导航:首页 > 源码编译 > 武汉深度学习算法系统

武汉深度学习算法系统

发布时间:2022-12-13 04:11:29

⑴ 机器学习算法和深度学习的区别

一、指代不同

1、机器学习算法:是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。

2、深度学习:是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标人工智能。

二、学习过程不同

1、机器学习算法:学习系统的基本结构。环境向系统的学习部分提供某些信息,学习部分利用这些信息修改知识库,以增进系统执行部分完成任务的效能,执行部分根据知识库完成任务,同时把获得的信息反馈给学习部分。

2、深度学习:通过设计建立适量的神经元计算节点和多层运算层次结构,选择合适的输人层和输出层,通过网络的学习和调优,建立起从输入到输出的函数关系,虽然不能100%找到输入与输出的函数关系,但是可以尽可能的逼近现实的关联关系。

三、应用不同

1、机器学习算法::数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、DNA序列测序、语音和手写识别、战略游戏和机器人运用。

2、深度学习:计算机视觉、语音识别、自然语言处理等其他领域。

⑵ 简述深度学习的基本方法。

深度学习,需要怎么做到?
最佳答案
1、深度学习,首先要学会给自己定定目标(大、小、长、短),这样学习会有一个方向;然后要学会梳理自身学习情况,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,合理的分配时间,有针对性、具体的去一点一点的去攻克、落实。

2、可以学习掌握速读记忆的能力,提高学习复习效率。速读记忆是一种高效的学习、复习方法,其训练原理就在于激活“脑、眼”潜能,培养形成眼脑直映式的阅读、学习方式。速读记忆的练习见《精英特全脑速读记忆训练》,用软件练习,每天一个多小时,一个月的时间,可以把阅读速度提高5、6倍,记忆力、注意力、思维、理解力等也会得到相应的提高,最终提高学习、复习效率,取得好成绩。如果你的阅读、学习效率低的话,可以好好的去练习一下。

3、要学会整合知识点。把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,会让你的大脑、思维条理清醒,方便记忆、温习、掌握。同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。这样能够促进理解,加深记忆。

4、做题的时候要学会反思、归类、整理出对应的解题思路。遇到错的题(粗心做错也好、不会做也罢),最好能把这些错题收集起来,每个科目都建立一个独立的错题集(错题集要归类),当我们进行考前复习的时候,它们是重点复习对象,保证不再同样的问题上再出错、再丢分。

⑶ CCCF专栏 | 智能计算系统——一门人工智能专业的系统课程

我国人工智能底层研究能力缺失的现象严重,最根本的原因在于这方面人才教育培养的缺失。2018年中,作者陈云霁在中国科学院大学开设了一门“智能计算系统”课程。这门课程受到了学生的欢迎,有很多选不上课的学生跟着旁听了整个学期。

关键词:智能计算系统 人工智能 专业课程

编者按 :5年前,本文作者陈云霁受邀在CCCF专栏上发表了一篇题为《体系结构研究者的人工智能之梦》 1 的文章,第一次公开介绍他从通用处理器转向深度学习处理器方向的心路历程(那篇文章后来也被收录进了《CCCF优秀文章精选》)。经过5年的努力,陈云霁在深度学习处理器方向作出了国际公认的贡献:他的学术论文被顶级会议ISCA’18超过四分之一的论文引用,他的技术成果被应用到华为、曙光、阿里等近亿台智能手机和服务器中。他因此被Science杂志评价为智能芯片的“先驱”和“领导者”。现在,当深度学习处理器已经成为学术界和工业界的热点时,陈云霁再次转身,迈向人工智能系统课程教学的新舞台。这篇文章将和大家分享他走向这个新舞台的心路历程。

智能计算系统课程的开设

我是一名中国科学院计算技术研究所的青年科研人员,主要从事计算机系统结构和人工智能交叉方向的基础研究。看到本文的标题和作者单位,大家可能会觉得有一点奇怪:作者和人工智能专业课程有什么关系?因为传统意义上,上课是高校教师的职责,中国科学院的员工除非是自愿担任了中国科学院大学(国科大)的岗位教授,否则并没有上课的义务。

驱使我主动思考人工智能专业课程设计的最主要的原因,是这样一个众所周知的现象:越是人工智能上层(算法层、应用层,见图1)的研究,我国研究者对世界作出的贡献越多;越是底层(系统层、芯片层),我国研究者的贡献越少。在各种ImageNet比赛中,我国很多机构的算法模型已经呈现“霸榜”的趋势,可以说代表了世界前沿水平。但这些算法模型绝大部分都是在CUDA 2 编程语言、Tensorflow编程框架以及GPU之上开发的。在这些底层“硬 科技 ”中,我国研究者对世界的贡献就相对少了很多。底层研究能力的缺失不仅会给我国人工智能基础研究拖后腿,更重要的是,将使得我国智能产业成为一个空中楼阁,走上信息产业受核心芯片和操作系统制约的老路。

图1 人工智能研究大致层次

我国人工智能底层研究能力缺失的原因很多,我认为最根本的原因在于这方面的人才教育培养的缺失。没有肥沃的土壤,就长不出参天大树。没有具备系统思维的人工智能专业学生,我国就难以出现杰夫·迪恩(Jeff Dean)这样的智能计算系统大师,也不会产生有国际竞争力的智能系统产品。因此,在人工智能专业学生的培养上,我们应当主动作为去改变局面。

2018年我国有35个高校设立了人工智能本科专业,这是重新思考和梳理人工智能培养体系的一次重大机遇。就我目前的了解,大部分高校在考虑人工智能课程体系时,采用的是纯算法、纯应用的教学思路。这样培养出来的学生,仍然是偏向上层应用开发,对智能计算系统缺乏融会贯通的理解。

事实上,各个高校不乏有识之士,在课程设计上绕开系统课程往往受制于三大客观困难:一是国内还没有太多人工智能系统类的课程可供参考,二是国内缺乏人工智能系统类课程的师资,三是国际上缺乏人工智能系统课程的教材。

基于自己的研究背景,我对人工智能的算法和系统都有一些粗浅的涉猎。我是否能为解决人工智能系统课程、师资、教材上的困难作一点微薄的贡献?是否可以身体力行地培养一些具备系统思维和能力的人工智能专业学生呢?

因此,2018年中,我向中国科学院大学申请开设一门人工智能专业的系统课程,名为“智能计算系统”(曾名“智能计算机”),希望能培养学生对智能计算完整软硬件技术栈(包括基础智能算法、智能计算编程框架、智能计算编程语言、智能芯片体系结构等)融会贯通的理解。这门课程受到了学生的欢迎,有很多选不上课的学生跟着旁听了整个学期。让我尤其感动的是,有其他研究所的学生慕名自发地从中关村跑到怀柔来听课,上一次课来回车程就要三个小时,回到中关村都是深夜。这也许能说明这门课对学生来说有一定吸引力,大家在听课中有真正的收获。

人工智能专业学生培养和课程体系

人工智能专业的课程体系设计应该服务于学生培养目标。那么高校人工智能专业应该培养什么样的学生?

这个问题可能还没有统一的答案。对比和人工智能专业非常接近的计算机专业,高校的计算机专业培养的显然不是计算机的使用者,而是计算机整机或者子系统的研究者、设计者和制造者。

我国计算机专业的前辈在六十多年前开始设立计算机专业时,就高瞻远瞩地设计了一个软硬结合的方案来培养计算机整机或者子系统的研究者、设计者和制造者。这套方案经过六十年的演进,依然基本保持了当年的初衷。今天,各个高校的计算机专业,基本都开设了计算机组成原理、操作系统、编译原理、计算机体系结构等系统类的必修课程(见图2)。也就是说,虽然计算机专业的学生毕业后大多从事软件开发工作,但是他们对计算机硬件系统还是有基础的了解的。

图2 网易云课堂上的计算机专业培养方案 3

人工智能专业学生的培养目标应当是人工智能系统或者子系统的研究者、设计者和制造者。只有实现这个目标,高校培养的人才才能源源不断地全面支撑我国人工智能的产业和研究。为了实现这个目标,人工智能专业的课程设计应当包括软硬两条线(就像计算机专业)。如果人工智能专业只开设机器学习算法、视听觉应用等课程,那充其量只能算是“人工智能应用专业”或者“人工智能算法专业”。毕竟算法只是冰山露出水面的一角,冰山底下90%还是硬件和系统。

就拿拥有世界上最大的AI算法研究团队的公司谷歌来说,谷歌董事长约翰·轩尼诗(John Hennessy)是计算机体系结构科学家,图灵奖得主;谷歌AI的总负责人杰夫·迪恩(Jeff Dean)是计算机系统研究者;谷歌AI最令人瞩目的三个进展(Tensorflow, AlphaGo, TPU)都是系统,而不仅仅是某个特定算法,算法只是系统的一个环节。因此,从人工智能国际学术主流来看,系统的重要性是不亚于算法的。

只学过算法的学生或许对于调模型参数很在行,但是对一个算法的耗时、耗电毫无感觉。这样的学生不具备把一个算法在工业系统上应用起来的基本功(因为一个算法真正要用起来必须满足延迟和能耗的限制)。

只有加入了系统线的课程,学生才能真正理解人工智能是怎样工作的,包括一个人工智能算法到底如何调用编程框架,编程框架又是怎么和操作系统打交道,编程框架里的算子又是怎样一步步在芯片上运行起来。这样的学生能亲手构建出复杂的系统或者子系统,在科研上会有更大的潜力,在产业里也会有更强的竞争力。正如业界所云:“会用Tensorflow每年赚30万人民币,会设计Tensorflow每年赚30万美元。”

有很多老师和我说:“人工智能专业确实应当有一些系统类的课程。但国内从来没有开过这样的课,也没有合适的教材,我们学院也缺乏相应的老师来教这样的课程。”这是很实际的三个客观困难,但不应当影响我们对人工智能专业的课程设计。

从学生角度讲,人工智能专业开设什么课程,应该是看国家和企业需要学生会什么,而不完全是看老师现在会什么。六十年前,我国没有几个人见过计算机,更别说开课了。但为了两弹一星等科学和工程计算任务,我国依然成立了中科院计算所,并在计算所办计算机教师培训班,在清华大学、中国科学技术大学等高校(此处恕不能一一列全)开设计算机专业,这才有了今天我国巨大的计算机产业。

从教师角度讲,人工智能的系统研究已经成为国际学术热点,讲授这类课程是一个教学相长的过程,能帮助教师走到国际学术前沿。今年美国计算机方向Top4高校(斯坦福大学、卡耐基梅隆大学、加州大学伯克利分校和麻省理工学院)以及其他多个国际单位的研究者联合发布了一份名为“Machine Learning System(机器学习系统)”的白皮书。在这样的新兴热门方向布局培育一批青年教师,无疑对提升所在高校乃至我国在人工智能学术界的影响力有巨大帮助。

因此,不论是对于人工智能专业的学生还是教师来说,把系统类课程开起来,都是有必要,也是有实际意义的。

什么是智能计算系统

简单来说,智能计算系统就是人工智能的物质载体。现阶段的智能计算系统通常是集成通用CPU和智能芯片(英伟达GPU或寒武纪MLU等)的异构系统,并向开发者提供智能计算编程框架和编程语言等。之所以要在通用CPU之外加上智能芯片,主要是因为通用CPU难以满足人工智能计算不断增长的速度和能耗需求。例如,2012年谷歌大脑用了1.6万个CPU核运行了数天来训练怎么识别猫脸,这对于工业应用来说是很难接受的。显然,要想真正把人工智能技术用起来,必须使用异构的智能计算系统。而为了降低异构智能计算系统的编程难度,就需要有面向智能计算的编程框架和编程语言。

事实上,智能计算系统已经以种种形态广泛渗透到我们的生活中了。IBM的超级计算机Summit用机器学习方法做天气预报,BAT的数据中心上运行着大量的广告推荐任务,华为的手机上集成寒武纪深度学习处理器来处理图像分析和语音识别,特斯拉的自动驾驶系统……都可以看成是智能计算系统。在智能时代,中国乃至全世界都需要大批的智能计算系统的开发者、设计者、应用者。

智能计算系统的发展并不是一蹴而就的事情。20世纪80年代面向符号主义智能处理的专用计算机(Prolog机和LISP机)可以被看成是第一代智能计算系统。但是当时人工智能缺乏实际应用,算法也不成熟,而且当时摩尔定律还处于飞速发展阶段,专用计算机相对每18个月性能就能翻番的通用CPU并没有太大优势。因此,第一代智能计算系统逐渐退出了 历史 舞台。

“智能计算系统”课程重点关注的是第二代智能计算系统,主要是面向深度学习等机器学习任务的计算机。相对于30年前的第一代智能计算系统,当今的第二代深度学习智能计算系统可谓是碰到了天时地利人和。当前图像识别、语音识别、自然语言理解、 游戏 、广告推荐等人工智能应用已开始落地,深度学习算法发展速度令人应接不暇。尤其重要的是,通用CPU性能发展已经趋停,要支撑不断发展的深度学习算法,必须要靠智能计算系统。因此,深度学习智能计算系统会在很长一个阶段里都是学术界和产业界关注的焦点。“智能计算系统”课程将能帮助学生深刻理解深度学习智能计算系统。

第二代智能计算系统主要支持深度学习等机器学习任务。未来如果人类真的要在通用人工智能道路上再往前走一步,那未来的第三代智能计算系统需要支持的算法将远远超出机器学习的范畴,必须包括联想、推理、涌现等高级认知智能算法。我个人猜测,第三代智能计算系统可能会是孵化通用人工智能的虚拟世界环境。“智能计算系统”课程或许能激发学生的好奇心,吸引学生投身于未来的第三代智能计算系统的研究中。

智能计算系统课程概况

“智能计算系统”这门课程主要是面向人工智能、计算机和软件工程专业的高年级本科生或研究生。课程目标是培养学生对智能计算完整软硬件技术栈(包括基础智能算法、智能计算编程框架、智能计算编程语言、智能芯片体系结构等)融会贯通的理解,成为智能计算系统(子系统)的设计者和开发者。

课程的前序课程包括C/C++编程语言、计算机组成原理和算法导论(或机器学习)。课程的课时相对比较灵活,可以是大学期上一个学期(40学时,课程提纲见表1),可以是小学期集中上一周(20学时),也可以嵌入到其他机器学习课程中作为一个补充。对于20学时的短期学习,课程希望学生能对智能计算系统“知其然”,主要是面向实际操作;对于40学时的长期学习,课程希望学生能对智能计算系统“知其所以然”,因此要把机理讲透。

表1 智能计算系统课程提纲(40学时)

在课程讲授上,应该秉承两个原则。一是应用驱动。一门好的工程学科的课程应当是学以致用的,尤其是“智能计算系统”这样的课程,如果上完之后只学会了一些定理和公式,那基本没效果。另外一个原则是全栈贯通。过去计算机专业课程设计有个问题,就是条块分割明显,比如操作系统和计算机体系结构是割裂的,操作系统对计算机体系结构提出了什么要求,计算机体系结构对操作系统有哪些支持,没有一门课把这些串起来。“智能计算系统”作为高年级本科生(或研究生)课程,有义务帮助学生把过去所有的人工智能软硬件知识都串起来,形成整体理解。

对于“智能计算系统”课程,驱动范例是一个抓手。在国科大上课时,我们选择了视频风格迁移作为驱动范例。简单来说,风格迁移可以保留一个视频中每帧图片的基本内容,但是把图片的绘画风格改掉(比如从普通照片迁移成毕加索风格或者中国水墨画风格等,见图3)。对于学生来说,这是很有意思又在能力范围之内的一个驱动范例。

图3 从普通照片到毕加索风格迁移的驱动范例

我们围绕如何实现视频实时风格迁移,一步步带着学生写出算法,移植到编程框架上,为编程框架编写算子,再为算子设计芯片,构建多芯片系统,并测评这个系统的速度、能效和精度上的优势和劣势,然后进行系统的闭环迭代优化。最后再给大家一个智能计算系统的实验环境,包括摄像头和智能芯片开发板,学生就可以实现一个对摄像头拍摄的视频进行画风实时转换的“半产品”应用了。

结语

我的母亲是一位中学教师。我自己成长过程中,对我帮助非常大的几位前辈恩师陈国良、胡伟武和徐志伟,也都是常年浸淫在教学第一线,有着极大教学热情的名师。从小到大,这些长辈的言传身教,让我深刻地感受到,教育是一项伟大的事业,能深刻地改变学生、改变行业、改变 社会 、改变国家、改变人类。今天我们教给学生的那些人工智能知识,可能会影响明天我国在智能时代的竞争力。因此,虽然手头有不少基础研究任务,但我还是情愿把培养人工智能的系统人才当成自己未来最重要的使命,把自己绝大部分时间精力花在“智能计算系统”这门课程在各个高校的讲授和推广上。

非常欣慰的是,“智能计算系统”这样新生的一门课程,虽然还有很多缺陷,但还是得到了很多师生的支持和鼓励。我们已在或将在中国科学院大学、北京大学、北京航空航天大学、天津大学、中国科学技术大学、南开大学、北京理工大学、华中 科技 大学等多个高校联合开设这门课程。今年我们还会开放这门课程的所有PPT、讲义、教材、录像、代码、云平台和开发板,供老师们批评指正。非常欢迎大家给我发邮件,提出宝贵意见。

未来,我们希望和更多培养人工智能专业学生的高校合作,广泛参与人工智能系统课程的交流研讨,共同提高人工智能系统课程的教学水平。相信通过大家的共同努力,一定能解决人工智能系统课程开设中的实际困难,使得我国未来培养出来的人工智能人才没有技术上的短板。

作为一名青年教师,我在教学能力和经验上与很多教育领域的前辈有着巨大的差距,还需要更多地学习。这门“智能计算系统”课程,对于我国的人工智能系统能力培养来说,也顶多是起到抛砖引玉的作用。正如鲁迅先生在《热风·随感录四十一》中写给青年的一段话所言:“有一分热,发一分光,就令萤火一般,也可以在黑暗里发一点光……倘若有了炬火,出了太阳,我们自然……随喜赞美这炬火或太阳;因为他照了人类,连我都在内。”

脚注:

1 此文发表在《中国计算机学会通讯》(CCCF) 2014年第5期,https://dl.ccf.org.cn/institude/institudeDetail?id=3738875863074816&_ack=1。

2 CUDA:Compute Unified Device Architecture,计算统一设备架构。

3 参见https://study.163.com/curricula/cs.htm。

作者介绍:

陈云霁

CCF杰出会员、CCF青年科学家奖获得者、CCCF编委。中科院计算所研究员。曾获首届国家自然科学基金“优秀青年基金”、首届国家万人计划“青年拔尖人才”以及中科院青年人才奖等奖项。主要研究方向为计算机体系结构。[email protected]

点击 “阅读原文” ,加入CCF。

⑷ 什么是深度学习

随着阿尔法狗、无人驾驶、智能翻译的横空出世,“人工智能”这个已经存在60多年的词语,仿佛一夜之间重新成为热词。同时被科技圈和企业界广泛提及的还有“机器学习”“深度学习”“神经网络”…… 但事实是,如此喧嚣热烈的气氛之下,大部分人对这一领域仍是一知半解。

如果要说谁有资格谈论目前正在进行的“人工智能革命”,特伦斯·谢诺夫斯基(Terry Sejnowski)必然是其中一个。

在智能翻译、无人驾驶、阿尔法狗、微软小冰还被认为是远在天边的愿景时,谢诺夫斯基就已经在为深度学习领域奠定基础了。

《深度学习:智能时代的核心驱动力量》

中信出版集团 2019.2

Q:首先,我想问一下定义。人们几乎可以互换地使用“人工智能”,“神经网络”,“深度学习”和“机器学习”等词语。 但这些是不同的东西。你能解释一下吗?

人工智能可以追溯到1956年的美国,那时工程师们决定编写一个试图仿效智能的计算机程序。

在人工智能中,一个新领域成长起来,称为机器学习。不是编写一个按部就班的程序来做某事——这是人工智能中的传统方法——而是你收集了大量关于你试图理解的事物的数据。例如,设想您正在尝试识别对象,因此您可以收集大量它们的图像。然后,通过机器学习,这是一个可以剖析各种特征的自动化过程,就可以确定一个物体是汽车,而另一个是订书机。

机器学习是一个非常大的领域,其历史可以追溯到更久远的时期。最初,人们称之为“模式识别”。后来算法在数学上变得更加广泛和复杂。

在机器学习中有受大脑启发的神经网络,然后是深度学习。深度学习算法具有特定的体系结构,其中有许多层数据流经的网络。

基本上,深度学习是机器学习的一部分,机器学习是人工智能的一部分。

Q: 有什么“深度学习”能做而其他程序不能做的吗?

编写程序非常耗费人力。在过去,计算机是如此之慢,内存非常昂贵,以至于人们采用逻辑,也就是计算机的工作原理,来编写程序。他们通过基础机器语言来操纵信息。计算机太慢了,计算太贵了。

但现在,计算力越来越便宜,劳动力也越来越昂贵。而且计算力变得如此便宜,以至于慢慢地,让计算机学习会比让人类编写程序更有效。在那时,深度学习会开始解决以前没有人编写过程序的问题,比如在计算机视觉和翻译等领域。

机器学习是计算密集型的,但你只需编写一个程序,通过给它不同的数据集,你可以解决不同的问题。并且你不需要是领域专家。因此,对于存在大量数据的任何事物,都有对应的大量应用程序。

Q:“深度学习”现在似乎无处不在。 它是如何变得如此主导潮流?

我可以在历史上精确地找到这一特定时刻:2012年12月在NIPS会议(这是最大的AI会议)上。在那里,计算机科学家Geoff Hinton和他的两个研究生表明你可以使用一个名为ImageNet的非常大的数据集,包含10,000个类别和1000万个图像,并使用深度学习将分类错误减少20%。

通常,在该数据集上,错误在一年内减少不到1%。 在一年内,20年的研究被跨越了。

这真的打开了潮水的闸门。

Q:深度学习的灵感来自大脑。那么计算机科学和神经科学这些领域如何协同工作呢?

深度学习的灵感来自神经科学。最成功的深度学习网络是由Yann LeCun开发的卷积神经网络(CNN)。

如果你看一下CNN的架构,它不仅仅是很多单元,它们以一种基本上镜像大脑的方式连接起来。大脑中被研究的最好的一部分在视觉系统,在对视觉皮层的基础研究工作中,表明那里存在简单和复杂细胞。如果你看一下CNN架构,会发现有简单细胞和复杂细胞的等价物,这直接来自我们对视觉系统的理解。

Yann没有盲目地试图复制皮质。他尝试了许多不同的变种,但他最终收敛到的方式和那些自然收敛到的方式相同。这是一个重要的观察。自然与人工智能的趋同可以教给我们很多东西,而且还有更多的东西要去探索。

Q:我们对计算机科学的理解有多少取决于我们对大脑的理解程度?

我们现在的大部分AI都是基于我们对大脑在60年代的了解。 我们现在知道的更多,并且更多的知识被融入到架构中。

AlphaGo,这个击败围棋冠军的程序不仅包括皮质模型,还包括大脑的一部分被称为“基底神经节”的模型,这对于制定一系列决策来实现目标非常重要。 有一种称为时间差分的算法,由Richard Sutton在80年代开发,当与深度学习相结合时,能够进行人类以前从未见过的非常复杂的玩法。

当我们了解大脑的结构,并且当我们开始了解如何将它们集成到人工系统中时,它将提供越来越多的功能,超越我们现在所拥有的。

Q:人工智能也会影响神经科学吗?

它们是并行的工作。创新神经技术已经取得了巨大的进步,从一次记录一个神经元到同时记录数千个神经元,并且同时涉及大脑的许多部分,这完全开辟了一个全新的世界。

我说人工智能与人类智能之间存在着一种趋同。随着我们越来越多地了解大脑如何工作,这些认识将反映到AI中。 但与此同时,他们实际上创造了一整套学习理论,可用于理解大脑,让我们分析成千上万的神经元以及他们的活动是如何产生的。 所以神经科学和人工智能之间存在这种反馈循环,我认为这更令人兴奋和重要。

Q:你的书讨论了许多不同的深度学习应用,从自动驾驶汽车到金融交易。你觉得哪个特定领域最有趣?

我完全被震撼到的一个应用是生成对抗网络,或称GANS。使用传统的神经网络,你给出一个输入,你得到一个输出。 GAN能够在没有输入的情况下开展活动 - 产生输出。

是的,我在这些网络创建假视频的故事背景下听说过这个。他们真的会产生看似真实的新事物,对吧?

从某种意义上说,它们会产生内部活动。事实证明这是大脑运作的方式。你可以看某处并看到一些东西,然后你可以闭上眼睛,你可以开始想象出那里没有的东西。你有一个视觉想象,当周围安静时,你闹钟声会浮现想法。那是因为你的大脑是生成性的。现在,这种新型网络可以生成从未存在过的新模式。所以你可以给它,例如,数百张汽车图像,它会创建一个内部结构,可以生成从未存在的汽车的新图像,并且它们看起来完全像汽车。

Q:另一方面,您认为哪些想法可能是过度炒作?

没有人可以预测或想象这种新技术的引入会对未来的事物组织方式产生什么影响。当然这其中有炒作。我们还没有解决真正困难的问题。我们还没有通用智能,就有人说机器人将不久后会取代我们,其实机器人远远落后于人工智能,因为复制身体被发现比复制大脑更复杂。

让我们看一下这一种技术进步:激光。它是在大约50年前发明的,当时占据了整个房间。从占据整个房间到我现在演讲时使用的激光笔需要50年的技术商业化。它必须被推进到体积足够小并可以用五美元购买它的程度。同样的事情将发生在像自动驾驶汽车这样的被炒作的技术上。它并不被期望在明年或者未来10年,就变得无处不在。这过程可能需要花费50年,但重点是,在此过程中会有逐步推进,使它越来越灵活,更安全,更兼容我们组织运输网络的方式。炒作的错误在于人们的时标设定错了。他们期待太多事情太快发生,其实事物只在适当的时候。

关于深度学习的问题可以看下这个网页的视频讲解:AI深度学习---中科院公开课。

⑸ 深度学习有哪些算法

只有简单的了解:
常见的深度学习算法有三种:来卷积神经网络、循环神经网络、生成对抗网络。具体的需要自己去钻研了

⑹ 如何在arm上进行深度学习算法开发

AlphaGo依靠精确的专家评估系统(value network):专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。
基于海量数据的深度神经网络(policy network):多层的好处是可以用较少的参数表示复杂的函数。在监督学习中,以前的多层神经网络的问题是容易陷入局部极值点。如果训练样本足够充分覆盖未来的样本,那么学到的多层权重可以很好的用来预测新的测试样本。但是很多任务难以得到足够多的标记样本,在这种情况下,简单的模型,比如线性回归或者决策树往往能得到比多层神经网络更好的结果。非监督学习中,以往没有有效的方法构造多层网络。多层神经网络的顶层是底层特征的高级表示,比如底层是像素点,上一层的结点可能表示横线,三角; 而顶层可能有一个结点表示人脸。
传统的人工智能方法蒙特卡洛树搜索的组合:是一种人工智能问题中做出最优决策的方法,一般是在组合博弈中的行动(move)规划形式。它结合了随机模拟的一般性和树搜索的准确性。

阅读全文

与武汉深度学习算法系统相关的资料

热点内容
图像压缩编码实现 浏览:66
特色功能高抛低吸线副图指标源码 浏览:69
西方哲学史pdf罗素 浏览:872
python最常用模块 浏览:182
温州直播系统源码 浏览:110
程序员在上海买房 浏览:382
生活解压游戏机 浏览:907
季羡林pdf 浏览:716
php支付宝接口下载 浏览:814
ipad怎么把app资源库关了 浏览:301
量柱比前一天多源码 浏览:416
电子书app怎么上传 浏览:66
国家反诈中心app注册怎么开启 浏览:804
全波差分傅里叶算法窗长 浏览:41
程序员如何讲自己做过的项目 浏览:7
程序员要看的书颈椎 浏览:946
php文章cms 浏览:553
CSS权威指南第三版PDF 浏览:496
android怎么搭建框架 浏览:184
正宗溯源码大燕条一克一般多少钱 浏览:917