氧化性。钢水氧化性对钢的质量、合金吸收率
以及对沸腾钢的脱氧,都有重要的影响。
影响钢水氧含量的因素主要有:(D钢中氧含量主要受碳含量控制。碳含量高,氧含量就低;碳含量低时,氧含量相应就高;它们服从碳-氧平衡规律。(2)钢水中的余锰含量也影响钢中氧含量。在<0.1%时,锰对氧化性的影响比较
明显,余锰含量高,钢中氧含量会降低。(3)钢水温度高,增加钢水的氧含量。(4)操作工艺对钢水的氧含量也有影响。例如高枪位,或低氧压,熔池搅拌减弱,将增
加钢水的氧含量,当<0.15%时,进行补吹会增加钢水氧含量;拉碳前,加铁矿石或氧化
铁皮等调温剂,也会增加钢水氧含量。因此,钢水要获得正常的氧含量,首先应该稳定吹炼操作。

‘肆’ 炼钢专业毕业论文 加急!!!

引言
随着现代科学技术的发展和工农业对钢材质量要求的提高,钢厂普遍采用了炉外精炼工艺流程,它已成为现代炼钢工艺中不可缺少的重要环节。由于这种技术可以提高炼钢设备的生产能力,改善钢材质量,降低能耗,减少耐材、能源和铁合金消耗,因此,炉外精炼技术已成为当今世界钢铁冶金发展的方向。对于炉外精炼技术存在的问题及发展方向有必要进行探讨。
1 国内外炉外精炼技术的发展历程和现状
随着炼钢技术的不断进步,炉外精炼在现代钢铁生产中已经占有重要地位,传统的生产流程(高炉→炼钢炉(电炉或转炉)→铸锭),已逐步被新的流程(高炉→铁水预处理→炼钢炉→炉外精炼→连铸)所代替。已成为国内外大型钢铁企业生产的主要工艺流程,尤其在特殊钢领域,精炼和连铸技术发展得日趋成熟。精炼工序在整个流程中起到至关重要的作用,一方面通过这道工序可以提高钢的纯净度、去除有害夹杂、进行微合金化和夹杂物变性处理;另一方面,精炼又是一个缓冲环节,有利于连铸生产均衡地进行。
日本在20世纪70年代为了降低炼钢成本,提高钢的纯净度和质量,率先将炉外精炼技术应用于特殊钢生产中,随后西欧的钢铁企业也加入到推广和使用这项技术的行列中。据资料报道,日本早在1985年精炼率达到65.9%,1989年上升到73.4%,特殊钢的精炼率达到94%,新建电炉短流程钢厂100%采用炉外精炼技术。80年代连铸技术发展迅速,原有的炼钢炉难以满足连铸的技术要求,更加促进了炉外精炼技术的发展,到1990年为止世界各主要工业国家拥有1000多台(套)炉外精炼设备。
我国早在20世纪50年代末,60年代中期就在炼钢生产中采用高碱度合成渣在出钢过程中脱硫冶炼轴承钢、钢包静态脱气等初步精炼技术,但没有精炼的装备。60年代中期至70年代有些特钢企业(大冶、武钢等)引进一批真空精炼设备。80年代我国自行研制开发的精炼设备逐渐投入使用(如LF炉、喷粉、搅拌设备),黑龙江省冶金研究所等单位联合研制开发了喂线机、包芯线机和合金芯线,完善了炉外精炼技术的辅助技术。现在这项技术已经非常成熟,以炉外精炼技术为核心的“三位一体”短流程工艺广泛应用于国内各钢铁企业,取得了很好的效果。初炼(电炉或转炉)→精炼→连铸,成了现代化典型的工艺短流程。
2 炉外精炼技术的特点与功能
炉外精炼是指在钢包中进行冶炼的过程,是将真空处理、吹氩搅拌、加热控温、喂线喷粉、微合金化等技术以不同形式组合起来,出钢前尽量除去氧化渣,在钢包内重新造还原渣,保持包内还原性气氛。炉外精炼的目的是降低钢中的C、P、S、O、H、N、等元素在钢中的含量,以免产生偏析、白点、大颗粒夹杂物,降低钢的抗拉强度、韧性、疲劳强度、抗裂性等性能。这些工作只有在精炼炉上进行,其特点与功能如下:
1)可以改变冶金反应条件。炼钢中脱氧、脱碳、脱气的反应产物为气体,精炼可以在真空条件下进行,有利于反应的正向进行,通常工作压力≥50Pa,适于对钢液脱气。
2)可以加快熔池的传质速度。液相传质速度决定冶金反应速度的快慢,精炼过程采用多种搅拌形式(气体搅拌、电磁搅拌、机械搅拌)使系统内的熔体产生流动,加速熔体内传热、传质的过程,达到混合均匀的目的。
3)可以增大渣钢反应的面积。各种精炼设备均有搅拌装置,搅拌过程中可以使钢渣乳化,合金、钢渣随气泡上浮过程中发生熔化、熔解、聚合反应,通常1吨钢液的渣钢反应面积为0.8~1.3mm2,当渣量为原来的6%时,钢渣乳化后形成半径为0.3mm的渣滴,反应界面会增大1000倍。微合金化、变性处理就是利用这个原理提高精炼效果。
4)可以在电炉(转炉)和连铸之间起到缓冲作用,精炼炉具有灵活性,使作业时间、温度控制较为协调,与连铸形成更加通畅的生产流程。
3 炉外精炼技术在生产中的应用目前得到公认并被广泛应用的炉外精炼方法有:LF法、RH法、VOD法。
3.1 LF法(钢包精炼炉法)
它是1971年由日本大同钢公司发明的,用电弧加热,包底吹氩搅拌。
3.1.1 工艺优点
1)电弧加热热效率高,升温幅度大,控温准确度可达±5℃;
2)具备搅拌和合金化的功能,吹氩搅拌易于实现窄范围合金成份控制,提高产品的稳定性;
3)设备投资少,精炼成本低,适合生产超低硫钢、超低氧钢。
3.1.2 LF法的生产工艺要点
1)加热与控温LF采用电弧加热,热效率高,钢水平均升温1℃耗电0.5~0.8kW·h,LF升温速度决定于供电比功率(kVA/t),而供电的比功率又决定于钢包耐火材料的熔损指数。因采用埋弧泡沫渣技术,可减少电弧的热辐射损失,提高热效率10%~15%,终点温度的精确度≤±5℃。
2)采用白渣精炼工艺。下渣量控制在≤5kg/t,一般采用Al2O3-CaO-SiO2系炉渣,包渣碱度R≥3,以避免炉渣再氧化。吹氩搅拌时避免钢液裸露。
3)合金微调与窄成份范围控制。据试验报道,使用合金芯线技术可提高金属回收率,齿轮钢中钛的回收率平均达到87.9%,硼的回收率达64.3%,钢包喂碳线回收率高达90%,ZG30CrMnMoRE喂稀土线稀土回收率达到68%,高的回收率可实现窄成份控制。
3.1.3 LF法在生产实践中的应用
2000年6月,鞍钢第一炼钢厂新建的连铸车间正式投产,精炼设备由两座LF钢包精炼炉,年处理钢水200万t;一座VD钢水真空处理装置,年处理钢水80万t组成。LF炉最大升温速度为4℃,LF炉平均处理周期≤28min;处理效果:平均[H]≤0.0002%;最低[H]≤0.0001%。
我国现有家重轨生产厂(攀钢、包钢、鞍钢和武钢)生产典型的工艺路线如下:LD→LF→VD→WF→CC,钢包吊到LF处理线的钢包车上后,由人工接通钢包底吹氩的快速接头,根据要求的钢水成分及温度确定物料的投入量(含喂丝)重轨钢含碳量较高,因而增碳显得很重要,转炉出钢时钢水含碳量控制为0.2%~0.3%(wt),炉后增碳至0.60%~0.65%(wt),在LF炉处理时再增0.10%~0.15%(wt)个碳至标准成份的中上限,经VD处理后即可达到钢种成分要求。
3.2 RH法(真空循环脱气法)这种方法是1958年西德发明的,其基本原理是利用气泡将钢水不断的提升到真空室内进行脱气、脱碳,然后回流到钢包中。
3.2.1 RH法的优点
1)反应速度快。真空脱气周期短,一般10分钟可以完成脱气操作,5分种能完成合金化及温度均匀化,可与转炉配合使用。
2)反应效率高。钢水直接在真空室内反应,钢中可达到[H]≤1.0×10-6,[N]≤25×10-6,[C]≤10×10-6,的超纯净钢。
3)可进行吹氧脱碳和二次燃烧热补偿,减少精炼过程的温降。
3.2.2 RH法工艺参数
1)RH循环量。循环量是指单位时间内通过上升管或下降管的钢水量,单位是t/min。有关资料给出的计算公式为: Q=0.002×Du1.5·G0.33,式中:Q———循环流量,t/min;Du———上升管直径,cm;G———上升管内氩气流量,L/min。
2)循环因数。他是指在RH处理过程中通过真空室的钢水与处理量之比,其公式为:μ=w·t/v式中:μ———循环因数,次;w———循环量,t/min;t———循环时间,min;v———钢包容量,t。
3)供氧强度与含碳量的关系。向RH内吹氧可以提高脱碳速度,即RH-OB法。当[C]/[O]>0.66时钢包内氧的传质速度决定脱碳速度,其计算公式为:
QO2=27.3×Q·[C]式中:QO2———氧气强度,Nm3/min;Q———钢水循环量,t/min;[C]———含碳量,Nm3/t。
3.2.3 RH法在生产实践中的应用
日本的山阳钢厂将LF与RH配合生产轴承钢形成EF-LF-RH-CC轴承钢生产线,钢中总氧量达到5.8×10-6。LF-RH法首先利用LF炉将钢水升温,利用LF搅拌和渣精炼功能进行还原精炼,是钢水脱硫和预脱氧,然后将钢水送入RH中进行脱氢和二次脱氧。经过这样处理大大的提高了钢水的清洁度,同时钢水的温度达到连铸需要的温度。
宝钢炉外精炼设备有RH-OB、钢包喷粉装置、CAS精炼装置,RH-OB的冶炼效果较理想,脱氢率为50%~70%,脱氮率为20%~40%,一般情况下,经RH-OB处理后[H]≤2.5×10-6,[C]≤30×10-6,去除钢中非金属夹杂物一般能达到70%,钢中总氧量≤25×10-6,而且在RH中合金处理可以提高合金的收得率和控制的精确度,[C]、[Si]、[Mn]的控制精度能达到±0.01%,铝的精确度可达到1.5×10-3,取得了较好的炉外精炼效果。
3.3 VOD法(真空罐内钢包吹氧除气法)
3.3.1 VOD的特点VOD法是1965年西德首先开发应用的,它是将钢包放入真空罐内从顶部的氧枪向钢包内吹氧脱碳,同时从钢包底部向上吹氩搅拌。此方法适合生产超低碳不锈钢,达到保铬去碳的目的,可与转炉配合使用。他的优点是实现了低碳不锈钢冶炼的必要的热力学和动力学的条件-高温、真空、搅拌。
3.3.2 VOD法在生产实践中的应用
20世纪90年代初,上海大隆铸锻厂从德国莱宝(leybold)公司进口1台15tVODC的关键设备和技术软件。采用电炉初炼钢水经VODC炉外精炼的工艺方法,精炼了超低碳不锈钢、中低合金钢和碳钢,取得了很好的冶金效果,钢中非金属夹杂物减少,氢含量小于3×10-6氧含量小于6.5×10-6,不锈钢中铬回收率达98%~99%,精炼后的钢具有十分优越的性能。VODC精炼工艺成熟,控制容易,适应中小型钢厂和铸钢厂的多钢种、小吨位精炼生产需要,对发展铸钢行业的精炼生产会起到很大积极作用,具有广阔的发展前景10。
抚顺特殊钢有限公司有30tVOD炉,采用EAF+VOD技术精炼不锈钢,可使[H]≤2.58×10-6,T[O]≤41.9×10-6,铬回收率达到99.5%,脱硫率64.2%,精炼高碳铬轴承钢T[O]≤12.13×10-6 。
4 发展炉外精炼技术需解决的问题及发展方向炉外精炼技术已经应用40年,对提高钢的纯净度、精确控制成分含量及细化组织结构等方面都起了重要作用,使冶炼成本大幅降低,同时提高了钢的品质和性能。但在发展的过程中也出现了一些问题,有待于解决,使这项技术更加完美。
1)实现炉外精炼工艺的智能化控制,根据来料钢水的各种技术参数,利用信息技术,制定最佳的精炼工艺方案,并通过计算机控制各精炼工序。精炼工位配备快速分析设备,实现数据网络化,减少热停等待时间。
2)炉外处理设备将实现“多功能化”。在水钢精炼设备中将渣洗精炼、真空冶金、搅拌工艺以及加热控温功能全部组合起来,实现精炼,以满足超纯净钢生产的社会需求。
3)开发高纯度、高密度、高强度的优质碱性耐火材料,以适应不同精炼炉的需要,注重产品质量的稳定性。耐火材料的使用条件应尽可能与炉渣相适应,最大限度地降低侵蚀速度。要根据精炼设备的实际情况形成不同层次的配套材料,研究开发保温和修补技术,提高炉衬的使用寿命。
4)减少精炼过程的污染排放,精炼过程会产生大量废气,其中含SO2、Pb、金属氧化物、悬浮颗粒等,在真空脱气冷却水中含有固态悬浮物、Pb、Zn等,这些污染物须经企业内部的相关处理,把污染程度降低到符合排放标准后再排放,加强环境保护意识。
5 结束语
炉外精炼技术是一项提高产品质量,降低生产成本的先进技术,是现代化炼钢工艺不可缺少的重要环节,具有化学成分及温度的精确控制、夹杂物排除、顶渣还原脱S、Ca处理、夹杂物形态控制、去除H、O、C、S等杂质、真空脱气等冶金功能。只有强化每项功能的作用,才能发挥炉外精炼的优势,生产出高品质纯净钢种。

‘伍’ 钢材怎么脱氧

钢材脱氧方法
脱氧是保证钢锭和钢材质量的一项重要操作。炼钢是一个氧化精炼过程,钢液中不可避免地溶有一定量的氧。1600时,氧在钢液中的溶解度可达0.23%(见Fe-O状态图)。氧化精炼末期,钢液含氧量依炼钢方法、钢种规格而有所不同,一般约在0.02~0.08%范围内,而氧在固态铁中的溶解度却很低(例如在[kg2]-Fe[kg2]中溶解度最大为0.0082%)。在钢液凝固过程中,氧以FeO形态析出,分布在晶界上,降低钢的塑性。晶界上的FeO和FeS还会形成低熔点(910)物质,使钢在热加工时发生热脆。未充分脱氧的钢液在钢锭模内凝固过程中,由于固体钢中溶解的氧很低,氧在钢液内逐渐富集,超过碳氧平衡值的过剩氧将与碳继续发生反应,生成CO气体,使钢锭内部产生气泡,严重时会发生“冒涨”现象。因此,在炼钢的最后阶段必须脱氧。方法主要有三种:沉淀脱氧,扩散脱氧和真空脱氧。

沉淀脱氧向钢液中加入对氧亲合力比铁大的元素(脱氧剂),使之与钢中溶解的氧结合成不溶于钢液的氧化物或复合氧化物而析出,其反应是:

[160-01](1)式中[kg2][M]、[O]分别代表溶于钢中的脱氧元素和氧;、分别代表钢中[M]和[O][kg2]的活度;是脱氧反应的平衡常数,其倒数称为脱氧常数,值越小,则该元素的脱氧能力越强。各元素的脱氧常数见表[各元素的脱氧反应及脱氧常数]。各元素脱氧能力由强到弱的顺序是:铈、锆、铝、钛、硼、硅、碳、钒、锰、铬。生产中多采用比较便宜的锰、硅、铝作脱氧剂。并且以其铁合金(如锰铁、硅铁)的形式加入钢中。

沉淀脱氧产物如不及时排除,就会成为固态钢中的非金属夹杂物,影响钢的质量。脱氧产物的密度(一般为3~5克/厘米)比钢液(7.1克/厘米)小,可以上浮排除,其上浮速度(厘米/秒)可按斯托克斯(Stokes)公式近似求得:

[160-02](2)式中为重力加速度(981厘米/秒);为钢液的粘度(泊);为脱氧产物的半径(厘米);[160-100]、[160-101]分别为钢液和脱氧产物的密度(克/厘米)。由(2)式可知,半径增大,上浮速度明显增大。如果采用“复合脱氧剂”如Si-Mn、Si-Ca、Si-Mn-Al、Mn-Si-Ca等来脱氧,脱氧产物将是这些元素氧化物的混合体,其熔点比单一元素氧化物的熔点更低,易于聚合成大颗粒,可更快地上浮排除。在生产上已经采用这些复合脱氧剂。

70年代以来发展的用喷枪通过载气(氩或氮)将粉状脱氧剂(如钙、镁、稀土金属、铝、硅铁等)直接引入钢液的方法,可使氧脱除到更低水平(ppm量级)。吹入的钙(沸点约1484)在炼钢温度下变成气泡上升,在气泡-钢液界面上亦发生脱氧反应。这种脱氧又称为喷粉脱氧,其实质仍然属于沉淀脱氧(见喷射冶金)。

扩散脱氧在电弧炉炼钢还原期,渣中含[kg2]FeO[kg2]很少,钢液中的氧会按下列反应进入渣中:

[160-03]这称为扩散脱氧。要使扩散脱氧不断进行,就要分期分批向渣中加入脱氧剂(常用硅铁粉、碳粉、电石粉,某些合金钢还用铝粉、硅钙粉等强脱氧剂)使渣中保持很低的[kg2]FeO[kg2]含量。扩散脱氧的产物不沾污钢液,因而是冶炼优质钢中较好的脱氧方法。其缺点是反应速度慢,需时间较长,致使炉衬受高温炉渣侵蚀较严重。

以上两种脱氧方法各有利弊,为充分发挥它们各自的优点,还广泛采用沉淀与扩散综合脱氧。即在电炉还原期之初,先用沉淀脱氧迅速减少钢液中氧含量。当稀薄渣形成后,再用扩散脱氧。在扩散脱氧期间,沉淀脱氧产物有充分时间上浮,最后在还原期末再插铝脱氧。这样既可提高钢的质量,又缩短了冶炼时间。

真空脱氧是在低压下使钢液中碳氧反应更加完全而进行的脱氧反应:

[161-01]温度一定时,在真空下,降低,则[%C][%O]积亦降低,碳的脱氧能力增强。真空脱氧实际上是低压下用钢液中含有的碳脱氧。其优点是:脱氧产物是气体,不会形成非金属夹杂物,CO气泡上浮,搅拌熔池,有利于去氮去氢。在常压下不能再进行碳氧反应的钢水,在真空下则可继续进行碳氧反应,使氧减少到更低的数值,而碳的减少值则为氧的下降值的3/4。真空脱氧在真空熔炼或钢液真空处理过程中进行。

炉外精炼用氩气吹入钢包使钢液脱氧、脱碳、除气及去夹杂物的工艺,是由于氩气泡中CO分压极低,促使碳氧反应进行得更完全,因而也能起到与真空脱氧相类似的作用(见真空冶金)。

聊城烁祥管业制造有限公司我的钢管网竭诚为您服务

‘陆’ 碳氧浓度积对转炉熔炼过程有什么指导意义

转炉的碳氧积是评价转炉复吹效果和终点控制水平的一个重要指标。碳氧积低意味着在相同的终点碳的控制水平下,钢水的氧含量低,有利于降低合金消耗,减少脱氧过程中形成的夹杂物,提高钢液纯净度。

‘柒’ 谁知道转炉和电炉碳氧积的经验公式

顶底复吹转炉在0.28左右

阅读全文

与钢水碳氧积算法相关的资料

热点内容
怎么指定定向流量app的免流 浏览:898
华为云服务器有啥软件 浏览:652
礼记正义pdf 浏览:988
CorePDF 浏览:731
python多文件调用 浏览:327
linux如何用python 浏览:186
超易学的python 浏览:159
控制面板命令行 浏览:51
为什么空气难压缩是因为斥力吗 浏览:643
郭天祥单片机实验板 浏览:601
服务器有什么危害 浏览:258
饥荒怎么开新的独立服务器 浏览:753
文件夹变成了 浏览:560
linuxpython绿色版 浏览:431
怎么下载小爱同学音箱app 浏览:554
python占位符作用 浏览:76
javajdbcpdf 浏览:543
php网页模板下载 浏览:192
python试讲课pygame 浏览:409
安居客的文件夹名称 浏览:677